
Vol. 48 No. 9 IPSJ Journal Sep. 2007

Regular Paper

Ring Signatures: Universally Composable Definitions and Constructions

Kazuki Yoneyama† and Kazuo Ohta†

Though anonymity of ring signature schemes has been studied in many publications, these
papers gave different definitions and there has been no consensus. Recently, Bender, et
al. proposed two new anonymity definitions of ring signature schemes which are stronger
than the previous definitions, that are called anonymity against attribution attacks/full key
exposure. In addition, ring signature schemes have two levels of definitions for unforgeability
definitions, i.e., existential unforgeability and strong existential unforgeability. In this paper,
we will redefine anonymities and unforgeabilities within the universally composable (UC)
security framework. First, we will give new ideal functionalities of ring signature schemes for
each security level separately. Next, we will show the relations between game-based security
definitions and our UC definitions. Finally, we will give another proof for the security of the
Bender, et al.’s ring signature scheme within the UC framework. A simulator we constructed
in this proof can easily simulate an adversary of existential unforgeability, which can be
adaptable to the case of strong existential unforgeability if we assume the exploited signature
scheme is a standard single strong existentially unforgeable signature scheme.

1. Introduction

Currently, there are several digital signature
schemes which require an anonymity property,
i.e., a verifier can be convinced that a signature
is valid although he cannot identify the true
signer among many possible signers. The ring
signature scheme is the sort of scheme which
is suitable for this kind of situation. For any
signed message, ring signature schemes hide the
true signer of the message among several signer
candidates. A ring signature is realized by al-
lowing the true signer to create the signature
by using his own signing key and other mem-
bers’ verification keys who are the members of
a group of signer candidates. In 2001, Rivest,
et al. 10) proposed the first concrete construc-
tion of ring signature schemes with RSA public-
keys. Their scheme is based on trapdoor one-
way permutations and an ideal block cipher. As
an improvement, Abe, et al. 1) proposed a con-
struction which is less computational costs and
less storage costs compared to that of Rivest, et
al.’s one 10) based on the random oracle model.
Dodis, et al. 6) constructed an efficient scheme
which has a constant signature size for the num-
ber of the group members. Chow, et al. 4) and
Bender, et al. 2), independently, first showed
constructions which have security proof with-
out relying on the random oracle assumption.

† The University of Electro-Communications

1.1 Ring Signatures in the Universal
Composability Framework

In recent years, the universal composability
(UC) framework 3) as a new technique of se-
curity evaluation has been studied. The UC
framework is an approach to guarantee the se-
curity of protocol A by proving that the real-life
execution of a protocol A, denoted by φA, is em-
ulating the ideal process for an ideal functional-
ity of protocol A. The ideal functionality FA is
a generic procedure which captures all features
and all necessary security requirements of pro-
tocol A. If the proof is given, then protocol A is
said to satisfy UC-security . The advantage of
the UC framework over traditional frameworks
is that UC provides strong and robust secure
composability, i.e., the security of a primitive
(which is UC secure in a stand-alone manner)
will always be preserved even when it is exe-
cuted concurrently with other unlimited num-
bers of UC secure primitives in an adversarial
controlled manner.

The formulation of the ring signature in
the UC framework is firstly introduced by
Hanatani, et al. 9) and Yoneyama, et al. 11).
They proposed ideal functionalities for the ring
signature and proved that a protocol of a ring
signature scheme securely realizes functional-
ities if and only if the scheme satisfies un-
forgeability and anonymity. However, their
results aren’t enough since the functionali-
ties only capture a kind of unforgeability and
anonymity. In particular, they only consid-
ered basic anonymity. Furthermore, though the

2976

Vol. 48 No. 9 Ring Signatures: Universally Composable Definitions and Constructions 2977

strong cryptographic notion of anonymity is de-
fined by Bender, et al. 2), the strong notion in
UC framework isn’t given. In this paper, we will
propose formulations of the ring signature func-
tionality corresponding to strong cryptographic
security notions, and a construction which ac-
tually satisfies UC-security.

1.2 Security Notions of Ring Signa-
ture Schemes

The security of ring signature schemes is dis-
cussed with respect to two requirements, i.e.,
unforgeability and anonymity. Moreover, we
should consider a unique attack scenario based
on the particularity of ring signature schemes.

In the standard single signature schemes
where there is only one true signer, the adap-
tively chosen message attacks (ACMA) 8) is gen-
erally recognized as the strongest attack sce-
nario. However, in the case of ring signature
schemes where a signature might correspond to
more than one signer, in addition to ACMA,
we also have to consider an attack scenario
where the adversary can adaptively choose the
groups which a signature will be considered
valid for. This additional adversarial attack is
called adaptively chosen verification key attacks
(ACVKA) 1). This attack allows an adversary to
add any verification key to the list of verifica-
tion keys of signers.

Therefore, by considering ACVKA, the desir-
able notion of unforgeability on ring signature
schemes is existential unforgeability against
adaptively chosen message and verification key
attacks (eUF-ACMA&ACVKA) (Definition 2.3).
This notion requires that no adversary can cre-
ate a signature σ̃ of never signed message m̃
except with negligible probability, such that σ̃
is verified as valid for m̃ with respect to the cor-
rect verification key list. Note that, we have to
consider unforgeability toward the verification
key list of a group as well as a message in or-
der to prevent a forge for ever signed message
with different groups since the verification key
list (of the group) is specified from all signer
candidates as an input of signature generation.

Furthermore, we can consider the stronger
notion of unforgeability, known as strongly
existential unforgeability against adaptively
chosen message and verification key attacks
(sUF-ACMA&ACVKA) (Definition 2.4). This
notion differs from eUF-ACMA&ACVKA in the
following point: In addition to the requirement
of eUF-ACMA&ACVKA, sUF-ACMA&ACVKA
requires that any adversary can’t even create

a valid signature σ̃ of already signed message
m̃ with respect to the verification key list ex-
cept with negligible probability. Most previous
schemes 2),4),6),10) adopt eUF-ACMA&ACVKA
and it seems enough from a practical viewpoint.
However, eUF-ACMA&ACVKA give no guaran-
tee when a forger who has a valid signature of
a message with respect to a verification key list
creates another valid signature of the same mes-
sage with respect to the same verification key
list. So, sUF-ACMA&ACVKA may be needed
for some applications or situations.

With regard to the notion of anonymity, prior
works provide various definitions. The way of
defining anonymity has mainly two different
views.

One view requires that the adversary should
be unable to “know” who is the true signer in
a ring nor be able to “distinguish” whether a
signature of the ring is generated by the true
signer. In this case, at least two honest par-
ties are required in the ring for guaranteeing
signer anonymity completely. If all members in
the ring are corrupted except one honest true
signer, or all verification keys are chosen by
ACVKA except the true signer’s one, then the
adversary can “know” who is the true signer
regardless of whether she distinguishes the sig-
nature since the adversary didn’t generate the
signature himself. Most previous works are es-
tablished from this viewpoint (Definition 2.5).

The other view is proposed by Bender, et
al. 2). This view requires the security that the
adversary cannot show any evidence that a sig-
nature is the true signer’s one even when the
adversary “knows” the true signer. That is,
it requires that the adversary who corrupts all
members of the ring except one honest true
signer should be unable to prove to a third party
that the true signer has generated the signa-
ture. This situation means that the adversary
can prove to a third party by using all inter-
nal states of corrupted parties. Such a situa-
tion requires, in other words, that the signa-
ture of the true signer is distinguishable from
signatures of other members by using all in-
ternal states of corrupted parties. Therefore,
we have to consider the security in the situ-
ation where randomnesses used at key genera-
tion of the other members of the ring except the
true signer are exposed. This notion is called
anonymity against attribution attacks (Defini-
tion 2.6). Furthermore, we can also consider
the stronger variant that the security is guar-

2978 IPSJ Journal Sep. 2007

anteed even if all randomnesses including the
true signer’s one in the ring are exposed. This
notion is called anonymity against full key ex-
posure (Definition 2.6).

1.3 Our Contribution
This paper has for the main part a defini-

tional contribution.
Universally composable definition The
previous definition of the UC ring signature 11)

only captures sUF-ACMA&ACVKA and basic
anonymity. Also, though stronger definitions
of anonymity are studied by Bender, et al. 2),
they only gave cryptographic definitions, i.e.,
no UC definitions. In this paper, we formu-
late definitions of a UC ring signature with re-
gard to various security levels. In particular,
we propose an ideal ring signature functionality
F (uf ,anon)

rSIG which is convertible by a level of un-
forgeability uf and a level of anonymity anon.
We are able to choose eUF or sUF as uf , and
basic anonymity, anonymity against attribution
attacks or anonymity against full key exposure
as anon. So, our functionality can represent six
kinds of security notions by the combination of
unforgeability and anonymity. This convertibil-
ity of F (uf ,anon)

rSIG is useful in order to capture a
necessary security property for analyzing a pro-
tocol. Moreover, we show the relations between
cryptographic definitions and our functionality
F (uf ,anon)

rSIG at all security levels. As a result, re-
alizing F (uf ,anon)

rSIG is equivalent to ensuring tra-
ditional cryptographic security notions of a ring
signature. Therefore, our UC definitions of a
ring signature are well-designed.
Universally composable construction In
this paper, we also show concrete construc-
tions which securely realize our functionality
F (uf ,anon)

rSIG . We adapt Bender, et al.’s scheme 2)

(BKM scheme) which is secure without relying
on the random oracle assumption.

2. Preliminaries

We briefly show the protocol syntax in the
UC definition, and we will present the intuitive
framework of ring signature schemes. Next, we
define a specific description with respect to ring
signature, attack models and security notion.
Protocol syntax Following the reference 3), a
protocol is represented as a system of interac-
tive Turing machines (ITMs). ITM has a ses-
sion identifier (SID), a party identifier (PID).
SID shows belonging session of the ITM. PID
shows the party identifier of the ITM. The pair

(SID, PID) is unique in the system. We assume
that all ITMs run in probabilistic polynomial
time.
Ring signature schemes Ring signature
schemes allow any party to generate a pair of
keys, i.e., a signing key and a verification key.
A signer chooses group members from among
parties who make public their verification keys.
Let Gall be the set of parties P1, . . . , Pn and let
Lall be the list of their verification keys. Fur-
thermore, let G be a subset of Gall and let L
be the list of G’s verification keys. Also, a sig-
nature of a message is generated by a signer of
group G. Though any party can verify the sig-
nature using L as a verifier, he cannot identify
the signer among G.

Definition 2.1(RingSignatureSchemes)
A ring signature scheme Σr consists of the fol-
lowing 3-tuple (RGen,RSign,RVer):
• RGen is a key generation algorithm which

on input 1k, where k is the security param-
eter, outputs a pair of keys (sk, vk). sk and
vk are called the signing key and verifica-
tion key.

• RSign is a signature generation algorithm
which takes as inputs a message m and a
list of verification keys L from the signing
key ski corresponding to verification key
vki ∈ L, and outputs a signature σ.

• RVer is a verification algorithm which
takes as inputs a message m, a list
of verification keys L and a signature
σ, and output a bit 1 or 0 (i.e., ac-
cept or reject). For any i where
vki ∈ L, RVer satisfies 1 ← RVer(m, L,
RSign(m, L, ski)). RVer has to be state-
ful, i.e., if (m, L, σ) = (m′, L′, σ′), then
RVer(m, L, σ) = RVer(m′, L′, σ′).

In ring signature schemes, we should consider
the situation where an adversary (i.e., a forger
or a distinguisher) adds arbitrary verification
keys to the list of verification keys and asks
the signing oracle to sign for arbitrary messages
with the arbitrary subset of keys. Let Lvalid be
the list of verification keys which are generated
by RGen as valid keys, Linvalid be the list of
verification keys which are added by the forger
and Lall be the list of all registered verification
keys (i.e., Lall = Lvalid ∪ Linvalid).

Definition 2.2 (Adaptively Chosen
Message and Chosen Verification key At-
tack) An adversary is allowed to behave arbi-
trarily as follows:
• ACMA: Sends (m, L, i) to the signing

Vol. 48 No. 9 Ring Signatures: Universally Composable Definitions and Constructions 2979

oracle SO. If L ⊆ Lall and vki ∈ L∩Lvalid,
then SO returns σ ← RSign(m, L, ski).
Else, SO returns ⊥. Let {(m̄, L̄, σ̄)} denote
all the 3-tuple the adversary obtained from
queries to SO.
• ACVKA: Adds arbitrary vk to Linvalid.
The security of ring signature schemes is

characterized by two properties (i.e., unforge-
ability and anonymity). First, we formally de-
fine the cryptographic notion of unforgeability
on two levels.

Definition 2.3 (eUF-ACMA&ACVKA) A
ring signature scheme Σr is existentially
unforgeable against adaptively chosen mes-
sage and chosen verification key attacks
(eUF-ACMA&ACVKA) if the probability that
the following experiment holds for a security
parameter k is negligible;
(1) The key pair (ski, vki) for all parties is

generated from RGen(1k), and the list of
all verification keys Lall(= Lvalid) is given
to the forger.

(2) The forger plays ACMA&ACVKA arbitrary
and can obtain their secret keys by corrupt-
ing parties.

(3) The forger outputs (m̃, L̃, σ̃) satisfying
RVer(m̃, L̃, σ̃) = 1, (m̃, L̃, ∗) 	∈ {(m̄, L̄, σ̄)}
where ∗ means a wildcard, L̃ is the verifica-
tion key list of the group G̃ and L̃ ⊆ Lvalid,
and all members of G̃ are uncorrupted.

Definition 2.4 (sUF-ACMA&ACVKA) A
ring signature scheme Σr is strong existentially
unforgeable against adaptively chosen message
and chosen verification key attacks (sUF-ACMA
& ACVKA) if the probability that the following
experiment holds for a security parameter k is
negligible;
(1) The same as (1) in Definition 2.3.
(2) The same as (2) in Definition 2.3.
(3) The forger outputs (m̃, L̃, σ̃) satisfy-

ing RVer(m̃, L̃, σ̃) = 1, (m̃, L̃, σ̃) 	∈
{(m̄, L̄, σ̄)}, L̃ is the verification key list of
the group G̃ and L̃ ⊆ Lvalid, and all mem-
bers of G̃ are uncorrupted.

Next, we define the cryptographic notion of
anonymity in the two senses. Informally speak-
ing, the notion of anonymity should guarantee
that given a signature, it is not feasible for any
distinguisher to tell the signing key which is
used to generate the signature from the oth-
ers in G. In the traditional sense, anonymity
is guaranteed only when there are at least two
honest parties in the ring. This restriction

arises because the adversary “knows” signa-
tures by generating corrupted parties, i.e., the
adversary is able to tell which is the signature of
the honest party. We call the definition based
on this sense basic anonymity.

Definition 2.5 (Basic anonymity) A
ring signature scheme Σr is basic anonymous
if the probability that the following experiment
holds for a security parameter k is negligibly
close to 1/2;
(1) The key pair (ski, vki) for all parties is

generated from RGen(1k), and the list of
all verification keys Lall(= Lvalid) is given
to the distinguisher.

(2) The distinguisher plays ACMA&ACVKA
arbitrarily and by corrupting parties can
obtain their secret keys.

(3) The distinguisher outputs (m, i0, i1, L)
where vki0 , vki1 ∈ Lvalid ∩ L, Pi0 and Pi1

are uncorrupted, and (m, L,RSign(m, L,
ski0)), (m, L,RSign(m, L, ski1)) /∈ {(m̄, L̄,
σ̄)}. Then, the distinguisher obtains the
signature σb ← RSign(m, L, skib

) where b
is a randomly chosen bit.

(4) The distinguisher guesses a bit b̃ and b̃ = b.
Though the basic anonymity is adopted in

most traditional studies, it’s desirable that we
can catch the notion of anonymity when there
is only one honest party (or there is no honest
party) in the ring. However, from the viewpoint
of whether the distinguisher knows the true
signer or not, the restriction of basic anonymity
is inevitable. Therefore, we are able to consider
the notion of anonymity from the other view-
point which requires that the only one honest
party isn’t framed by other corrupted parties in
the ring, i.e., no corrupted parties can show any
evidence that the honest party has generated a
signature even if they use all the information
of their secrets and internal states (e.g., ran-
domness used at key generation). This notion
is called anonymity against attribution attacks
in Ref. 2). Moreover, the stronger notion which
guarantees anonymity even if secrets and inter-
nal states of all parties in the ring (including
the honest one) are exposed is called anonymity
against full key exposure.

Definition 2.6 (Anonymity against at-
tribution attacks/full key exposure) A
ring signature scheme Σr is anonymous against
attribution attacks/full key exposure if the
probability that the following experiment holds
for a security parameter k is negligibly close to
1/2;

2980 IPSJ Journal Sep. 2007

(1) The key pair (ski, vki) for all parties is
generated from RGen(1k; ωi) where ωi is
randomness, and the list of all verification
keys Lall(= Lvalid) is given to the distin-
guisher.

(2) The distinguisher plays ACMA&ACVKA
arbitrarily.

(3) The distinguisher outputs (m, i0, i1, L)
where vki0 , vki1 ∈ Lvalid ∩ L and (m, L,
RSign(m, L, ski0)), (m, L, RSign(m, L,
ski1)) /∈ {(m̄, L̄, σ̄)}. Then, the dis-
tinguisher obtains the signature σb ←
RSign(m, L, skib

) where b is a randomly
chosen bit and randomnesses {ω}i �=i0 (in
the case of full key exposure, all random-
nesses is given).

(4) The distinguisher guesses a bit b̃ and b̃ = b.

3. Ring Signature Functionality
F(uf ,anon)

rSIG

In this section, we will introduce a new def-
inition of ring signature schemes in UC frame-
work, i.e., a new ideal ring signature function-
ality F (uf ,anon)

rSIG .
3.1 Definition of F(uf ,anon)

rSIG

F (uf ,anon)
rSIG receives three instructions for the

basic function of ring signature schemes (Key
Generation, Signature Generation and Signa-
ture Verification requests) and one instruc-
tion for the adversary (Attribution request).
F (uf ,anon)

rSIG covers six kinds of security levels,
i.e., combination of two levels of unforgeabil-
ity and three levels of anonymity. That is,
(uf , anon) represents a security level as uf is
parameterized by eUF and sUF, and anon is
parameterized by basic anonymity, anonymity
against attribution attacks and anonymity
against full key exposure. From now on,
for anon, we use basic as basic anonymity,
attribution as anonymity against attribution at-
tacks and full-key as anonymity against full key
exposure for short. Specifically, a Signature
Verification request concerns unforgeability and
an Attribution request concerns anonymity.
F (uf ,anon)

rSIG is the standard corruption func-
tionality. If the adversary corrupts some party
Pj and Pj finished Key Generation request,
then F (uf ,anon)

rSIG outputs all internal state of Pj

to the adversary.
Also, we will show the relations between cryp-

tographic security notions as Section 2 and our
functionality. Figure 1 shows the functionality

F (uf ,anon)
rSIG .

Determining algorithms As with the basic
signature functionality 3), the values of verifica-
tion keys and legitimated signatures are deter-
mined by the adversary via algorithms RV and
RS since the notion of the security of ring sig-
nature schemes doesn’t make any requirements
on these values. That is, the signature values
may depend on the identity of the signer or all
signature values are identical. Making sure that
signature values are independent from the iden-
tity of the signer or are different from each other
is only a technical tool which allows realizing
the abstract requirement in an algorithmic way.
Naturally, we can reflect these requirements in
the formulation of F (uf ,anon)

rSIG , only we adapt the
general formulation in this paper.
Guaranteeing completeness and state-
fulness As Definition 2.1, ring signature
schemes have to satisfy completeness, i.e.,
1 ← RVer(m, L,RSign(m, L, ski)), and state-
fulness, i.e., if (m, L, σ) = (m′, L′, σ′), then
RVer(m, L, σ) = RVer(m′, L′, σ′). F (uf ,anon)

rSIG
guarantees both completeness and statefulness
as follows: If a signature σ is honestly gener-
ated, then F (uf ,anon)

rSIG exactly outputs 1 at Sig-
nature Verification request since F (uf ,anon)

rSIG al-
ready checks

∧
j∈G RVj(m, L, σ) ?= 1 for σ at

Signature Generation request. Also, for the
same verification request F (uf ,anon)

rSIG outputs the
consistent value since all RV are deterministic
algorithms.
Guaranteeing unforgeability If an event
corresponding to the condition of unforgeabil-
ity occurs, F (uf ,anon)

rSIG outputs that the signa-
ture is invalid to the Signature Verification re-
quest. Also, the difference of the condition be-
tween eUF-ACMA&ACVKA (Definition 2.3) and
sUF-ACMA&ACVKA (Definition 2.4) appears at
the Signature Verification request since the dif-
ference of two notions is only the range of sig-
natures which should be dealt with as forged
signatures, i.e., F (uf ,anon)

rSIG decides forged signa-
tures.
Guaranteeing anonymity The adversary ob-
tains no information about the linkage between
the identity of a signer and a generated signa-
ture at the Signature Generation request since
F (uf ,anon)

rSIG generates the signature by using the
signing algorithm RS without any interaction
with the adversary. Therefore, as long as the
adversary doesn’t corrupt the signer, perfect

Vol. 48 No. 9 Ring Signatures: Universally Composable Definitions and Constructions 2981

Functionality F (uf ,anon)
rSIG

Key Generation: On input (“KeyGen”, sid) from party Pi, forward (“KeyGen”, sid) to the adver-
sary. If it is the first “KeyGen” input to the adversary, then obtain a (“Algorithms”, sid,RS,RVi)
from the adversary, where RS is a description of a PPT ITM and RVi is a description of a determin-
istic polytime ITM. Otherwise, then obtain a (“Algorithms”, sid,RVi) from the adversary, where
RVi is a description of a deterministic polytime ITM. Finally, output (“Verification Algorithms”,
sid,RVi) to Pi, record Lall ← Lall ∪ {RVi}.
Signature Generation: On input (“Sign”, sid,m, L) from Pi, check (L ⊆ Lall) ∧ (RVi ∈ L).
If not, ignore the input. Else, let σ = RS(m, L). If

∧
RVj∈L

RVj(m, L, σ) = 1, then record

(m, L, σ, Pi) and output (“Signature”, sid,m, L, σ). Else, output an error message.

Signature Verification: On input (“Verify”, sid,m, L, σ) from some party Pk, output (“Verified”,
sid,m, f) where:
• Case of uf = eUF

Event 1. If L ⊆ Lall, (m, L, ∗, ∗) is not recorded and any party in G is not corrupted, then
set f = 0.

Event 2. Else, set f =
∧

RVj∈L
RVj(m, L, σ).

• Case of uf = sUF
Event 1. If L ⊆ Lall, (m, L, σ, ∗) is not recorded and any party in G is not corrupted, then

set f = 0.
Event 2. Else, set f =

∧
RVj∈L

RVj(m, L, σ).

Attribution: On input (“Attribute”, sid,m, L, σ) from the adversary, check that there exists Pi

s.t. (m, L, σ, Pi) is recorded. If not, ignore the input. Otherwise, output a message to the adversary
where:
• Case of anon = basic

Event 1. If Pi is uncorrupted and there is the other one honest party in G, then output error
message.

Event 2. Else, output (“Attributed”, sid,m, σ, Pi).
• Case of anon = attribution

Event 1. If there is honest party in G, then output error message.
Event 2. Else, output (“Attributed”, sid,m, σ, Pi).
• Case of anon = full-key

Always output error message.

Fig. 1 Ring signature functionality F(uf ,anon)
rSIG .

anonymity is guaranteed for the signature. In-
tuitively, the Attribution request represents the
attribution attack by the adversary. For this at-
tack, the requirements of anonymity property
differ in each definitions. In the case of basic
anonymity (Definition 2.5), if there aren’t at
least two uncorrupted parties in the ring, then
Event 2 at the Attribution request in F (uf ,anon)

rSIG
occurs, i.e., the anonymity isn’t guaranteed.
Also, in the case of anonymity against attribu-
tion attacks (one of Definition 2.6), if all par-
ties are corrupted, then Event 2 occurs. In the
case of anonymity against full key exposure (the
other of Definition 2.6), the adversary can’t ob-
tain any information regarding the true signer
even if all parties are corrupted.
Allowing adaptively chosen verification

key attacks When the forger E and the dis-
tinguisher D perform adaptively chosen verifi-
cation key attack, they can generate an arbi-
trary verification key and add it to the list of
verification key L at Key Generation request
by corrupting some party by formulation of
F (uf ,anon)

rSIG . This situation represents ACVKA.
From the formulation of Event 1 at the Sig-
nature Verification request, the unforgeability
property is preserved even if ACVKA is allowed.

3.2 Equivalence Relations between
Cryptographic Notions and
F(uf ,anon)

rSIG
Here, we show the relations between realizing
F (uf ,anon)

rSIG and ensuring both unforgeability and
anonymity which correspond to security levels.

Let Σr be a ring signature scheme. Then, we

2982 IPSJ Journal Sep. 2007

Protocol πΣr

Key Generation: On input (“KeyGen”, sid), Pi runs algorithm RGen and records the pair

(ski, vki).

Signature Generation: On input (“Sign”, sid,m, L), Pi runs algorithm RSign, obtains σ =

RSign(m, L, ski) and outputs (“Signature”, sid,m, L, σ).

Signature Verification: On input (“Verify”, sid,m, L, σ), any party outputs (“Verified”,

sid,m,RVer(m, L, σ)).

Fig. 2 The generic protocol of ring signature schemes πΣr .

describe a generic protocol πΣr
corresponding

to Σr. Figure 2 shows the protocol πΣr
.

Theorem 3.1 πΣr
securely realizes

F (uf ,anon)
rSIG if and only if Σr satisfies both un-

forgeability and anonymity according to uf and
anon.
[Proof]

First, we prove “only if” direction. The proof
outline is that we can construct a real model
adversary A and an environment Z which suc-
cessfully distinguishes the real model from the
ideal model, that is, Z distinguishes an inter-
action with F (uf ,anon)

rSIG and πΣr
if Σr does not

satisfy unforgeability or anonymity ☆.
(I). For proving the case of no unforgeability

of uf , we consider a successful forger Euf .
Let Z internally runs a copy of Euf with
Lall obtained from parties as the input.
Whenever Euf plays ACVKA to add a veri-
fication algorithm RVj to Lall, Z instructs
the adversary to corrupt some party Pj ,
to request (“KeyGen”, sid) and to output
RVj . Also, whenever Euf sends (m, L, i) to
the signing oracle SO, Z activates Pi with
(“Sign”, sid, m, L) and returns the ob-
tained signature σ to Euf . If Euf requires
corrupting a party, Z instructs the adver-
sary to corrupt the party and outputs the
obtained signing key (or algorithm) from
the adversary to Euf .
When Euf outputs a forged tuple (m̃, L̃, σ̃)
where L̃ ⊆ Lall, Z proceeds as follows: If
uf = eUF, (m̃, L̃, ∗) was queried to SO
where ∗ means a wildcard or there is a
corrupted member in G̃, then Z outputs
0 and halts. Also, if uf = sUF, (m̃, L̃, σ̃)
was queried to SO or there is a corrupted
member in G̃, then Z outputs 0 and halts.
Else, Z sends (“Verify”, sid, m̃, L̃, σ̃) to a

☆ In the cases of no completeness or no statefulness,
trivially we can construct Z which successfully dis-
tinguishes the real model from the ideal model.

party and outputs the verification result.
In the real model, Z outputs 1 with
non-negligible probability since Z perfectly
gives interfaces for ACMA&ACVKA to Euf

in cases of both uf = eUF and sUF, and we
assume Euf is a successful forger. However,
in the ideal model, Z exactly outputs 0
since events which Z outputs 1 don’t occur
in cases of both uf = eUF and sUF at Signa-
ture Verification request because of the for-
mulation of F (uf ,anon)

rSIG . Therefore, we can
construct an environment Z which success-
fully distinguishes the real model from the
ideal model.

(II). For proving the case of no anonymity
of anon, we consider a successful distin-
guisher Danon . Let Z internally runs a
copy of Danon with Lall obtained from par-
ties as the input. When Danon requires
something to Z, i.e., ACMA, ACVKA and
corruption, Z returns outputs like (I). In
addition, when Danon wants to examine
whether a signature is generated by a cer-
tain party with a message m and a veri-
fication key list L, Z sends (“Attribute”,
sid, m, L, σ) to the adversary and returns
the output obtained from the adversary.
When Danon queries a challenge (m, i0, i1,
L) where vki0 , vki1 ∈ Lvalid ∩ L, Z ran-
domly chooses a bit b, sends (“Sign”,
sid, m, L) to Pb and returns the obtained
signature σb to Danon . Then, if anon =
attribution, then Z corrupts {Pi}i �=i0 and
hands obtained signing keys (or algo-
rithms) to Danon . If anon = full-key,
then Z corrupts all parties and hands
obtained signing keys (or algorithms) to
Danon . When Danon outputs a bit b̃, Z
proceeds as follows: If anon = basic, and
Pi0 or Pi1 is corrupted or (m, L, σb) was
queried to SO then Z outputs 0 and halts.
Also, if anon = attribution, and Pi0 and Pi1

Vol. 48 No. 9 Ring Signatures: Universally Composable Definitions and Constructions 2983

Simulator S
� Interaction with F (uf ,anon)

rSIG

• First, run the algorithm RGen, obtain the pair (sk′, vk′) and record RS :=

RSign(·, (vk′, · · ·), sk′). On input (“KeyGen”, sid) from F (uf ,anon)
rSIG , run algorithm RGen,

obtain the pair (sk, vk) and record RV := RVer(·, (vk′, vk, · · ·), ·). If it is the first “KeyGen”

input from F (uf ,anon)
rSIG , then send (“Algorithms”, sid,RS,RV) back to F (uf ,anon)

rSIG . Otherwise,

then send (“Algorithms”, sid,RV) back to F (uf ,anon)
rSIG .

� Interaction with Z
• When being ordered by Z to corrupt some party Pj , corrupt Pj , inform a corruption to

F (uf ,anon)
rSIG and report the obtained information from F (uf ,anon)

rSIG to Z. (If Pj already finished
Key Generation request, the information includes the signing algorithm RS.)

• When being ordered by Z to attribute a signature σ to some party, report the obtained infor-
mation from F (uf ,anon)

rSIG to Z.

Fig. 3 Simulator S.

are corrupted or (m, L, σb) was queried to
SO then Z outputs 0 and halts. Also, if
anon = full-key and (m, L, σb) was queried
to SO then Z outputs 0 and halts. Else, Z
outputs 1 if b̃ = b.
In the real model, Z outputs 1 with half
plus non-negligible probability since Z per-
fectly gives interfaces for ACMA&ACVKA
and corruption to Danon in cases of all
anon = basic, attribution and full-key, and
we assume Danon is a successful distin-
guisher. However, in the ideal model,
Z never outputs 1 over half plus non-
negligible probability since Danon cannot
correctly guess the bit b with at most half
probability in cases of all anon = basic,
attribution and full-key even if the adversary
uses the Attribution request because of the
formulation of F (uf ,anon)

rSIG . Therefore, we
can construct an environment Z which suc-
cessfully distinguishes the real model from
the ideal model.

From (I) and (II), “only if” direction is proven.
Next, we prove “if” direction. The proof out-

line is that Σr doesn’t satisfy unforgeability or
anonymity if there exists a real model adversary
A for any simulator (ideal model adversary)
S such that there is an environment Z which
successfully distinguishes two interactions with
F (uf ,anon)

rSIG or πΣr
. S has to be a generic sim-

ulator corresponding to the adversary A. Fig-
ure 3 shows the description of S.

Now, we consider a fixed environment Z. Z
interacts with S to corrupt some party and to
attribute a signature to a party. By formulation
of S as Fig. 3, S carries out the same corrup-
tion in the ideal model as A carries out in the
real model. The difference for Z only consists

in interfaces between two interactions with par-
ties and the adversary in the ideal model and
in the real model. That is, Z distinguishes the
real model from the ideal model when outputs
of parties and the adversary are different at the
Key Generation request, Signature Generation
request, Signature Verification request or Attri-
bution request.
(I). First, we will show the reduction to un-

forgeability for uf . Let BEeUF
denote the

event that at some point of running πΣr
, all

members Pi ∈ G is uncorrupted, for i = 1
to n Pi generates a verification key vki, Z
requests some party to verify a signature σ
of a message m with L such that vki ∈ L
and 1 ← RVer(m, L, σ) where (m, L, ∗) is
not issued. Let BEsUF

denote the same event
as BEeUF

except 1 ← RVer(m, L, σ) where
(m, L, σ) is not issued. Here, we assume
Σr satisfies completeness, statefulness and
anonymity ☆. Then, we show that for Z the
difference between the real model and the
ideal model is only detected at event BEuf

by formulation of F (uf ,anon)
rSIG and πΣr

. That
is represented by an equation as
Pr[Z outputs 1 |¬BEuf

∧ Z interacts with πΣr
and A]

= Pr[Z outputs 1 |¬BEuf

∧ Z interacts with F (uf ,anon)
rSIG and S].

(1)
Here, we will prove Eq. (1). At the Key
Generation request, S can perfectly sim-

☆ Indeed, as later, Σr does not satisfy unforgeability
regardless of whether Σr satisfies or not complete-
ness, statefulness and anonymity if Event BEuf

oc-
curs. In order to concentrate the relation between
Event BEuf

and unforgeability, we assume Σr satis-
fies completeness, statefulness and anonymity.

2984 IPSJ Journal Sep. 2007

ulate outputs of parties and the adver-
sary regardless of whether there is a cor-
rupted party or not since completeness and
statefulness are satisfied. At the Signature
Generation request, if the signer is uncor-
rupted, outputs of the signer are the same
both in the real and ideal model since the
adversary can do nothing. If the signer is
corrupted, outputs of the signer are also
the same since it is decided by the adver-
sary and S can perfectly simulate A. Also,
at the Attribution request, A has the same
capacity on anon as S with respect to dis-
tinguishing signatures since anonymity is
satisfied and because of the formulation of
F (uf ,anon)

rSIG . So, the difference may exist
only at a Signature Verification request.
At a Signature Verification request, if a
member Pi ∈ G is corrupted, then all
verification results can be decided by S
in the ideal model regardless of whether
Σr satisfies completeness, statefulness and
anonymity since verification results are de-
rived from all verification algorithms of
members in the ring including the cor-
rupted one. In the real model, Pi can also
output arbitrary verification. Therefore,
there is no difference for Z.
If all signers Pi ∈ G are uncorrupted, in
the cases of both uf = eUF and sUF, when
Event 2 at Signature Verification request in
F (uf ,anon)

rSIG occurs, it corresponds to com-
pleteness, statefulness or no guarantee for
verification results. So, Σr satisfies com-
pleteness and statefulness, there is no dif-
ference for Z between the real model and
the ideal model. When Event 1 at a Signa-
ture Verification request occurs, F (uf ,anon)

rSIG
always outputs 0. However, in the real
model, the output of a verifier may be dif-
ferent from the corresponding output of
F (uf ,anon)

rSIG (i.e., event BEuf
occurs in the

real model with non-negligible probabil-
ity). Therefore, the difference for Z is only
detected at event BEuf

by formulation of
F (uf ,anon)

rSIG and we have Eq. (1).
Here, we consider a forger Euf on Σr.
We construct Euf from Z (i.e., Euf runs
simulated copy of Z). At Key Gener-
ation request for a party Pi, instead of
running RGen, Euf hands ZRVi :=
RVer(·, (vki, ·), ·) where vki is a verifica-
tion key of the input L. At a Signature

Generation request with a message m for L,
instead of running RSign, forwards this re-
quest to signing oracle SO. At a Signature
Verification request with (m, L, σ) for a
party Pj , Euf runs

∧
RVj∈L RVj(m, L, σ).

At an Attribution request with (m, L, σ),
Euf outputs the signer identity if the
condition of corruption doesn’t guaran-
tee anonymity for anon. In the case of
uf = eUF, if

∧
RVj∈L RVj(m̃, L, σ̃) out-

puts 1 and m̃ was never signed for L,
then Euf completes the simulation and re-
turns (m̃, L, σ̃). Else, then Euf hands
Z ∧RVj∈L RVj(m, L, σ). In the case of
uf = sUF, if

∧
RVj∈L RVj(m̃, L, σ̃) outputs

1 and σ̃ was never generated as signature
of m̃ for L, then Euf completes the sim-
ulation and returns (m̃, L, σ̃). Else, then
Euf hands Z ∧RVj∈L RVj(m, L, σ). Fur-
thermore, when Z halts or the adversary
corrupts a party in G, then Euf fails.
Thus, by construction of Euf and Eq. (1),
we have
|Pr[Z outputs 1 | Z interacts with

πΣr
and A]− Pr[Z outputs 1 | Z

interacts with F (uf ,anon)
rSIG and S]|

=
(
Pr[BEuf

] · Pr[Z outputs 1 |
BEuf

∧ Z interacts with πΣ and A]
+ Pr[¬BEuf

] · Pr[Z outputs 1 |
¬BEuf

∧Z interacts with πΣ andA]
)

−
(
Pr[BEuf

] · Pr[Z outputs 1 |
BEuf

∧Z interacts with F (uf ,anon)
rSIG

and S]
+ Pr[¬BEuf

] · Pr[Z outputs 1 |
¬BEuf

∧Z interacts with F (uf ,anon)
rSIG

and S]
)

= Pr[BEuf
] ·(

Pr[Z outputs 1 |
BEuf

∧ Z interacts with πΣ and A]
−Pr[Z outputs 1 |

BEuf
∧ Z interacts with F (uf ,anon)

rSIG

and S]
)

≤ Pr[BEuf
]

= Pr[Euf success].

Vol. 48 No. 9 Ring Signatures: Universally Composable Definitions and Constructions 2985

Therefore, if there exists A for any S
such that there is an environment Z which
successfully distinguishes interaction with
F (uf ,anon)

rSIG or πΣr
, then Euf successfully

forges signatures.
(II). Next, we will show the reduction

in anonymity. Here, we assume Σr

satisfies completeness, statefulness and
unforgeability. Let BDbasic

denote the
event that at some point of running
πΣ, all members Pi generates a verifi-
cation key vki for i = 1 to n and
for the signature of Pi0 the environment
Z distinguishes σi0 ← RSign(m, L, ski0)
from σi1 ← RSign(m, L, ski1) where
RVer(m, L, σi0) = RVer(m, L, σi1) and
Pi0 and Pi1 are uncorrupted. Let BDattribution

denote the event that at some point
of running πΣ, all members Pi gener-
ates a verification key vki with ran-
domness ωi for i = 1 to n and for
the signature of Pi0 the environment Z
distinguishes σi0 ← RSign(m, L, ski0)
from σi1 ← RSign(m, L, ski1) where
RVer(m, L, σi0) = RVer(m, L, σi1) and
Pi0 is uncorrupted. Let BDfull-key

denote the
event that at some point of running πΣ,
all members Pi generates a verification key
vki with randomness ωi for i = 1 to n and
for the signature of Pi0 the environment
Z distinguishes σi0 ← RSign(m, L, ski0)
from σi1 ← RSign(m, L, ski1) where
RVer(m, L, σi0) = RVer(m, L, σi1). Then,
we will show that for Z the difference is
only detected at event BDanon

. This is rep-
resented by an equation as
Pr[Z outputs 1 |
¬BDanon

∧Z interacts with πΣr
andA]

= Pr[Z outputs 1 |
¬BDanon

∧Z interacts with F (uf ,anon)
rSIG

and S]. (2)
It is easy to see that Eq. (2) holds. Clearly,
there is no difference for Z between the
real model and the ideal model at Sig-
nature Verification request since Σr sat-
isfies completeness, statefulness and un-
forgeability. At a Key Generation request,
since each parties output only their keys
and corrupted parties are identical in the
real and ideal model by the formulation
of S, for Z there is no difference. At
a Signature Generation request, the cor-

rectly generated signature is valid both in
the real and ideal model since Σr satis-
fies completeness and statefulness. Also,
if the signer is corrupted, the signature
can be arbitrarily decided by both A and
S. So, there is no difference for Z at
a Signature Generation request. There-
fore, the difference for Z is only detected
at an Attribution request. In the case of
anon = basic, in the ideal model, for un-
corrupted parties Pi, Pj ∈ G, the proba-
bility that for the signature of Pi the case
σi ← RS(m, L) is distinguished from σj ←
RS(m, L) where

∧
RVl∈L RVl(m, L, σi) =∧

RVl∈L RVl(m, L, σj) holds is 1/2 because
of the formulation of F (uf ,anon)

rSIG . In the
case of anon = attribution, in the ideal
model, for uncorrupted Pi ∈ G and cor-
rupted Pj ∈ G, the probability that
for the signature of Pi the case σi ←
RS(m, L) is distinguished from σj ←
RS(m, L) where

∧
RVl∈L RVl(m, L, σi) =∧

RVl∈L RVl(m, L, σj) holds is 1/2 be-
cause of the formulation of F (uf ,anon)

rSIG .
Also, in the case of anon = full-key,
in the ideal model, for corrupted par-
ties Pi, Pj ∈ G, the probability that
for the signature of Pi the case σi ←
RS(m, L) is distinguished from σj ←
RS(m, L) where

∧
RVl∈L RVl(m, L, σi) =∧

RVl∈L RVl(m, L, σj) holds is 1/2 because
of the formulation of F (uf ,anon)

rSIG . However,
in the real model, Z may distinguish the
signature with a higher probability than
1/2. Thus, the difference for Z is only
detected at event BDanon

by formulation of
F (uf ,anon)

rSIG and we have Eq. (2).
Here, we consider a distinguisher Danon .
In the case of anon = basic, Lall is given
as the input. In the case of anon =
attribution, Lall and {ωl}l �=i are given as
the input. Also, in the case of anon
= full-key, Lall and all {ωl} are given as
the input. Danon is constructed from Z
(i.e., Danon runs a simulated copy of Z).
At a Key Generation request for any par-
ties, instead of running RGen, D hands
ZRVi := RVer(·, (vki, ·), ·) where vki is
a verification key of the input L. At a
Signature Generation request with a mes-
sage m for L, instead of running RSign,
forwards this request to signing oracle

2986 IPSJ Journal Sep. 2007

SO. At a Signature Verification request
with (m, L, σ) for a party Pj , Danon runs∧

RVj∈L RVj(m, L, σ). At an Attribution
request with (m, L, σ), Danon outputs the
signer identity which Danon guesses accord-
ing to anon. Furthermore, at a Signature
Generation request for a challenge party
Pi0 or Pi1 with a message m, Danon also
forwards this request and “challenge” order
to signing oracle SO. Then, SO returns
the signature σ′ from RSign(m, L, ski0)
or RSign(m, L, ski1) randomly and Danon

hands Z the challenge signature σ′ as the
signature of Pi0 . If Z distinguishes the sig-
nature σ′ and RVer(m, L, σ′) = 1, then
Danon completes the simulation and re-
turns 1. Else, then Danon outputs 0 or 1
randomly.
Therefore, by construction of Danon and
Eq. (2), we have
|Pr[Z outputs 1 | Z interacts with πΣr

and A]− Pr[Z outputs 1 |
Z interacts with F (uf ,anon)

rSIG and S]|
= (Pr[BDanon

] · Pr[Z outputs 1 |
BDanon

∧ Z interacts with πΣ and A]
+ Pr[¬BDanon

] · Pr[Z outputs 1 |
¬BDanon

∧Z interacts with πΣ and A])
− (Pr[BDanon

] · Pr[Z outputs 1 |
BDanon

∧ Z interacts with F (uf ,anon)
rSIG

and S]
+ Pr[¬BDanon

] · Pr[Z outputs 1 |
¬BDanon

∧ Z interacts with F (uf ,anon)
rSIG

and S])
= Pr[BDanon

] · (Pr[Z outputs 1 |
BDanon

∧ Z interacts with πΣ and A]
− Pr[Z outputs 1 |

BDanon
∧ Z interacts with F (uf ,anon)

rSIG

and S])
≤ Pr[BDanon

]
= Pr[Danon success].
Therefore, if there exists A for any S
such that there is an environment Z which
successfully distinguishes interaction with
F (uf ,anon)

rSIG or πΣr
, then Danon successfully

breaks anonymity.
From (I) and (II), “if” direction is proven.

�

4. Universally Composable Construc-
tion without Random Oracles

In this section, we show concrete construc-
tions of ring signature which securely realize
F (uf ,anon)

rSIG . We adapt constructions of BKM
schemes 2). The security of BKM schemes are
proved without relying on random oracle as-
sumption.

4.1 Security of BKM Schemes
The basic one of BKM schemes is based on

general assumptions, i.e., a semantically-secure
public-key encryption scheme, a (standard) ex-
istentially unforgeable signature scheme and a
zap 7). From now on, we call this scheme BKM1
scheme. The zap is a two-round, public coin
witness-indistinguishable protocol for any lan-
guage in NP and needs no preshared common
random string (CRS). Instead of relying on pre-
shared CRS, the zap guarantees both sound-
ness and witness-indistinguishability by using
the idea of reverse randomization. Reverse ran-
domization means the verifier first sends ran-
domness and the prover returns a proof which
is generated from randomness of both the veri-
fier and the prover. Though the zap 7) guaran-
tees soundness and witness-indistinguishability
by reverse randomization, in signature schemes
any verifier cannot choose randomness since the
verifier isn’t fixed in advance when the signer
generates a signature. Therefore, in BKM1
scheme the signer uses randomness which is de-
termined by a part of the verification key of
a member of the ring instead of randomness
of the verifier. BKM1 scheme uses the zap as
a signature and adopts both perfect soundness
and computational witness-indistinguishability
of the zap for ensuring unforgeability and
anonymity respectively. Roughly speaking,
perfect soundness means that the verifier cer-
tainly rejects the proof for the statement
which isn’t in the language, and computational
witness-indistinguishability means that a poly-
nomial time adversary cannot tell which of two
possible witnesses has been used for generat-
ing the proof with non-negligible probability.
Under these assumptions, it was proved that
BKM1 scheme satisfies eUF-ACMA&ACVKA
and anonymity against attribution attacks.

Moreover, it is shown that BKM1 scheme
is able to modify in order to satisfy based
on anonymity against full key exposure. We
call this scheme BKM2 scheme. In this case,

Vol. 48 No. 9 Ring Signatures: Universally Composable Definitions and Constructions 2987

the additional assumption which is called a
simulatable public-key encryption scheme 5) is
needed. Roughly speaking, a public-key en-
cryption scheme is simulatable if, in addition
to the normal key generation procedure, there
is an algorithm to generate a public key with-
out getting to know the corresponding secret
key (oblivious public-key generator). Also, it
must be possible to sample efficiently a random
ciphertext without getting to know the corre-
sponding plaintext (oblivious ciphertext gener-
ator). It is known the ElGamal public-key en-
cryption scheme is the simulatable under the
Decisional Diffie-Hellman (DDH) assumption.
For formal definitions of zaps and simulatable
public-key system, please refer to papers 5),7) re-
spectively. There, it was proved that a modified
BKM2 scheme satisfies eUF-ACMA&ACVKA
and anonymity against full key exposure.

However, it is an open problem whether
BKM1 scheme and BKM2 scheme are univer-
sally composable or not. It seems that these
schemes are able to be proved UC-security.

4.2 UC Security of BKM Schemes
In this section, we will show UC security

of BKM schemes. We are able to prove that
the protocol of BKM1 scheme and the mod-
ified protocol of BKM2 scheme satisfy UC-
security by using Theorem 3.1. Specifically,
the protocol of BKM1 scheme securely real-
izes F (eUF,attribution)

rSIG since BKM1 scheme satisfies
eUF-ACMA&ACVKA and anonymity against at-
tribution attacks, and the protocol of BKM2
scheme securely realizes F (eUF,full-key)

rSIG since
BKM2 scheme satisfies eUF-ACMA&ACVKA
and anonymity against full key exposure.
Therefore, BKM1 scheme and BKM2 scheme
are concrete constructions of our functionality.

4.3 New Modified BKM Schemes
Though BKM1 scheme and BKM2 scheme

only satisfy eUF-ACMA&ACVKA regarding un-
forgeability, we will give a new modified BKM
scheme which has stronger unforgeability (i.e.,
sUF-ACMA&ACVKA) than the original BKM
schemes and prove UC-security of it similarly.
We call this scheme BKM3 scheme. We show
the description of BKM3 scheme.

Let members of the ring be G = (P1, . . . , Pn),
and let (OGen,Enc,Dec) be a simulatable
public-key encryption scheme where OGen
is an oblivious public-key generator, and let
(SGen,Sign,Ver) be a (standard) signature
scheme. We denote RE = {pkE1 , . . . , pkEn

} a

set of public keys and C ← Enc(α, RE ; ω) a set
of ciphertexts such that

C =

(
Enc (ω1, pkE1) , . . . ,

Enc(ωn−1, pkEn−1),Enc(α
n−1⊕
j=1

ωj , pkEn
)

)
where α is a plaintext and ω = (ω1, . . . , ωn−1) ∈(
{0, 1}|m|

)n−1

are randomnesses. Let L denote

the NP language such that{
(vkS , m, RE , C) : ∃σ, ω s.t. C

= Enc(σ, RE ; ω)
∧

Ver(m, vkS , σ) = 1
}

where m is a message, vkS is a verification
key and σ is a standard signature. Also, let
(�,P,V) be a zap for the language L where �(k)
is the length of firstly chosen randomness, P is
a prover and V is a verifier. Figure 4 shows
the protocol of BKM3 scheme.

Here, we prove the protocol of BKM3
scheme securely realizes F (sUF,full-key)

rSIG , i.e.,
sUF-ACMA&ACVKA and anonymity against
full-key exposure.

Theorem 4.1 If the simulatable public-
key encryption scheme (OGen,Enc,Dec) is
semantically-secure, the standard signature
scheme (SGen,Sign,Ver) is strong existen-
tially unforgeable against adaptively chosen
message attacks, and (�,P,V) is a zap for the
language L′ = {(x1, . . . , xn) : ∃i s.t. xi ∈ L},
then the protocol of BKM3 scheme securely re-
alizes F (sUF,full-key)

rSIG .
[Proof]

Let A be an adversary in the real-life model.
The proof outline is that for any A we can con-
struct a simulator S such that any environment
Z cannot successfully distinguish the interac-
tion with A and parties running Π in the real-
life model from the interaction with S and par-
ties for F (sUF,full-key)

rSIG in the ideal model. Simula-
tor S runs a simulated copy of A and simulates
the interface for A. Then, S forwards all in-
structions from Z to A and back, and whenever
A corrupts a party Pi, then S corrupts the cor-
responding party Pi. The concrete construction
of S is as follows:
Simulating Z When Z instructs some input
to S, S forwards it to A. And, S returns any
output of A to Z as the output of S.
Simulating corruption When A corrupts

2988 IPSJ Journal Sep. 2007

protocol of BKM3 scheme
Key Generation

(
RGen(1k)

)
: When Pi is activated with input (“KeyGen”, sid), Pi does the

following.
Step 1. Generate signing key pair (skSi , vkSi) ← SGen(1k) and public key pkEi ←

OGen(1k). (In BKM1 scheme and BKM2 scheme, (SGen,Sign,Ver) should be existen-
tially unforgeable against adaptively chosen message attacks. However, in our BKM3 scheme,
(SGen,Sign,Ver) should be strong existentially unforgeable against adaptively chosen mes-
sage attacks.)

Step 2. Choose randomness of the zap ri ← {0, 1}�(k).
Step 3. Output the verification key vki =(vkSi , pkEi , ri) and the signing key ski = skSi . (In

BKM1 scheme, since OGen is a key generation algorithm of a standard public-key encryption,
a secret key skEi is generated with pkEi and should be erased in Step 3. However, in our
BKM3 scheme, since OGen is an oblivious public-key generator, we don’t need to do such an
operation.)

Signature Generation (RSign(m, vk1, . . . , vkn, ski)) : When Pi∗ is activated with input (“Sign”,
sid,m, G) where G = (P1, . . . , Pn), Pi∗ does following.

Step 1. Compute the signature σi∗ ← Sign(m̄, skSi∗) where m̄ := m||vk1|| · · · ||vkn.

Step 2. Choose random coins ω(1), . . ., ω(n) and compute Ci∗ = Enc(σi∗ , RE ; ω(i∗)) for i∗

and Ci = Enc(0|σi∗ |, RE ; ω(i)) for i ∈ {1, . . . , n} \ {i∗} where RE = {pkE1 , . . . , pkEn}.
Step 3. For i ∈ {1, . . . , n}, let xi denote the statement : “(vkSi , m̄, RE , Ci) ∈ L”, and let

x :=

n∨
i=1

xi.

Step 4. Compute the proof π ← P
(
x, (σi∗ , ω(i∗)), r1

)
and output the signature σ =

(C1, . . . , Cn, π, r1).

Signature Verification (RVer(m, vk1, . . . , vkn, σ)) : When V is activated with input (“Verify”,

sid,m, σ, G), V outputs V(x, π, r1).

Fig. 4 BKM3 scheme.

some party Pj , S also corrupts Pj in the ideal
model. If Pj hasn’t received a Key Generation
request yet, S reveals no information to A. If
Pj already has received a Key Generation re-
quest, all the internal state of Pj to A.
Simulating attribution When A examines
attribution attacks with (m, L, σ), S forwards
(m, L, σ) to F (sUF,full-key)

rSIG and returns the out-
put of F (sUF,full-key)

rSIG to A.
Simulating uncorrupted parties In this
case, first, S generates (sk′

S , vk′
S)← SGen(1k)

and pk′
E ← OGen(1k), and chooses r′ ←

{0, 1}�(k). When S receives a request for
generating algorithms from F (sUF,full-key)

rSIG , if
it is first “KeyGen” input, then S gener-
ates (skS , vkS) ← SGen(1k) and pkE ←
OGen(1k), chooses r ← {0, 1}�(k), and returns
RS := RSign(·, {(vk′

S , pk′
E , r′), ·}, sk′

S) and
RV := RVer(·, {(vk′

S , pk′
E , r′), (vkS , pkE , r),

·}, ·) to F (sUF,full-key)
rSIG . Otherwise, then S gen-

erates (skS , vkS) ← SGen(1k) and pkE ←
OGen(1k), chooses r ← {0, 1}�(k), and returns
RV := RVer(·, {(vk′

S , pk′
E , r′), (vkS , pkE , r),

·}, ·) to F (sUF,full-key)
rSIG . Furthermore, S is easily

able to simulate A since there is no influence of
A for uncorrupted parties.
Simulating corrupted parties When A
makes the corrupted party Pj generate a
verification key vkj = (vkSj

, pkEj
, rj) and

a signing key skj = (skSj
), S computes

RVj := RVer(·, {(vkSj
, pkEj

, rj), ·}, ·) and
RS := RSign(·, {(vkSj

, pkEj
, rj), ·}, skSj

).
And, when S receives “KeyGen” for Pj which
is forwarded by F (sUF,full-key)

rSIG , S answers RV
and RS to F (sUF,full-key)

rSIG . When A makes the
corrupted party Pj generate a signature σ ←
RSign(m, L, skj) for a message m and a ver-
ification key list L, S does nothing directly.
However, S can simulate σ by the answered
signing algorithm RS to F (sUF,full-key)

rSIG at “Key-
Gen” query. When A makes the corrupted
party Pj output a verification result (a bit) f
for (m, L, σ), S can also simulate f by the an-
swered verification algorithm vkj and verifica-
tion algorithms of other corrupted parties to
F (sUF,full-key)

rSIG at “KeyGen” query.

Vol. 48 No. 9 Ring Signatures: Universally Composable Definitions and Constructions 2989

It is easy to verify the validity of the
simulation by using assumptions, i.e., a
sUF-ACMA&ACVKA signature scheme, a se-
mantically secure simulatable public-key en-
cryption scheme and a zap for the language L′.
The validity of the simulation means, for any
A and environment Z, the output of Z is dis-
tributed identically both in the real model, i.e.,
an interaction with A and parties running the
protocol Π, and in the ideal model, i.e., an in-
teraction with S and functionality F (sUF,full-key)

rSIG .
�

References

1) Abe, M., Ohkubo, M. and Suzuki, K.: 1-
out-of-n Signatures from a Variety of Keys,
Advances in Cryptology-ASIACRYPT2002 ,
pp.415–432 (2002).

2) Bender, A., Katz, J. and Morselli, R.: Ring
Signatures: Stronger Definitions, and Con-
structions Without Random Oracles, TCC
2006 , pp.60–79 (2006).

3) Canetti, R.: Universally Composable Security:
A New Paradigm for Cryptographic Protocols,
FOCS 2001 , pp.136–145 (2001).

4) Chow, S.S.M., Liu, J.K., Wei, V.K. and Yuen,
T.H.: Ring Signatures without Random Ora-
cles, ASIACCS 2006 (2006).

5) Damg̊ard, I. and Nielsen, J.B.: Improved
Non-committing Encryption Schemes Based
on a General Complexity Assumption, Ad-
vances in Cryptology-CRYPTO 2000 , pp.432–
450 (2000).

6) Dodis, Y., Kiayias, A., Nicolosi, A. and
Shoup, V.: Anonymous Identification in Ad
Hoc Groups, Advances in Cryptology —
EUROCRYPT2004 , pp.609–626 (2004).

7) Dwork, C. and Naor, M.: Zaps and Their Ap-
plications, FOCS 2000 , pp.283–293 (2000).

8) Goldwasser, S., Micali, S. and Rivest, R.L.:
A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks, SIAM

Journal on Computing , pp.281–308 (1988).
9) Hanatani, Y., Yoneyama, K., Santoso, B. and

Ohta, K.: A Note on Universally Composable
1-out-of-n Signature (in Japanese), SCIS2005 ,
pp.643–648 (2005).

10) Rivest, R.L., Shamir, A. and Tauman, Y.:
How to Leak a Secret, Advances in Cryptology-
ASIACRYPT2001 , pp.552–565 (2001).

11) Yoneyama, K., Hanatani, Y., Santoso, B. and
Ohta, K.: Universally Composable Ring Signa-
ture, IWSEC2006 (2006).

(Received November 24, 2006)
(Accepted June 5, 2007)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.3, pp.571–584.)

Kazuki Yoneyama received
the B.E. and M.E. degrees
from the University of Electro-
Communications, Tokyo, Japan,
in 2004 and 2006, respectively.
He has been currently a doctor
course student at the Graduate

School of Electro-Communications since 2006.
He is presently engaged in research on cryptog-
raphy. He is a member of IEICE.

Kazuo Ohta received his
B.S., M.S., and Dr.S. degrees
from Waseda University, Tokyo,
Japan, in 1977, 1979, and
1990, respectively. He has
been a professor at the Univer-
sity of Electro-Communications

since 2001. He was a researcher at NTT Labo-
ratories between 1979 and 2001. He is presently
engaged in research on information security.
Dr. Ohta is a member of the International As-
sociation for Cryptologic Research, IEICE and
IEEE.

