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The Security of RC6 against Asymmetric Chi-square Test Attack

Tomohiko Hinoue,†,†† Atsuko Miyaji† and Takatomi Wada†,††

Knudsen and Meier applied the χ2-attack to RC6. The χ2-attack recovers a key by us-
ing high correlations measured by χ2-value. The best χ2-attacks to RC6 whose security is
guaranteed theoretically works on 16-round RC6 with 192- and 256-bit key but just 8-round
RC6 with 128-bit key, because it recovers keys of RC6 symmetrically, which requires a time
complexity of #plaintexts ×254 and a memory complexity of 280 for recovering one key. In
this paper, we improve the χ2-attack to reduce the time complexity. We give the theorem that
evaluates the success probability of the χ2-attack on RC6 without using any experimental re-
sult. Our key recovery attack recovers keys asymmetrically, which requires a time complexity
of #plaintexts ×231 and a memory complexity of 252 for recovering one key. As a result, our
key recovery attack works on 16-round RC6 with 192- and 256-bit key and 12-round RC6 with
128-bit key. In the case both of 196- and 256-bit keys, our attack surprisingly reduces the time
and memory complexity compared with that of the previous attack. We also demonstrate our
theorem on RC6-8/4/8 and make sure of the accuracy by comparing our approximation with
the experimental results.

1. Introduction

The χ2-attack makes use of correlations be-
tween input (plaintext) and output (cipher-
text) measured by the χ2-test, which was orig-
inally proposed by Vaudenay as an attack on
the Data Encryption Standard (DES) 15), and
Handschuh, et al. applied that to SEAL 4). To
find correlations measured by the χ2-test, we
have to handle plaintexts in such a way that the
χ2-value of part of ciphertexts becomes a sig-
nificantly high value. The distinguishing search
finds a condition for good correlation and com-
putes the necessary number of plaintexts for the
χ2-value with a certain level under the condi-
tion. The χ2-attack rules out all wrong keys,
and singles out exactly a correct key by using
the distinguishing search. Therefore, the χ2-
attack requires more work and memory than
the distinguishing search.

RC6 is a fully parameterized family of a block
cipher and has a symmetric structure 13). This
paper focuses on the 128-bit RC 6 with keys of
128, 192, and 256 bits, whose spec was required
by the candidates of AES. A χ2-attack 3),8) was
applied to RC6 by using the fact that a specific
rotation in RC6 causes correlations between in-
put and output, and the security of RC6 against
the χ2-attack is estimated only from the results
of the distinguishing search 8). That is, they fo-
cus on the χ2-value, strictly speaking, which is
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given as the average of χ2-value measured over
part of a set of plaintexts. The χ2-attacks to a
simplified variant of RC6 such as RC6 without
pre- or post-whitening 11) or RC6 without only
post-whitening 5) have been further improved.
The variance as well as the average of χ2-value
is taken into account when recovering a key in
their attacks 5),11). They also pointed out that
the χ2-attack does not necessarily succeed even
if the distinguishing search results in the high
χ2-value. Thus, their χ2-attack can recover a
correct key in the high probability with a rather
lower χ2-value than the previous attack which
uses only the average of χ2-value 8). In 2005 12),
they improve their attack to RC6 itself, which
works on 16-round RC6 with 192- and 256-bit
key. This gives a positive answer to an open
question 8), that is, whether the χ2-attack can
be used to attack RC6 with 16 or more rounds.
Table 1 summarizes the previous attacks on
RC6.

A theoretical analysis on χ2-attack has been
done 10),12),17). The average of χ2-value used in
the distinguishing search 8) is theoretically com-
puted by estimating the necessary number of
plaintexts for the χ2-value with a certain level
theoretically in each round 17). However, this is
not enough to evaluate the success probability
of χ2-attack itself since there is a significant dif-
ference between the distinguishing search and
the χ2-attack as mentioned above. On the other
hand, the theoretical difference between a dis-
tinguishing search and a χ2-attack 5) on RC6
without post-whitening has been discussed 10).
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Table 1 Attacks on RC6.

attack target RC6 rounds #texts memory

linear attack 1) RC6 16 2119

multiple linear attack 16) 192-bit-key RC6 14† 2119.68

χ2 attack 8) 128-bit-key RC6 12‡ 294 242

192-bit-key RC6 14‡ 2108 274

256-bit-key RC6 15‡ 2119 2138

χ2 attack 11) 128-bit key RC6W� 17 2123.9 220

χ2 attack 5) 128-bit key RC6P4 16 2117.84 220

χ2 attack 12) 128-bit-key RC6 8 263.13

192-bit-key RC6 16 2127.20 280

256-bit-key RC6 16 2127.20

our χ2 attack 128-bit-key RC6 12 2109.21

192-bit-key RC6 16 2127.57 252

256-bit-key RC6 16 2127.57

†: A weak key of 18-round RC6 with 256-bit key can be recovered by 2126.936

plaintexts with the probability of about 1/290.
‡: Estimation is done by using the experimental result of the distinguishing search.
�: RC6W means RC6 without pre- or post-whitening.
4: RC6P means RC6 without post-whitening.

They make use of the idea of the theoretical
and experimental complexity analysis on the
linear cryptanalysis 6),14) to fit it in the the-
oretical and experimental complexity analysis
on the χ2-attack. They also present the theo-
rem to compute the success probability of χ2-
attacks by using the results of the distinguish-
ing search, and, thus, they can succesfully es-
timate the security against χ2-attack on RC6
with rather less work and memory. However,
their estimation requires the experimental re-
sults of the distinguishing search. The theoret-
ical success probability of a χ2-attack was done
for the first time in 2005 12). They give the
theorem that evaluates the success probability
of χ2-attack 5) on RC6 without post-whitening
and their χ2-attack on RC6 itself.

In summary, the best attacks to RC6 whose
security is guaranteed theoretically work on 16-
round RC6 with 192- and 256-bit key but just
8-round RC6 with 128-bit key. Because their
attack computes the χ2-values on a symmetric
part for each 54-bit key of the post-whitening
keys at once and, thus, it requires the time com-
plexity of the number of plaintexts ×254 to re-
cover one key. As a result, in the case of 128-bit
key, it just works on 8 rounds with 263.13 plain-
texts and 2117.13 time complexity; in the case
of 196- and 256-bit key, it works on 16 rounds
with 2127.20 plaintexts, 2181.20 time complexity,
and 280 memory complexity.

In this paper, we improve the χ2-attack to re-
duce the time and memory complexity. We give

the theorem that evaluates the success proba-
bility of the χ2-attack on RC6 without using
any experimental result. Our key recovery at-
tack is totally different from the previous re-
searches because our attack computes the χ2-
values on an asymmetric part and recovers 1
post-whitening key and 2-bit of both another
whitening key and a subkey in the final round.
As a result, our attack particularly improves
the time and memory complexity to the number
of plaintexts ×231 and 252 memory complexity
to recover one key, respectively. For example,
in the case of RC 6 with 128-bit key, our at-
tack works on 12-round RC6 with a 128-bit key
by using 295.52 plaintexts and 2126.52 time com-
plexity. In the cases of both 196- and 256-bit
keys, our attack works on 16-round RC6 with a
time complexity of 2158.57, which is suprisingly
less than that of the previous attack 12). We
also demonstrate our theorem on RC6-8/4/8
and make sure of the accuracy by comparing
our approximation with the experimental re-
sults.

This paper is organized as follows. Section 2
summarizes the notation, RC6 algorithms, the
χ2-test, and the statistical facts used in this pa-
per. Section 3 reviews the previous χ2-attack
against RC6. Section 4 improves the χ2-attack
on RC6 to reduce the time complexity and
presents the theorem of the success probabil-
ity of the χ2-attack on RC6. We investigate
the accuracy by demonstrating the key recov-
ery algorithm on RC6-8/4/8. A conclusion is
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Table 2 χ2-distributions with a 63 degree of freedom.

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99
χ2

63 62.33 65.20 68.37 72.20 77.75 82.53 92.01

given in Section 5.

2. Preliminary

We summarize the χ2-test, statistical facts,
and RC6 algorithm 13), used in this paper.

2.1 Statistical Facts
We make use of the χ2-statistic 9) to distin-

guish a distribution with an unknown proba-
bility distribution p from an expected distri-
bution with a probability distribution π. Let
X = X0, ..., Xn−1 be a sequence of ∀Xi ∈
{a0, · · · , am−1} with unknown probability dis-
tribution p, and Naj

(X) be the number of X
which takes on the value aj . The χ2-statistic
of X which estimates the distance between the
observed distribution and the expected distri-
bution π = (π1, · · · , πm) is defined:

χ2 =
m−1∑
i=0

(N(ai) − nπi)2

nπi
. (1)

After computing the χ2-statistic of X, we de-
cide which hypothesis holds.{

H0 :p = π (null hypothesis)
H1 :p �= π (alternate hypothesis) (2)

The following Theorems 1 and 2 on χ2-
statistic are used in this paper:

Theorem 118) When H0 is true, χ2 statis-
tic given by Eq. (1) follows χ2 distribution
whose freedom is m − 1 approximately. In ad-
dition, the expected mean or variance is cal-
culated by EH0(χ

2) = m − 1 or VH0(χ
2) =

2(m − 1), respectively.
Theorem 218) When H1 is true, χ2 statis-

tic given by Eq. (1) follows non-central χ2 dis-
tribution whose freedom is m−1 approximately.
In addition, the mean or variance is computed
by EH1(χ

2) = m − 1 + nθ or VH1(χ
2) = 2(m −

1) + 4 nθ, respectively, where nθ so called non-
central parameter is nθ = n

∑m−1
i=0

(πi−P (ai))
2

πi
,

where P (ai) is the probability of occurrence of
ai.

In our research which distinguishes a non-
uniformly random distribution from uniformly
random distribution 7)∼9), the probability π is
equal to 1

m and, thus, Eq. (1) is simply de-
scribed as follows.

χ2 =
m

n

m−1∑
i=0

(
ni − n

m

)2

. (3)

Table 2 presents the threshold for 63 degrees
of freedom. For example, (level, χ2

63) = (0.95,
82.53) in Table 2 means that the value of the
χ2-statistic exceeds 82.53 in the probability of
5% if the observation X is uniform.

Let us describe other statistical facts together
with the notation.

Theorem 3 (Central Limit Theorem 2))
Choose a random sample from a population
whose mean or variance is μ or σ2, respectively.
If the sample size n is large, then the sam-
pling distribution of the mean is closely approx-
imated by the normal distribution, regardless of
the population, where the mean or variance is
given by μ or σ2/n, respectively.

We also follow the commonly used notation:
the probability density and the cumulative dis-
tribution functions of the standard normal dis-
tribution are denoted by φ(x) and Φ(x); the
probability of distribution X in the range X ≤
I is denoted by Pr(X ≤ I); and N is used for
the normal distributions. The probability den-
sity function of the normal distribution with the
mean μ and the variance σ2, N (μ, σ2), is given
by the following equation,

φ(μ,σ2)(x) =
1√

2πσ2
exp

[
− (x − μ)2

2σ2

]
.

2.2 Block Cipher RC6
Before showing the encryption algorithm of

RC6, we give some notations.
• {0, 1}k :k-bit data
• lsbn(X) : least significant n-bit of X;
• msbn(X) : most significant n-bit of X;
• X [i,j] : i-th to j-th bit of X;
• ⊕ : bit-wise exclusive OR;
• a ≪ b : cyclic rotation of a to the left by

b-bit;
• Si : i-th subkey (S2i and S2i+1 are subkeys

of the i-th round);
• r : number of rounds;
• (Ai, Bi, Ci, Di) : input of the i-th round ;
• (A0, B0, C0, D0) : plaintext;
• (Ar+2, Br+2, Cr+2, Dr+2) : ciphertext after

r-round encryption;
• f(x) : x × (2x + 1);
• F (x) : f(x) (mod 2w) ≪ log2 w;
• x ‖ y : concatenated value of x and y.

The detailed algorithm of RC6 is given:
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Algorithm 1 (RC6 Encryption
Algorithm)

1. A1 = A0; B1 = B0 + S0;
C1 = C0; D1 = D0 + S1;

2. for i = 1 to r do:
t = F (Bi); u = F (Di);
Ai+1 = Bi; Ci+1 = Di;
Bi+1 = ((Ci ⊕ u) ≪ t) + S2i+1;
Di+1 = ((Ai ⊕ t) ≪ u) + S2i;

3. Ar+2 = Ar+1 + S2r+2; Br+2 = Br+1;
Cr+2 = Cr+1 + S2r+3; Dr+2 = Dr+1.

Steps 1 and 3 of Algorithm 1 are called
pre-whitening and post-whitening, respectively.
RC6 is specified as RC6-w/r/b, which means
that four w-bit-word plaintexts are encrypted
with r rounds by b-byte keys. In this paper,
we write simply RC6 if we deal with RC6 of
32-bit-word plaintexts.

Hereafter, we discuss the success probability
of a χ2-attack against RC6, which means the
probability of recovering a correct key in the
attack.

2.3 A Transition Matrix
A transition matrix describes the input-

output transition, which was introduced by
Vaudenay 15). The transition matrix is ap-
plied to RC6-8 and RC6-32 17): it computes the
expected χ2-values on lsb5(Ar+2)||lsb5(Cr+2)
when plaintexts with lsb5(A0) = lsb5(C0) = 0
are chosen, which is denoted by TM in this paper.
So TM also gives the probability of occurrence of
lsb5(Ar+2)||lsb5(Cr+2). We apply TM to com-
pute the expected χ2-values and the variance
on lsb3(Ar+2)||lsb3(Cr+2) when plaintexts with
a fixed value of lsb5(B0) = lsb5(D0) are chosen.

3. The Previous χ2 Attack against
RC6

This section reviews the previous key recov-
ery attack against RC6, Attack 1, together with
the theorem that computes the success proba-
bility.

Before reviewing the algorithm, let us use the
following notation:
• U0 = {u ∈ {0, 1}32|msb5(u×(2u+1)) = 0},
• (ua, uc) ∈ U0 × U0,
• ta = Ar+2 − ua,
• tc = Cr+2 − ua,
• v = lsb5(B0) ‖ lsb5(D0),
• z = lsb3(Br+2) ‖ lsb3(Dr+2).
Attack 112)

1. Encrypt a plaintext (A0, B0, C0, D0)
to (Ar+2, Br+2, Cr+2, Dr+2).

2. For each (ua, uc), compute both ta
and tc and update each array by
incrementing count[ta][tc][v][z].

3. For each ta, tc and v, compute
the χ2-value, χ2[ta][tc][v].

4. For each ta and tc, compute the
average ave[ta][tc] of {χ2[ta][tc][v]}v.

5. Output (ta, tc) with the highest
ave[ta][tc] as (S2r+2, S2r+3).

Attack 1 calculates the χ2-value on z =
lsb3(Br+2) ‖ lsb3(Dr+2) by using such plain-
texts that make the final-round rotation 0 for
each key candidate. For a correct key, this is
exactly equivalent to compute the χ2-value on
lsb3(Ar) ‖ lsb3(Cr), which is output of (r − 1)-
round RC6P because the addition keeps the χ2-
value. Thus, we succeed in skipping the post-
whitening and arrive at the probability density
function of distribution of χ2-value with a cor-
rect key in r-round RC6 is given by

fc[r,n](x)=φ(μd[r−1,n−10],σ
2
d[r−1,n−10]/210)(x),

where μd[r,n](σ2
d[r,n]) is mean (variance) of

distribution of χ2-values on lsb3(Ar+1) ‖
lsb3(Cr+1) of r-round RC6P by using 2n plain-
texts. The mean and variance, μd[r,n] and
σ2

d[r,n], are derived theoretically, by computing

θ1,r =26
∑(

P (lsb3(Ar+1) ‖ lsb3(Cr+1))− 2n

26

)2

,

where the summation is over
lsb3(Ar+1) ‖ lsb3(Cr+1) ∈ {0, 1}6 and
P (lsb3(Ar+1) ‖ lsb3(Cr+1)) is the probability
of occurrence of lsb3(Ar+1) ‖ lsb3(Cr+1). θ1,r

can be derived theoretically by TM in Section 2.
In the case of wrong keys, this is ex-

actly equivalent to computing the χ2-value on
lsb3(Ar+2) ‖ lsb3(Cr+2), which is the output
of (r + 1)-round RC6P. Thus, we arrive at the
probability density function of distribution of
χ2-value with a wrong key in r-round RC6 is
given as

fw[r,n](x)=φ(μd[r+1,n−10],σ
2
d[r+1,n−10]/210)(x).

The next success probability follows from the
above discussion.

Theorem 412) The success probability of
Attack 1 on r-round RC6 is given theoretically
as

Psrc6(n)

=

∫ ∞

−∞
fc[r,n](x) · (fw[r,n](u)du

)264−1
dx

=

∫ ∞

−∞
φ(26−1+mθ1,r−1,(2(26−1)+4 mθ1,r−1)/210)(x)



2970 IPSJ Journal Sep. 2007

Table 3 #texts necessary for Psrc6(n) ≥ 0.95 (From Theorem 4 12)).

r 4 6 8 10 12 14 16 18

#texts 231.06 247.10 263.13 279.15 295.17 2111.19 2127.20 2143.21

time complexity† 285.06 2101.10 2117.13 2133.15 2149.17 2165.19 2181.20 2197.21

memory‡ 280

†: the number incrementing a counter count.
‡: the size of a counter count.

Table 4 Theoretical and experimental success
probability of RC6-8/4/8 (Attack 1) 12).

#texts 217 218 219 220 memory
Theoretical 0.00 0.05 0.73 1.00

Experimental 0.00 0.04 0.76 1.00 228

Time – 15.3 30.6 61.1

·
(∫ x

−∞
φ(26−1+mθ1,r+1,(2(26−1)+4 mθ1,r+1)/210)(u)du

)264−1

dx,

(4)
where 2n is the number of texts,
θ1,r = 26

∑ (
P (lsb3(Ar+1) ‖ lsb3(Cr+1))− 2n

26

)2
,

and m = 2n−20.
Table 3 shows the necessary number of texts

computed by Theorem 4 and the time complex-
ity which makes the success probability of At-
tack 1 on RC6 95% or more. The time com-
plexity is estimated by the number increment-
ing a counter count, which is the dominant step
of Attack 1. The memory complexity is esti-
mated by the size of count, which is equal to
280. The number of available texts is bounded
by 2128 in Attack 1 and the time complexity
is #texts × 227×2 since Attack 1 recovers both
post-whitening keys at once. Therefore, At-
tack 1 works on an 128-bit-key RC6 with up
to only 8 rounds.

Table 4 shows the theoretical and exper-
imental results of Attack1 against 4-round
RC6-8. Our platforms are Cray XT3(AMD
Opteron150 2.4GHz × 20). All attacks use
100 keys and 217, 218, 219, or 220 kinds of plain-
texts, denoted by #texts, and thus conduct
102 × #texts trials in total.

4. Our χ2 Attack against RC6

This section improves a key recovery attack
against RC6, Attack 2, and then gives the theo-
rem that computes the success probability. We
also implement Attack 2 on RC6-8/4/8 and
demonstrate the accuracy of the theorem. Fig-
ure 1 shows an overview of Atrack 2.

4.1 Key Recovery Attack
The main feature of Attack 2 is to deal

Fig. 1 The overview of Algorithm 2.

with RC 6 asymmetrically and recover S2r+2,
lsb2(S2r+3), and lsb2(S2r+1) by decrypting
lsb3(Br+2) with 1 round, set to zc, and mea-
suring the characteristic value based on the χ2-
value of zc ‖ lsb3(Dr+2) for each key candidate.
Before showing the algorithm, let us use the
following notation:
• U27 = {u ∈ {0, 1}32|msb5(u × (2u + 1)) =

27} 	 u,
• (yb, yd) = (lsb3(Br+2), lsb3(Dr+2)),
• (xc, xa) = (lsb5(F (Ar+1)), lsb5(F (Cr+1))),
• v = lsb5(B0) ‖ lsb5(D0)
• (s1, s2, s3)=(S2r+2, lsb2(S2r+3), lsb2(S2r+1)),
• s = s1 ‖ s2 ‖ s3,
• zc is the decryption of yb by (0 ‖ s2, 0 ‖ s3),

where xa (resp. xc) is the rotation amounts on
Ar (resp. Cr) in the r-th round. Note here
that we can decrypt yb by using (0 ‖ s2, 0 ‖ s3)
whenever xc = 27.

Attack 2
1. Encrypt a plaintext (A0, B0, C0, D0)

to (Ar+2, Br+2, Cr+2, Dr+2).
2. For each u, s2, and s3,

◦ set both s1 = Ar+2 − u and
s = s1 ‖ s2 ‖ s3;

◦ decrypt yb with a key of
(0 ‖ s2, 0 ‖ s3) to zc;
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◦ set z = zc ‖ yd; and
◦ update each array by incrementing

count[s][v][z].
3. For each s and v,

compute the χ2-value χ2[s][v].
4. For each s,

compute the average ave[s] of {χ2[s][v]}v.
5. Output s with the highest ave[s] as

(S2r+2, lsb2(S2r+3), lsb2(S2r+1)).
Attack 2 calculates the χ2-value on z = zc ‖

lsb3(Dr+2) by using such plaintexts that make
the final-round rotation 27 for each key candi-
date of S2r+2. For a correct key, zc is exactly
equal to C

[5,7]
r = D

[5,7]
r−1 and, thus, Attack 2 com-

putes the χ2-value on D
[5,7]
r−1 ‖ lsb3(Dr+2) =

D
[5,7]
r−1 ‖ lsb3(Dr+1) for a correct key. For a

wrong key, zc is not equal to D
[5,7]
r−1 , thus, wrong

keys output lower χ2-value on zc ‖ lsb3(Dr+2)
compared to a correct key. Attack 2 recovers
a correct key by using such differences in the
χ2-value of z.
Remark:
1. The most significant bit of zc is useless from
the point of view of χ2-value since it outputs the
same χ2-value in each case of (0 ‖ s2, 0 ‖ s3),
(1 ‖ s2, 0 ‖ s3), (0 ‖ s2, 1 ‖ s3), and, (1 ‖ s2, 1 ‖
s3). This is why we have to evaluate the χ2-
value on one-additional bits.
2. The correlations between plaintext and ci-
phertext can be measured by the χ2-value on
concatenation of Ar ‖ Cr or Br ‖ Dr. This is
why we need yd in addition to yb to measure
the correlations even if yd is independent from
the recovered key s.

4.2 Theoretical Success Probability
Here we discuss the theoretical success prob-

ability of our attack. There exists an important
difference between Attacks 1 and 2 in the prob-
ability density function of distribution of χ2-
value with a wrong key. In the case of Attack 1,
each distribution of χ2-value with each wrong
key is assumed to be independent and approx-
imately equal to each other, which is used in
the theoretical analysis of the previous attacks
to RC6 5),10)∼12). In fact, Attack 1 uses the con-
dition of which the final-round rotation is 0 for
a key candidate in the same way as other pre-
vious attacks. Therefore, any wrong key influ-
ences the output of F function and makes the
final-round rotation random even if it is differ-
ent from a correct key with only 1 bit.

However, our attack cannot assume that each
distribution of χ2-value with each wrong key is

Table 5 The relation between lsb2(S2r+1) ‖ lsb2

(S2r+3) and C
[5,6]
r in the case of a correct

S2r+2.

S
[1,1]
2r+1S

[0,0]
2r+1S

[1,1]
2r+3S

[0,0]
2r+3 C

[6,6]
r C

[5,5]
r

*w*w *w
*w*c *w
*c*w *w
*c*c *c

w, c, or * means a wrong, a correct, or a
random bit, respectively.

independent and approximately equal to each
other. Our attack recovers S2r+2, lsb2(S2r+3),
and lsb2(S2r+1), of which only S2r+2 is input
of F -function. Therefore, we have to deal with
wrong keys separately according to whether
S2r+2 is a wrong key or a correct key. Where
S2r+2 is a wrong key, a wrong S2r+2 influences
the output of F function and makes the final-
round rotation random. Therefore, we could
estimate the χ2-value of zc by that of the 1-
round encryption of yb, which means that the
χ2-value of z = zc ‖ yd may be estimated by
that of lsb3(Dr+3) ‖ lsb3(Dr+2) = lsb3(Dr+3) ‖
lsb3(Dr+1)☆. Where S2r+2 is a correct key,
zc = C

[5,7]
r is not necessarily a random num-

ber in the following reason. Let us assume that
S2r+2 is correct and focus on each least bit of
y
[0,0]
b , z

[0,0]
c = C

[5,5]
r , S

[0,0]
2r+1, and S

[0,0]
2r+3. Then,

C
[5,5]
r can be decrypted correctly if both S

[0,0]
2r+1

and S
[0,0]
2r+3 have only to be correct. On the

other hand, C
[6,6]
r becomes a random bit un-

der the randomness of S
[1,1]
2r+1 and S

[1,1]
2r+3 even

if both S
[0,0]
2r+1 and S

[0,0]
2r+3 are correct. Table 5

summarizes the correct-wrong relation between
lsb2(S2r+1) ‖ lsb2(S2r+3) and C

[5,6]
r in the case

of which S2r+2 is correct☆☆. Thus, if S2r+2 is
correct; and lsb2(S2r+1) ‖ lsb2(S2r+3) = wcwc,
ccwc, wccc, then C

[5,6]
r can be decrypted cor-

rectly (resp. wrongly) in each probability of 50
% and the χ2-value of z = zc ‖ yd can be es-
timated by that of lsb3(Dr+3) ‖ lsb3(Dr+2) =
lsb3(Dr+3) ‖ lsb3(Dr+1) (resp. that of D

[5,7]
r−1 ‖

lsb3(Dr+2) = D
[5,7]
r−1 ‖ lsb3(Dr+1) ).

The above discussion on the probability den-
sity function of the distribution of χ2-value with
a wrong key is summarized as follows.
( 1 ) The χ2-value of z is estimated by that
☆ (Ar+3, Br+3, Cr+3, Dr+3) is the output after r +2-

round encryption.
☆☆ The most significant bit of zc, C

[7,7]
r , has no effect

on recovering a key as mentioned in Section 4.1.
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of lsb3(Dr+3) ‖ lsb3(Dr+1) if S2r+2 is
wrong.

( 2 ) The χ2-value of z is estimated by that
of lsb3(Dr+3) ‖ lsb3(Dr+1) in the prob-
ability of 50% and that of D

[5,7]
r−1 ‖

lsb3(Dr+1) in the probability of 50% if
S2r+2, lsb1(S2r+1) and lsb1(S2r+3) are
correct.

( 3 ) The χ2-value of z is estimated by that
of lsb3(Dr+3) ‖ lsb3(Dr+1) if S2r+2

is correct; and either lsb1(S2r+1) or
lsb1(S2r+3) is wrong.

From the above discussion, the following the-
orem follows.

Theorem 5 The success probability of At-
tack 2 on r-round RC6 is given theoretically as
Psrc6(n)

=

∫ ∞

−∞
φ(26−1+mθ̃r,(2(26−1)+4mθ̃r)/210)(x)

·
(∫ x

−∞
φ(26−1+mθ̄r,(2(26−1)+4mθ̄r)/210)(u)du

)3

·
(∫ x

−∞
φ(26−1+mθr,(2(26−1)+4mθr)/210)(u)du

)236−4

dx,

(5)

where 2n is the number of texts, m = 2n−15,
θr = 26

∑ (
P (lsb3(Dr+3) ‖ lsb3(Dr+1)) − 2n

26

)2

with the summation over
lsb3(Dr+3) ‖ lsb3(Dr+2) ∈ {0, 1}6,

θ̃r = 26
∑ (

P (D[5,7]
r−1 ‖ lsb3(Dr+1)) − 2n

26

)2

with the summation over
D

[5,7]
r−1 ‖ lsb3(Dr+1) ∈ {0, 1}6, and

θ̄r = (θr + θ̃r)/2.
Remark: Theorem 5 gives the success probabil-
ity of Attack 2 on r-round RC6 assuming that
the χ2-value of zc ‖ yd is that of lsb3(Dr+3) ‖ yd

if S2r+2 is wrong, where lsb3(Dr+3) is the 1-
round encryption of yb. So, we still use the
assumption on the distribution of χ2-value in
wrong keys although the assumption seems to
be reasonable. We remark that the higher
bound of χ2-value of zc ‖ yd is that of yb ‖ yd

in the case of wrong keys.
In order to evaluate Eq. (5), we have to compute
the exponentiation 236 − 4 on an integral part,
which needs much time complexity. Therefore,
we use the following approximation to reduce
the time complexity.

Lemma 1 The success probability of Psrc6(n)
is approximated to P̃ src6(n), that is
Psrc6(n) � P̃ src6(n), where

P̃ src6(n)

=

{∫ ∞

−∞
φ(26−1+mθ̃r,(2(26−1)+4mθ̃r)/210)(x)(∫ x

−∞
φ(26−1+mθ̄r,(2(26−1)+4mθ̄r)/210)(u)du

)
dx

}3

·
{∫ ∞

−∞
φ(26−1+mθ̃r,(2(26−1)+4mθ̃r)/210)(x)

(∫ x

−∞
φ(26−1+mθr,(2(26−1)+4mθr)/210)(u)du

)
dx

}236−4

,

m = 2n−15; θr and θ̃r are defined in Theorem 5.
proof: The following approximation stands
since φ(26−1+mθ̃r,(2(26−1)+4mθ̃r)/210)(x),
φ(26−1+mθ̄r,(2(26−1)+4mθ̄r)/210)(x), or
φ(26−1+mθr,(2(26−1)+4mθr)/210)(u) is a probabil-
ity density function of distribution of χ2-values
on each key candidate:
Psrc6(n)

=

∫ ∞

−∞
φ(26−1+mθ̃r,(2(26−1)+4mθ̃r)/210)(x)

·
(∫ x

−∞
φ(26−1+mθ̄r,(2(26−1)+4mθ̄r)/210)(u)du

)3

·
(∫ x

−∞
φ(26−1+mθr,(2(26−1)+4mθr)/210)(u)du

)236−4

dx

�
{∫ ∞

−∞
φ(26−1+mθ̃r,(2(26−1)+4mθ̃r)/210)(x)

·
(∫ x

−∞
φ(26−1+mθ̄r,(2(26−1)+4mθ̄r)/210)(u)du

)
dx

}3

·
{∫ ∞

−∞
φ(26−1+mθ̃r,(2(26−1)+4mθ̃r)/210)(x)

·
(∫ x

−∞
φ(26−1+mθr,(2(26−1)+4mθr)/210)(u)du

)
dx

}236−4

= P̃ src6(n)

Table 6 shows both θr and θ̃
′
r on RC6 in each

round, where θ̃
′
r is computed by the value of

θ̃
′
r =26

∑(
P (lsb3(Dr−1) ‖ lsb3(Dr+1))− 2n

26

)2

Table 6 θr and θ̃r for RC6 in each round
(estimation).

rounds θr θ̃
′
r (estimation of θ̃r)

4 0.603 × 10−9 0.452 × 10−4

6 0.873 × 10−14 0.735 × 10−9

8 0.143 × 10−18 0.915 × 10−14

10 0.253 × 10−23 0.129 × 10−18

12 0.311 × 10−28 0.208 × 10−23

14 0.683 × 10−33 0.273 × 10−28

16 0.834 × 10−38 0.471 × 10−33

18 0.134 × 10−42 0.666 × 10−38
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Table 7 #texts necessary for Psrc6(n) ≥ 0.95 (From Lemma 1).

r 4 6 8 10 12 14 16 18

# texts 231.29 247.20 263.49 279.61 295.52 2111.75 2127.57 2143.68

time complexity† 262.29 278.20 294.49 2110.61 2126.52 2142.75 2158.57 2174.68

memory‡ 252

†: the number incrementing a counter count.
‡: the size of a counter count.

Table 8 Theoretical and experimental success probability of RC6-8/4/8
(Attack 2)(the average of 100 trials).

#texts 218 219 220 221 222 memory
Theoretical 0.01 0.09 0.30 0.90 1.00

Experimental 0.00 0.03 0.15 0.78 1.00 224

Time(sec) 9.7 19.4 38.8 82.2 165.6

with the summation over
lsb3(Dr−1) ‖ lsb3(Dr+1) ∈ {0, 1}6. In Theo-
rem 5, θ̃r is defined as

θ̃r = 26
∑(

P (D[5,7]
r−1 ‖ lsb3(Dr+1)) − 2n

26

)2

,

in which the computation of TM requires too
much memory compared with the above θ̃

′
r.

Therefore, we use the estimation θ̃
′
r instead of

θ̃r. Compared with θ̃r, θ̃
′
r is slightly higher than

θ̃r in the lower round r since bias of input influ-
ences that of output in the lower round. How-
ever, the higher the round r is, the fewer the
difference between θ̃

′
r and θ̃r would be.

By using the results of Table 6, Table 7
shows the necessary number of texts and time
complexity which make the success probability
of Attack 2 on RC6 95% or more. The neces-
sary number of texts is computed by Lemma 1.
The time complexity is estimated by the num-
ber incrementing a counter count, which is the
dominant step of Attack 2. The memory com-
plexity is estimated by the size of count, which
is equal to 252. The number of available texts
is bounded by 2128 in Attack 2 and the time
complexity is #texts× 227+4 since Attack 2 re-
covers 1 post-whitening key, 2 bits of another
post-whitening key, and 2 bits of 1 subkey in the
final round at once. Compared with Attack 1
in Section 3, whose time or memory complexity
is #texts×227×2 or 280, our attack surprisingly
reduces the time or memory complexity, respec-
tively. In fact, the previous attack works on a
128-bit-key RC6 with up to 8 rounds by us-
ing 263.1 plaintexts and 2117.1 time complexity.
However, our attack can recover a key on an
128-bit-key RC6 with up to 12 rounds by using
295.52 plaintexts and 2126.52 time complexity.

4.3 Success Probability of Attack 2 on
RC6-8

We also demonstrate Theorem 5 on RC6-
8/4/8. Table 8 shows the theoretical and ex-
perimental results. Our platforms are the same
as that of the experimental results on Attack 1,
described in Section 3. The theoretical success
probability is slightly higher than the experi-
mental success probability for the following rea-
son:
1. The χ2-value of correct keys is estimated to
be slightly higher by using θ̃

′
r instead of θ̃r. In

fact, the experiments are done in the 4th round,
and, thus, θ̃

′
r seems to be higher than θ̃r.

2. The theoretical success probability is esti-
mated by setting the χ2-value of zc ‖ yd is that
of lsb3(Dr+3) ‖ yd if S2r+2 is wrong.

Let us compare Attack 2 to RC6-8/4/8 with
Attack 1 to RC6-8/4/8. Our algorithm runs
with the memory of 224 while Attack 1 needs
the memory of 228. The time of Attack 2 (resp.
Attack 1) is about 25+4 encryptions (resp. 25+5

encryptions) of RC6-8/4/8, and so we expect
that Attack 2 runs half as much as that of At-
tack 1. We see that Attack 2 runs slightly longer
than half of the time of Attack 1 when both
use the same number of plain texts. This is be-
cause Attack 2 needs to decrypt ciphertexts by
1 round in addition to the same procedure as
Attack 1. Attack 2 needs # texts to make the
success probability 100 % more than Attack 1.
In fact, Attack 1 can be expected to have more
correlation than Attack 2 because the χ2-value
of correct keys in Attack 1 (resp. Attack 2) is
evaluated by that on lsb3(Ar) ‖ lsb3(Cr) (resp.
lsb3(Dr+1) ‖ C

[5,7]
r ). Therefore, especially in

the case of lower rounds such as RC6-8/4/8,
the difference influences the necessary number
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of texts. However, in the case of higher rounds
such as RC6 with 10 rounds or more, the differ-
ence seems to make only a little impact on the
necessary number of texts. Instead, the mem-
ory size and the time complexity become more
important and serious as we see in Table 3 and
Table 7.

5. Concluding Remarks

In this paper, we have improved the χ2-attack
on RC6 to reduce the time and memory com-
plexity and proved the theorem that evaluates
the success probability in the χ2-attacks. The
derived formulae can be computed efficiently
and provide a theoretical analysis of the suc-
cess probability in the χ2-attack. We have
also demonstrated that our theorems can effec-
tively estimate the success probability in the
χ2-attacks against RC6-8/4/8.
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