
Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

[DOI: 10.2197/ipsjjip.22.44]

Regular Paper

Markov Chain Monte Carlo
for Arrangement of Hyperplanes

in Locality-Sensitive Hashing

Yui Noma1,a) Makiko Konoshima1,b)

Received: March 18, 2013, Accepted: October 9, 2013

Abstract: Since Hamming distances can be calculated by bitwise computations, they can be calculated with a lighter
computational load than L2 distances. Similarity searches can therefore be performed faster in Hamming distance
space. On the other hand, the arrangement of hyperplanes induces a transformation from the feature vectors into fea-
ture bit strings, which are elements of the Hamming distance space. This transformation is a type of locality-sensitive
hashing that has been attracting attention as a way of performing approximate similarity searches at high speed. Su-
pervised learning of hyperplane arrangements enables us to devise a method that transforms the higher-dimensional
feature vectors into feature bit strings that reflect the information about the labels applied to feature vectors. In this
paper, we propose a supervised learning method for hyperplane arrangements in feature space that uses a Markov chain
Monte Carlo (MCMC) method. We consider the probability density functions used during learning and evaluate their
performance. We also consider the sampling method for data pairs needed in learning and evaluate its performance.
The performance evaluations indicate that the accuracy of this learning method, when using a suitable probability
density function and sampling method, is greater than those of existing learning methods.

Keywords: higher dimensional feature vector, locality-sensitive hashing, arrangement of hyperplanes, similarity
search, Markov chain Monte Carlo, low-temperature limit

1. Introduction

Unstructured data such as audio and images include complex
content. This makes it difficult to search unstructured data di-
rectly. A commonly used approach has been to perform searches
based on feature vectors extracted from unstructured data. To re-
flect the complexity of the data, these feature vectors generally
consist of higher-dimensional data with hundreds or even thou-
sands of dimensions.

There are a wide range of applications for high-speed sim-
ilarity searches using higher-dimensional feature quantities ex-
tracted from unstructured data. Examples include authentication
of people by fingerprint recognition, speech recognition in call
centers, management of products and components based on CAD
data, and detecting abnormal situations from surveillance video.
For these applications, there are two things that are very impor-
tant. One is a high-speed similarity search method. The other is
a data structure that permits high-speed similarity searches, to-
gether with a method for extracting feature quantities that reflect
the properties of unstructured data.

To perform a similarity search, the feature space should be a
metric space. In most cases, the feature space is treated as an
L2 metric space. Studies [1], [2], have devised an index structure

1 System Software Laboratories, FUJITSU LABORATORIES LTD.,
Kawasaki, Kanagawa 211–8588, Japan

a) noma.yui@jp.fujitsu.com
b) makiko@jp.fujitsu.com

aimed at performing similarity searches at high speed. However,
in higher-dimensional space, the so-called “curse of dimension-
ality” means that all distances between data items are of a similar
value. Consequently, searches in higher-dimensional data using
these methods end up having processing times that are similar to
those of searches performed without using a special index [3].

Hamming distances can be calculated by bitwise operations,
which means that similarity searches are fast in Hamming met-
ric space without using a specific index structure. In locality-
sensitive hashing [4], the feature vectors are transformed into
hash values. For this transformation, methods that involve the
use of hyperplanes in feature space have been intensively stud-
ied [5], [6], [7], [8]. These methods use multiple hyperplanes as
a means of partitioning the feature space. A bit string, deter-
mined from the orientations of hyperplanes, is assigned to each
partitioned region. Feature vectors extracted from the data are al-
located in the same way as bit strings assigned to the regions that
include the feature vectors. Similar feature vectors are included
in neighboring regions, so that the bit strings allocated to these
feature vectors are similar and are separated by small Hamming
distances. In the following, we will use the term “hashing” to
refer to the process of transforming higher-dimensional feature
vectors into feature bit strings.

From the above discussion, we decided to use bit strings as fea-
ture quantities, since these are data structures that can be searched
at high speed. Moreover, when the data has labels, supervised
learning can be used to extract feature bit strings that reflect the

c© 2014 Information Processing Society of Japan 44

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

labeled information. Note however that a single item of unstruc-
tured data will not necessarily have just one label to reflect its
complexity.

Studies aimed at increasing the precision of feature quantities
associated with the hyperplane hashing method include the fol-
lowing references [9], [10], [11]. In the learning phase, the nor-
mal vectors of the hyperplanes are determined by making the
Hamming distances smaller between data pairs with a common
label and larger between data pairs that do not have any common
labels. As the number of bits increases, the degree of freedom
also increases so that greater precision becomes possible.

Based on this reasoning, we can draw the following conclu-
sions regarding high-precision similarity searches of large quan-
tities of unstructured data. High-speed similarity searches can be
achieved by using bit strings in Hamming metric space as feature
quantities. High precision can be achieved by using a large num-
ber of bits and performing supervised learning with labeled data
as the training data.

In this paper, apart from the use of feature bit strings, no con-
sideration is given to the processing time of the similarity search.
Our main focus is on using supervised learning to improve the
precision of feature bit strings.

The method proposed in this paper performs supervised learn-
ing using a Markov chain Monte Carlo (MCMC) method. The
transformation of feature vectors into feature bit strings is a dis-
continuous vector-valued function. This makes it impossible to
perform naı̈ve learning based on gradients. Another approach
involves introducing a loss function so that the transformation
method can be approximated by a continuous function. However,
the only loss functions found so far are strongly dependent on the
properties of the data set. In our method, each normal vector is
regarded as a particle on a unit sphere in feature space, and a ran-
dom walk is performed on this unit sphere. In the random walk,
a discontinuous function can be treated as an evaluation function.
In this paper, we also describe sampling methods for training data
pairs and evaluation functions for use in learning.

This paper is structured as follows. First, Section 2 describes
the existing learning methods. Then, Section 3 describes our
method. We discuss the evaluation functions needed during learn-
ing and the sampling methods for training data pairs. Section 4
describes the experiments we performed using various data sets.
We also evaluate the evaluation functions and the sampling meth-
ods. Section 5 shows that our learning method outperforms ex-
isting methods. Finally, Section 6 summarizes our work and dis-
cusses the prospects of this approach.

2. Background and Related Work

In this section, we describe the use of hyperplanes for locality-
sensitive hashing, which is the basis of the proposed technique.
Then, we describe some of the related techniques.

2.1 Conventional Locality-sensitive Hashing with Hyper-
planes

Here, we describe the hashing method using hyperplanes. A
space V in which there are higher-dimensional feature quantities
is regarded as an N-dimensional vector space. The configura-

tions of multiple hyperplanes in V are referred to as hyperplane
arrangements.

Consider B hyperplanes passing through the origin of V . Such
hyperplanes are called linear hyperplanes. A linear hyperplane
is identified by its normal vector. Since the length of the normal
vector specifying a linear hyperplane is immaterial, these lengths
are set to one. The configuration space of normal vectors corre-
sponds to an N − 1-dimensional hypersphere S N−1. When dis-
tinguishing between B hyperplanes, the configuration space of
the hyperplanes is (S N−1)B. An N-dimensional feature vector �x
is transformed into a bit string by registering a 1 if its dot prod-
uct with each normal vector is positive, and a zero otherwise.
Therefore, the length of the bit string is equal to the number of
hyperplanes B.

A hyperplane that does not pass through the origin is called
an affine hyperplane. An affine hyperplane can easily be con-
structed from a linear hyperplane. In Ref. [11], an experiment is
performed where the hashing of affine hyperplanes is achieved
by learning the hashing of linear hyperplanes. When developing
a new learning method for hyperplanes, it is easier to work with
linear hyperplanes. In the following discussion, therefore, all hy-
perplanes are assumed to be linear.

When the data has labels, it is sometimes the case that the an-
gles or L2 distances do not exhibit a suitable degree of dissimi-
larity. In such cases, the hyperplanes can be determined by super-
vised learning so that data pairs with a common label are sepa-
rated by small Hamming distances and data pairs that do not have
any common label are separated by large Hamming distances. In
the following, we will refer to a data pair with a common label
as a “positive pair” and a data pair without a common label as a
“negative pair.”

In one hashing method [5], the B hyperplanes are set randomly.
In the following, this is referred to as the LSH method.

Other references such as Refs. [6], [7], [8], [9], [10] describe
hashing methods that use hyperplanes. In particular, MLH [9]
and S-LSH [10] are described in Sections 2.2 and 2.3.

2.2 Minimal Loss Hashing
Minimal Loss Hashing (MLH) [9] is a learning method whose

aim is to minimize an empirical loss function on (S N−1)B. How-
ever, the empirical loss function is discontinuous, so it is not pos-
sible to use learning methods based on gradients. As a result, the
empirical loss is replaced with a differentiable upper bound func-
tion g, and gradients are used to minimize g instead. The point
that gives the minimum value determines the coordinates of the B

learned hyperplanes. The function g has several parameters that
need to be adjusted. Some of these parameters depend on the data
pairs used for training. All the data pairs for learning are chosen
at random.

2.3 Locality-sensitive Hashing with Margin-based Feature
Selection

In this subsection, we describe the concept of the learning
method called locality-sensitive hashing with margin-based fea-
ture selection (S-LSH) [10]. In S-LSH, the normal vectors of
hyperplanes are not used directly for learning. B̃ hyperplanes

c© 2014 Information Processing Society of Japan 45

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

(B̃ > B) are randomly provided. A degree of importance is al-
located to each hyperplane, and these degrees of importance are
calculated in the learning process. The degrees of importance
are arranged in descending order, and the topmost B normal vec-
tors are selected. The distance calculations during learning are of
weighted Hamming distances. Two types of data pairs are used
during learning. The learning data pairs are selected as follows.
A feature vector a is randomly selected from the learning data.
The first type of data pair consists of the pair (a, b), where b is
the feature vector with the smallest weighted Hamming distance
in the data set that has a common label as a. Later, we call such
pairs NearHits (see Section 3.4.) The second type of data pair
consists of the pair (a, c), where c is the feature vector with the
smallest weighted Hamming distance in the data set that does not
have any common label as a. Later, we call such pairs NearMisses
(see Section 3.4.)

S-LSH has been shown to have good learning performance on
many different data sets [10]. It is particularly effective in cases
where there are many labels, and data with the same label have
small cardinalities.

3. Proposed Method

3.1 Motivation
To make a high-speed similarity search that accurately rep-

resents the latent similarities of unstructured data, we perform
learning with a greater number of bits B. The configuration space
of an arrangement of B hyperplanes is (S N−1)B. When there is an
evaluation function U′ on (S N−1)B that has the following property,
learning the arrangement of hyperplanes can be regarded as an
optimization problem that globally maximizes U′. The argument
of U′ is the arrangement of hyperplanes. Each hyperplane divides
the feature space V into two regions. The value of U′ increases
with the number of positive pairs whose feature vectors are in the
same region and negative pairs whose feature vectors are in dif-
ferent regions. In most cases, a function U′ having this property
is thought to have multiple local maxima. When B is large, the di-
mension of (S N−1)B increases and it becomes harder to solve the
optimization problem. Since we are concerned here with hashing
using hyperplanes, the values of U′ can also be discrete.

Instead of solving an optimization problem in (S N−1)B, we
can consider a method where optimization problems in S N−1 are
solved B times, and these solutions are bundled together. That is,
instead of learning a set of B hyperplanes, the individual hyper-
planes are separately learned and the results are bundled together.
However, if we obtain B solutions to the optimization problem in
S N−1, the performance is severely impaired for the following rea-
son. Consider an evaluation function U on S N−1. Assume that the
points S N−1 where the value of U is large correspond to a good
hyperplane. That is, we assume that U has the following prop-
erty. When the feature space V is partitioned into two regions by
a single hyperplane, the value of U increases with the number of
positive pairs whose feature vectors are in the same region and
negative pairs whose feature vectors are in the different regions.
An example of an evaluation function is shown in Section 3.3.
We will assume that the evaluation function U has a global max-
imum value on p∗ ∈ S N−1. If all the hyperplanes exist in p∗, then

they are all degenerate. In this case, the feature space V is only
divided into two regions, and there are only two types of repre-
sentative bit strings. Clearly, it would not be possible to capture
the features of unstructured data with these bit strings. For this
reason, when we consider bundling the learning results of indi-
vidual hyperplanes, it can be said that individual hyperplanes are
not necessarily learned by finding the point where the evaluation
function U on S N−1 is globally maximized. Therefore, in the fol-
lowing, we find B points where the evaluation function U has a
local maximum in S N−1 when learning is performed with individ-
ual hyperplanes. Multiple hyperplanes are learned by bundling
these results. Here, we must ensure that the multiple hyperplanes
are not oriented in the same direction.

In the remainder of this section, we describe the proposed
method (called M-LSH), which is a hyperplane normal vec-
tor learning based on the Markov chain Monte Carlo (MCMC)
method. We also discuss a number of evaluation functions (the
choices of which have a strong influence on the performance of
M-LSH learning) and data pair sampling methods.

3.2 Learning Hyperplanes with the Markov Chain Monte
Carlo Method

Our method is a supervised learning of hyperplanes using
MCMC. Its aim is to probabilistically determine the point where
the evaluation function U reaches a local maximum value. Its
advantage is that it does not require a differentiable evaluation
function. Its disadvantage is that because it uses a Monte Carlo
method, the point where the evaluation function is locally max-
imized cannot be determined with perfect accuracy. However,
from the properties of MCMC, the learned results are highly
likely to be close to the point where the evaluation function is
locally maximized. The probability that a particle is in such a
place is high so that the local maximum value is high, and the
peak is sharp.

In the following, we will assume that the evaluation function
U is positive and bounded. Also, we will assume that the de-
tails of the evaluation function depend on the training data pairs.
Examples of U are given in Section 3.3.

Consider a particle on S N−1 whose position corresponds to the
normal vector of a hyperplane. Since U is generally discontinu-
ous and not differentiable, we cannot use optimization methods
based on gradients, that is, continuous particle motions. Instead,
we can try to find a minimum solution by using a random walk
method. Because of the assumptions placed on U, we can re-
gard U as the probability density function of S N−1 (except for a
normalization constant) and use MCMC to evaluate the temporal
evolution of particles. This is the essence of the M-LSH method.

M-LSH uses the Metropolis-Hastings algorithm as its MCMC
method [12] and a normal distribution as its density function. In
M-LSH, particles perform random walks a fixed number of times.
We refer to this temporal evolution as a single batch process.
Since the details of the evaluation function are determined by de-
ciding on the training data pairs, the handling of the training data
pairs may lead to incidental local maximum values of the evalu-
ation function. To prevent the particles from becoming trapped
at this sort of point, batch processing is performed a number of

c© 2014 Information Processing Society of Japan 46

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

Fig. 1 M-LSH variants. The number of variants equals the number of com-
binations of evaluation functions and sampling methods.

times, and different learning data pairs are used in each batch pro-
cess.

By performing learning with multiple hyperplanes, we obtain
the points where the evaluation function is locally maximized.
As described in Section 3.1, it is necessary to prevent points from
being learned where multiple hyperplanes produce the same local
maximum value. In M-LSH, this issue is resolved in the follow-
ing way. MCMC exhibits a property whereby particles tend to
accumulate at places where the probability density function is lo-
cally maximized. The sharper the peak is in the evaluation func-
tion close to the local maximum value, the more intense this trend
becomes. In most cases, since U is multimodal, making its peaks
sharper and randomly setting the initial positions of the particles
will cause the particles to collect at peaks close to their initial po-
sitions. Therefore, we can prevent the particles from all moving
towards the same point.

Many variants of M-LSH can be obtained by using different
evaluation functions U and different sampling methods for train-
ing data pairs that determine the evaluation function U. Figure 1
lists these combinations. These items are described below in Sec-
tions 3.3 and 3.4.

3.3 Evaluation Function
In M-LSH, the type of evaluation function must be determined.

A number of possible function types are considered below. First,
though, we will introduce some nomenclature. PP denotes the
set of all given positive pairs, and NP denotes the set of all given
negative pairs. The angles subtended by the two feature vectors
of a pair p relative to the normal vector of a hyperplane are θ1(p)
and θ2(p), respectively. The following subsets are defined.

PP+ := {p ∈ PP| cos(θ1(p)) ∗ cos(θ2(p)) > 0} , (1)

NP− := {p ∈ NP| cos(θ1(p)) ∗ cos(θ2(p)) < 0} . (2)

Note that the cardinality of a set A is denoted by #A.
The following formulas assume an evaluation function U =

exp(x/T) that uses an enumerated value x. Here, T = 1.
COUNT

x = #PP+ + #NP−. (3)

RATIO

x =
#PP+
#PP

+
#NP−
#NP

. (4)

COSINE

x =
∑

p∈PP

| cos(θ1(p)) + cos(θ2(p))|

+
∑

p∈NP

| cos(θ1(p)) − cos(θ2(p))|. (5)

COSINE RATIO

x =
1

#PP

∑

p∈PP

| cos(θ1(p)) + cos(θ2(p))|

+
1

#NP

∑

p∈NP

| cos(θ1(p)) − cos(θ2(p))|. (6)

If we regard −x and T as the particle’s energy and temperature,
respectively, U can be regarded as a Boltzmann weight in statis-
tical physics. From this perspective, the low-temperature limit
is where T is zero, and the high-temperature limit is where T is
∞. The energy, −x, of the function COUNT corresponds to the
energy of Ising’s model of (anti-)ferromagnetic matter. Positive
pairs correspond to ferromagnetic matter. Negative pairs corre-
spond to anti-ferromagnetic matter.

The function COSINE is a continuous version of COUNT up
to a certain factor. When T is small, COSINE can be approxi-
mated by COUNT. The functions RATIO and COSINE RATIO
are scaled versions of COUNT and COSINE.

3.4 Sampling Method for Training Data
The evaluation function defined in Section 3.3 must include

both PP and NP. PP and NP can be determined by consider-
ing all combinations of the training data. However, the number
of such configurations is almost half the square of the number of
training data. As the number of training data increases, the car-
dinalities of PP and NP become large and it takes longer to cal-
culate the evaluation function. In this subsection, we consider a
number of different selection methods for PP and NP and discuss
their advantages and disadvantages. Here, we will use the term
“distance” to refer to the L2 distance, unless otherwise noted. We
will also use the following nomenclature. L is the set of all train-
ing data. La represents a data set having a common label as an
element a ∈ L, and Lc

a represents the complement L \ La. The
distance between two elements a, b ∈ L is denoted by dist(a, b).

We will start by considering the following sampling methods
for selecting NP.
RandomMiss

Select a ∈ L randomly. Then select b ∈ Lc
a randomly and

form a negative pair (a, b).
NearMiss

Select a ∈ L randomly. Then form a negative pair (a, b) such
that b := arg minc∈Lc

a
(dist(a, c)).

BoundaryMiss
Select a ∈ L randomly. The form a negative pair
(a′, b) such that b := arg minc∈Lc

a
(dist(a, c)) and a′ :=

arg minc∈La∩Lc
b
(dist(b, c)).

RandomMiss is used in MLH [9], and NearMiss is used in S-
LSH [10]. On the other hand, BoundaryMiss is a new sampling
method, so we will describe it here in more detail. Consider
two elements a, b ∈ L that do not have any common label and
La ∩ Lb � ∅*1. Since the distributions of La and Lb overlap, it

*1 Since the labels applied to unstructured data can be of more than one
type, this sort of situation occurs frequently.

c© 2014 Information Processing Society of Japan 47

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

Fig. 2 Selection methods for negative pairs. From left to right RandomMiss, NearMiss, and Bound-
aryMiss. The red triangles, red circles, and blue triangles correspond to element a, element b, and
element a′, respectively. The blue dotted line represents the hyperplane expected from learning.

is not possible to obtain a hyperplane that separates them com-
pletely. If we are allowed to bisect La ∩ Lb with a hyperplane,
then it may also be possible to separate the difference sets La \ Lb

and Lb \La. To get a hyperplane that bisects La∩Lb, we can form
a negative pair by selecting one data item from La \Lb and Lb \La.
BoundaryMiss is one way in which negative pairs of this sort can
be made. Furthermore, the points found by BoundaryMiss are
expected to lie close to the boundary between La \ Lb and Lb \ La

(Fig. 2.)
Figure 2 also shows typical data pairs obtained by Random-

Miss sampling and the hyperplanes learned from them. The dot-
ted circles in these figures show the approximate regions over
which these sets are distributed. The figure shows that in this sort
of sampling there is a strong possibility of selecting a pair com-
prising an element close to the center of gravity of La and an ele-
ment close to the center of gravity of Lc

a. This makes it easier to
learn a hyperplane that separates the center of gravity of La from
the center of gravity of Lc

a. When Lc
a is distributed over a broader

region than La, it is expected that the resulting hyperplane will
deviate from the boundary of La and Lc

a. In particular, when the
number of labels added to the training data is large and the sets of
each label have similar cardinality, the distribution of Lc

a tends to
become broader than that of La. As a result, the tendency for the
learned hyperplanes to be away from the boundary is thought to
become more pronounced as the number of labels increases.

In NearMiss sampling, an element selected from Lc
a lies close

to the boundary of La and Lc
a, so it is possible to avoid the above

drawback of the RandomMiss sampling method. However, when
La is distributed over a wide region, there is a greater likelihood of
a ∈ L deviating from the boundary between La and Lc

a. Figure 2
shows some typical data pairs obtained by NearMiss sampling
and the hyperplanes learned from these pairs.

BoundaryMiss sampling can compensate for the above-
mentioned drawbacks of the NearMiss method, but it is likely
to choose data pairs that are separated by smaller distances and is
therefore more susceptible to noise in the data.

We will now describe the selection method for PP. For the
reasons discussed below, it is better to consider positive pairs in
terms of applying corrections to the discriminant planes used for
discriminating negative pairs. For example, if we learn with only
positive pairs, because the hyperplanes should not separate fea-
ture vectors in each positive pair, the hyperplanes should stay
away from all the feature vectors. In such case, all the bit strings

Fig. 3 Schematic illustration of overlapping data pairs.

of the training data will be identical, making it impossible to sep-
arate the feature vectors. We therefore consider that positive pairs
help to prevent La from becoming separated by hyperplanes. We
will consider the following sampling methods for positive pairs.
RandomHit

Select a ∈ L randomly. Then randomly select b ∈ La and
form a positive pair (a, b).

NearHit
Select a ∈ L randomly. Then form a positive pair (a, b) such
that b := arg minc∈La (dist(a, c)).

FarHit
Select a ∈ L randomly. Then form a positive pair (a, b) such
that b := arg maxc∈La (dist(a, c)).

RandomHit is used in MLH [9], and NearHit is used in S-
LSH [10].

Let us consider a data set whose elements have a single label.
In this case, FarHit sampling is vulnerable to outliers. Moreover,
while RandomHit sampling is robust against outliers, NearHit
sampling performs poorly because it is not possible to prevent
data other than the selected data pair in La from being arranged
in different directions of the hyperplane. The performance degra-
dation is particularly severe when there are many data items with
the same label.

Next, let us consider a data set whose elements have an arbi-
trary number of labels. Here, consider the case in which there
are three positive pairs, (a1, b1), (a2, b2), (a3, b3) ∈ PP, such that
a1 � La2 ∧ b1 ∈ Lb2 ∧ a3, b3 ∈ Lb2 . In particular, when a3 and
b3 are close to b1 and b2 respectively, we shall refer to these
data pairs as overlapping. This situation is summarized in Fig. 3.
When learning is performed in this case, it becomes difficult to
separate La1 and La2 from Lb2 . As the number of sampling pairs
increases, while FarHit sampling and RandomHit sampling will
make many overlapping data pairs, NearHit sampling will make
less overlapping data pairs. Therefore, in this situation, while
FarHit sampling and RandomHit sampling will worsen the per-
formance, NearHit sampling will have less of a performance de-
crease.

c© 2014 Information Processing Society of Japan 48

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

Fig. 4 Learning results of LSH and M-LSH in the experiment with an artificial data set. Top left: Scat-
ter plot of normal vectors learned by LSH; Bottom left: Histogram of x components. Top right:
Scatter plot of normal vectors learned by M-LSH; Bottom right: Histogram of x components.

Based on this reasoning, there are as many possible sampling
methods as there are combinations of positive pair and negative
pair sampling methods. The sampling methods that we evaluated
are as follows*2.
• RandomHit-RandomMiss
• RandomHit-NearMiss
• NearHit-NearMiss
• FarHit-NearMiss
• RandomHit-BoundaryMiss

4. Experiments and Evaluation

We performed experiments to measure the effect of the pro-
posed method on a number of different data sets. We performed
supervised learning on data that had already been labeled. The
data labels were all known. The search results were obtained as
follows. The Hamming distance between the query and data in
the database was calculated, and ordered in ascending order of
the distance. The high-ranked data were the search results. Thus,
the performance depended on the number of data acquired by the
search. To evaluate the performance, we used the precision rate
and recall rate and F-measure as defined as follows: A is the num-
ber of data acquired by the search, B is the number of data items
with a common label as the query for which the search results
were obtained, and C is the number of data items in the database
with a common label as the query. From this, we can define Pre-
cision and Recall as follows:

Precision :=
B
A
, (7)

*2 We believe that our choices were natural ones.

Recall :=
B
C
. (8)

The precision-recall curve shows the variations in recall and pre-
cision as A changes. The F-measure is the harmonic mean of
precision and recall.

In the experiments, by way of reference, we also calculated the
precision and recall in similarity searches based on the L2 dis-
tance using the original feature vectors.

The remainder of this section is structured as follows. First,
we illustrate the benefits of M-LSH on learning with an artifi-
cial data set that we prepared. Then, we assess the performance
of the evaluation functions and sampling methods considered in
Sections 3.3 and 3.4. For this performance evaluation, we used
actual data sets instead of an artificial data set. Finally, we show
how our method differs from existing learning methods.

4.1 Experiments with an Artificial Data Set
We assessed the effect of M-LSH on learning in an experiment

using an artificial data set. This data set consisted of 300 data
items sampled from a three-dimensional standard normal distri-
bution. With the axes labeled x, y and z, we classified the data
items into two classes according to whether the x component was
positive or nonpositive. As can be seen from the way in which
the data is labeled, we wanted a hyperplane whose normal vector
�n was �n = (±1, 0, 0).

Figure 4 shows the effect of LSH and M-LSH on learning with
a bit string length of 1,024. The parameters of learning with M-
LSH were as follows: number of processing batches: 5; number
of temporal evolution steps in batch processing: 100; number of

c© 2014 Information Processing Society of Japan 49

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

Table 1 Experimental parameters.
����������Parameter

Data set
MNIST Fingerprint Speech LabelMe

Number of training data items 60,000 9,906 192,875 11,000
Number of data items for searching 5,000 12,138 192,683 5,500
Number of data items for queries 5,000 19,932 1,815 5,500

Dimension before dimensionality reduction 784 4096 200 512
Dimension after dimensionality reduction 149 276 30 20

Feature vector have unique labels Yes Yes No No
Approximate number of labels 10 1300 2000 300

Rough cardinality of the sets for each label 6000 7 100 40

Fig. 5 Precision-recall curves of LSH and M-LSH learning on an artificial
data set.

data pairs used for learning in each batch process: 2,000; number
of evaluation functions used during learning: COUNT; sampling
method: RandomHit-RandomMiss, with equal numbers of posi-
tive and negative pairs.

The scatter plot and x-component histogram of the normal vec-
tors obtained by LSH in Fig. 4 reveal that the normal vectors are
uniformly distributed on a two-dimensional sphere. In contrast,
the scatter diagram and x-component histogram for M-LSH indi-
cate that most of the normal vectors are distributed in the vicinity
of �n = (±1, 0, 0). Figure 5 shows the precision and recall of LSH
and M-LSH. As expected from the distribution of normal vectors,
this figure shows that M-LSH has a positive effect on learning.

4.2 Experimental Data
Here, we describe the experimental data used in the perfor-

mance evaluations described in Sections 4.3 and 4.4.
The experimental data was obtained from the following

sources.
• MNIST

Scanned images of handwritten numerals 0–9 [13]. Each
digit is stored as a 28 × 28-pixel 8-bit grayscale image and
is labeled with the corresponding digit 0–9. We used the im-
ages themselves as feature quantities. Therefore, the feature
quantities had 784 dimensions.

• Fingerprint images
Fingerprint image data acquired using a fingerprint im-
age scanner. The feature quantities consisted of 4,096-
dimensional Fourier spectra of these fingerprint images.
Since fingerprints are unique to each human, the data was
labeled with the names of the corresponding individuals. In
other words, each feature vector was given just one label.
For details, see reference [10].

• Speech features
A set of 200-dimensional mel frequency cepstral coeffi-
cient (MFCC) feature quantities extracted from a three-hour

recording of a local government assembly published on the
Internet [14]. The query was a spoken sound acquired sepa-
rately. In supervised learning of speech, the contents of the
speech are normally labeled with a text transcription. In-
stead, we treated the features with the top 0.1% shortest Eu-
clidean distances from queries regarded to be in the same
class. Each feature vector could have multiple labels.

• LabelMe
LabelMe data using 512-dimensional Gist feature quan-
tities [15] extracted from image data published in refer-
ence [16]. The labeling was applied to the dissimilarity ma-
trices of distributed data, and the same labels were applied
to data corresponding to the topmost 50 rows of data in each
row. Each feature vector could have multiple labels.

The data sets were selected with the following applications in
mind: handwritten number recognition (MNIST), biometric iden-
tification (fingerprint images), speech recognition (speech fea-
tures), and automatic image classification (LabelMe).

The quality of data used in the experiments is summarized in
Table 1. Here, we envisaged performing searches on a database
with the data divided into three pairwise disjoint sets: one set for
learning, another to be searched, and a third one for queries. The
learning performance varied widely depending on the number of
labels in the data set and on the cardinality of data sets having a
common label. However, since the data sets were not all given
unique labels, it was not possible to give a naı̈ve definition of the
cardinality of the sets for each label. We therefore reasoned as
follows. For the data actually used for learning, the average value
of the number of data items having a common label as one item
of data can be regarded as the rough cardinality of the sets for
each label. The rough number of labels can then be calculated by
dividing the number of data items actually used for learning by
the rough cardinality of the sets for each label.

Since data generally contains noise, noise reduction must be
performed. Prior to the experiments, we subjected all the data
to the following noise reduction processes. These processes are
widely used as noise reduction methods. The feature quantities
of the data are higher-dimensional data. Depending on the data
set, each component of the data may be expressed in different
units. Unless the feature vectors are made dimensionless, they
cannot be used for calculationing distances or angles. We there-
fore subjected the data to an affine transformation so that the av-
erage value of each component of the feature vector of the learn-
ing data became 0 and the standard deviation of the learning data
became 1. We also performed principal component analysis on
the learning data. This was done by finding the subspace with a

c© 2014 Information Processing Society of Japan 50

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

Fig. 6 Recall-Precision curves for each evaluation function for MNIST (upper left), fingerprint (upper
right), speech (lower left), and LabelMe (lower right).

cumulative contribution rate of over 80%, and mapping all data
to this space. After this noise reduction process, we performed
learning and search tests. Since all the methods were evaluated
using data that had been subjected to this noise reduction process,
their performances were unaffected by it.

The parameters of the M-LSH experiments were as follows.
Standard deviation of proposed density distribution: 0.01; num-
ber of processing batches: 10; number of bits: 1,024; number of
temporal evolution steps in batch processing: 100; number of data
pairs used for learning in each batch process: 2,000 or 20,000.

4.3 Performance of Evaluation Function
We evaluated the performance of the evaluation functions listed

in Section 3.3. A natural choice of sampling method is the
simplest one i.e., RandomHit-RandomMiss. However, as dis-
cussed in Section 4.4, RandomHit-RandomMiss sampling per-
forms poorly. Therefore, we used the next simplest method,
RandomHit-NearMiss sampling.

We used precision-recall curves and the maxima of F-measures
to evaluate the performance. Figure 6 shows the precision-recall
curves for each data set. For comparison, the figure also shows
curves of the search with LSH and the L2 distance. Figure 7
shows the maxima of F-measures for each data set. The number
of data pairs used in M-LSH was 2,000.

Figures 6 and 7 indicate that M-LSH performed about as well
as LSH when it used RATIO or COSINE RATIO. In contrast,
it outperformed LSH on all data sets when it used COUNT, but
performed worse than LSH on all data sets when it used COSINE.

The reason why M-LSH using RATIO or COSINE RATIO
performed poorly is thought to be as follows. The evaluation
functions include a parameter T that is analogous to tempera-
ture. Since we used a fixed value of T = 1 in this evaluation, the
exponents of the evaluation functions are confined to the range
[0, 2] or [0, 4]. In this range, a slight change in the normal vector
will not cause a large change in the value of the evaluation func-

Fig. 7 Maxima of F-measures for each evaluation function for MNIST, fin-
gerprint, speech, and LabelMe.

tion. Therefore, the normal vector moves approximately at ran-
dom, and performance suffers as a result. In other words, in this
evaluation function it can be said that T = 1 corresponds to a high
temperature. To increase the performance of the evaluation func-
tion, we should use a smaller T (i.e., a lower temperature) and
expand the range of the evaluation function exponent to make the
maximum value peaks sharper. However, at this limit, the evalua-
tion function can be approximated by COUNT. For this reason, at
the low temperature limit, these two evaluation functions should
exhibit more or less the same performance as M-LSH when using
COUNT.

COSINE performed much worse than LSH for the following
reason. In COSINE, there is a gentle evaluation function gradi-
ent at all points in the region where the normal vector is defined.
Therefore, the normal vectors tend to be oriented toward the point
that has a global maximum value. To see that the normal vector
actually exists at such a point, we calculated the absolute val-
ues of the cosines between the normal vectors. A larger absolute
value of the cosine means that the vectors point in similar direc-
tions. Figure 8 shows the absolute values of the cosines between
32 normal vectors made by M-LSH using COUNT or COSINE.
In this figure, a matrix is calculated with the absolute values of
cosines between 32 normal vectors as its constituent values, and

c© 2014 Information Processing Society of Japan 51

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

Fig. 8 Cosines between normal vectors in M-LSH results learned for MNIST, with COUNT (left) and
COSINE (right) as the evaluation function.

Fig. 9 Recall-Precision curves for each sampling method with 2,000 data pairs for MNIST (upper left),
fingerprint (upper right), speech (lower left), and LabelMe (lower right).

these values are represented as a grayscale image. The diago-
nal elements are all zero. As Fig. 8 clearly shows, almost all of
the normal vectors obtained with M-LSH are oriented in similar
directions. In the case of COSINE, it is thought that the perfor-
mance can be improved by taking a low temperature limit, as was
the case for RATIO and COSINE RATIO. However, at this limit,
COSINE can be approximated by COUNT. Furthermore, since
COSINE requires more processing time than COUNT, there is no
reason to employ COSINE.

On the basis of the above calculations and discussion, we con-
clude that using COUNT as the evaluation function is more ap-
propriate from the viewpoint of processing time and performance.

4.4 Evaluation of Sampling Methods
In light of the discussion of Section 4.3, we used the M-LSH

method with the COUNT evaluation function to evaluate the per-
formance of the sampling methods described in Section 3.4.

We used precision-recall curves and the maxima of F-measures
to assess the performance of the evaluation functions. Figure 9
shows the precision-recall curves of each sampling method for
each data set. Figure 10 shows the maxima of F-measures for
each data set. The number of data pairs used in M-LSH was
2,000. To evaluate the dependence on the number of data pairs
used for training, we also evaluated the performance with 20,000
data pairs (see Fig. 11 and 12).

Fig. 10 Maxima of F-measures for each sampling method with 2,000 data
pairs for MNIST, fingerprint, speech, and LabelMe.

Figures 9 to 11 indicate that the performance of M-LSH using
RandomHit-RandomMiss sampling was very poor on data sets
other than MNIST. The performance was worse than that of LSH.

M-LSH using FarHit-NearMiss sampling performed the best
on MNIST. However, it performed the worst on LabelMe.

These results show that the performance of M-LSH with the
NearHit-NearMiss sampling method depends strongly on the
number of training data pairs. For the speech features and La-
belMe data sets, the performance improves as the number of
training data pairs increases. This performance improvement is
thought to be due to the low probability of there being overlap-
ping data pairs. For MNIST, the performance decreases as the
number of training data pairs increases. This effect is thought

c© 2014 Information Processing Society of Japan 52

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

Fig. 11 Recall-Precision curves for each sampling method with 20,000 data pairs for MNIST (upper left),
fingerprint (upper right), speech (lower left), and LabelMe (lower right).

Fig. 12 Maxima of F-measures for each sampling method with 20,000 data
pairs for MNIST, fingerprint, speech, and LabelMe.

to occur in the following way. As mentioned above, the role of
positive pairs is to prevent data sets with a common label from
being split by hyperplanes. It is therefore desirable that posi-
tive pairs are widely distributed over data sets having a common
label. NearHit sampling creates positive pairs by choosing the
closest feature vectors with a common label. Therefore, a large
number of positive pairs are needed to widely distribute over data
sets having a common label. In particular, MNIST requires more
positive pairs than other data sets because there are many data
items that have the same label. The role of negative pairs is to
separate data sets having different labels. Therefore, a number of
negative pairs roughly equal to the square of the number of labels
is sufficient. Since the positive pairs and negative pairs were used
in equal numbers in these experiments, it seems that the effect
of negative pairs to separate data sets having different labels out-
weighed the effect of positive pairs to prevent the separation of
data sets having a common label.

The M-LSH method using RandomHit-NearMiss sampling
and RandomHit-BoundaryMiss sampling performed well on all
data sets, regardless of the number of training data pairs. For
MNIST and fingerprint images, the performance improved as the
number of training data pairs increased. However, for the speech

features and LabelMe data sets, performance decreased as the
number of training data pairs increased. This is thought to be due
to an increase in the number of overlapping data pairs. There were
no large differences between the results of these two sampling
methods, but M-LSH performed slightly better with RandomHit-
BoundaryMiss sampling.

On the basis of these results, we conclude that the appropriate
choice of sampling method depends on the properties of the data.
Of the sampling methods we tried out in this study, it seems that
the following choices are robust.
• For data sets in which each feature vector has a unique

label: RandomHit-NearMiss sampling or RandomHit-
BoundaryMiss sampling.

• For data sets in which each feature vector has multiple la-
bels and there are not many training data pairs: RandomHit-
BoundaryMiss sampling.

• For data sets in which each feature vector has multiple la-
bels and there are very many training data pairs: NearHit-
NearMiss sampling.

5. Comparison with Existing Learning Meth-
ods

We compared M-LSH with other learning methods (LSH,
MLH, and S-LSH). In this experiment, M-LSH used the COUNT
evaluation function and the RandomHit-BoundaryMiss sampling
method. The number of sample data pairs was 10,000 for positive
(negative) pairs.

We used the following parameters for MLH (see Ref. [9] for
the meaning of each parameter): number of iterations of batch:
10,000, λ: 1.0, ρ divided by the number of bits: 0.2, ε: 1.0, η:
0.1, α: 0.9. We used the following parameters for S-LSH (see
Ref. [10] for the meaning of each parameter): number of itera-
tions: 10,000, B̃: 10,000.

Figures 13 and 14 plots the precision-recall curves and the

c© 2014 Information Processing Society of Japan 53

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

Fig. 13 Recall-Precision curves for MNIST (upper left), fingerprint (upper right), speech (lower left), and
LabelMe (lower right).

Table 2 Processing time for learning (sec).
����������Algorithm

Data set
MNIST Fingerprint Speech LabelMe

LSH 0.0 0.0 0.0 0.0
MLH 2,742.00 5,437.82 519.05 503.30

S-LSH 55,293.61 9,142.87 56,162.03 8,780.21
M-LSH with 2,000 data pairs 3,900.80 9,445.55 1,945.66 531.77
M-LSH with 20,000 data pairs 51,078.65 120,032.97 21,627.17 6,378.24

maxima of F-measures for various data sets. The number of bits
was 1,024. These results reveal that M-LSH outperformed the
existing learning methods on all data sets.

One of the reasons for MLH’s performance deterioration is the
sampling method of the data pairs used for learning. In Ref. [9],
the learning data pairs are selected at random. That sampling
method corresponds to RandomHit-RandomMiss in our termi-
nology. As we saw in Section 4.4, M-LSH with RandomHit-
RandomMiss performed poorly. Therefore, we expect that MLH
would perform better if the sampling method for data pairs were
altered. However, we have to tune many parameters of MLH in
order to improve its performance*3.

Table 2 lists the processing times for learning of each method.
The experiment’s environment was as follows. The CPU was an
Intel Xeon X5680 3.3 GHz. Each method was implemented us-
ing C++. Each process was a single thread. We used the clock()
function to measure the processing time.

From the above results, we conclude that the M-LSH learning

*3 The reason why MLH performed differently from what is reported in
Ref. [9] is the difference in the labeling strategy and usage of the data
sets. In this study, we separated the data set into three pairwise disjoint
sets: a data set for learning, one to be searched, and one for queries. In
Ref. [9], two data sets were used: one for learning and searching, and the
other for querying. As such, the performance of MLH appears to be bet-
ter when the data set is divided in two rather than in three. The labeling
strategy used in Ref. [9] for the MNIST data set was as follows. Calcu-
late the L2 distances between feature vectors, determine the neighbors of
each vector by thresholding the distances, and assign the same label to
the neighbor. Each vector has, on average, 100 neighbors. Because this
strategy is different from ours, the performance differs.

Fig. 14 Maxima of F-measures for MNIST, fingerprint, speech, and La-
belMe.

method has good performance.

6. Summary and Future Work

In this paper, we proposed a method for learning hyperplanes
that uses MCMC. We also examined the evaluation functions and
the sampling methods used in this learning method and evaluated
their performance. The results show that our method outperforms
existing learning methods.

Finally, let us mention the direction of future research. When
using the MCMC method for learning, the ultimate positions of
the particles do not lie at points that maximize the evaluation
function. A possible way to resolve this problem involves record-
ing the particle loci and finding out which point maximizes the
evaluation function.

c© 2014 Information Processing Society of Japan 54

Journal of Information Processing Vol.22 No.1 44–55 (Jan. 2014)

References

[1] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R. and Wu,
A.Y.: An optimal algorithm for approximate nearest neighbor search-
ing fixed dimensions, J. ACM, Vol.45, No.6, pp.891–923 (online),
DOI: 10.1145/293347.293348 (1998).

[2] Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C. and Zhang, R.: iDis-
tance: An adaptive B+-tree based indexing method for nearest neigh-
bor search, ACM Trans. Database Syst., Vol.30, No.2, pp.364–397
(online), DOI: 10.1145/1071610.1071612 (2005).

[3] Weber, R., Schek, H.-J. and Blott, S.: A Quantitative Analy-
sis and Performance Study for Similarity-Search Methods in High-
Dimensional Spaces, Proc. 24th International Conference on Very
Large Data Bases, VLDB ’98, San Francisco, CA, USA, Morgan
Kaufmann Publishers Inc., pp.194–205 (1998) (online), available from
〈http://dl.acm.org/citation.cfm?id=645924.671192〉.

[4] Indyk, P. and Motwani, R.: Approximate nearest neighbors: towards
removing the curse of dimensionality, Proc. 30th Annual ACM Sympo-
sium on Theory of Computing, STOC ’98, pp.604–613, ACM (online),
DOI: 10.1145/276698.276876 (1998).

[5] Charikar, M.S.: Similarity estimation techniques from rounding algo-
rithms, Proc. 34th Annual ACM Symposium on Theory of Computing,
STOC ’02, pp.380–388, ACM (online), DOI: 10.1145/509907.509965
(2002).

[6] Mu, Y., Chen, X., Chua, T.-S. and Yan, S.: Learning reconfigurable
hashing for diverse semantics, Proc. 1st ACM International Confer-
ence on Multimedia Retrieval, ICMR ’11, pp.7:1–7:8, ACM (online),
DOI: 10.1145/1991996.1992003 (2011).

[7] Jiang, Y.-G., Wang, J. and Chang, S.-F.: Lost in binarization: query-
adaptive ranking for similar image search with compact codes, Proc.
1st ACM International Conference on Multimedia Retrieval, ICMR
’11, pp.16:1–16:8, ACM (online), DOI: 10.1145/1991996.1992012
(2011).

[8] Wang, X.-J., Zhang, L., Jing, F. and Ma, W.-Y.: AnnoSearch: Im-
age Auto-Annotation by Search, Proc. 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition - Volume
2, CVPR ’06, pp.1483–1490, IEEE Computer Society (online), DOI:
10.1109/CVPR.2006.58 (2006).

[9] Norouzi, M. and Fleet, D.J.: Minimal Loss Hashing for Compact Bi-
nary Codes., ICML, Getoor, L. and Scheffer, T. (Eds.), Omnipress,
pp.353–360 (2011).

[10] Konoshima, M. and Noma, Y.: Locality-sensitive hashing with margin
based feature selection, arXiv:1209.5833 (2012).

[11] Noma, Y. and Konoshima, M.: Hyperplane Arrangements and
Locality-Sensitive Hashing with Lift, arXiv:1212.6110 (2012).

[12] Hastings, W.K.: Monte Carlo sampling methods using Markov chains
and their applications, Biometrika, Vol.57, No.1, pp.97–109 (1970).

[13] : THE MNIST DATABASE of Handwritten digits, available from
〈http://yann.lecun.com/exdb/mnist/〉.

[14] : Internet relay broadcast of Kawasaki-city parliament, available from
〈http://www.kawasaki-council.jp/〉.

[15] Oliva, A. and Torralba, A.: Modeling the Shape of the Scene: A Holis-
tic Representation of the Spatial Envelope, Int. J. Comput. Vision,
Vol.42, No.3, pp.145–175 (online), DOI: 10.1023/A:1011139631724
(2001).

[16] Torralba, A., Fergus, R. and Weiss, Y.: Small codes and large image
databases for recognition, Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition (2008).

Yui Noma received his B.S. in physics
from Kyoto University, Kyoto, Japan in
2003. He received his M.S. and Ph.D.
in physics from Osaka University, Osaka,
Japan in 2005, 2008. His interest was el-
ementary particle physics. His current in-
terest is data minings and machine learn-
ing.

Makiko Konoshima received her B.Eng.
degree in electronics engineering from
Yokohama National University, Japan in
1986. Her current research focuses on big
data processing and analytics.

c© 2014 Information Processing Society of Japan 55

