
IPSJ SIG Technical Report

Continuous Integration in the Development and
Operations of a Learning Management System

Ryota Fukuda1,a) Shoji Kajita2,b)

Abstract: It is always troublesome for both developers and operators at Application Service Providers (ASPs)
to upgrade their running application services. In order to handle the upgrades with only limited human re-
source at the central ICT organization of Japanese higher educational institution, we propose the use of
the continuous integration method to both the development and operations to automate the complicated
upgrade procedure. To show the effectiveness, we have developed a continuous integration environment for
our Sakai-based learning management system, using Jenkins, a continuous integration server, and Chef, an
infrastructure automation system. This paper describes our on-going practice on continuous integration from
the standpoint of a small team.

Keywords: e-Learning, Learning Management System, DevOps, Continuous Integration, Open Source, Sakai

1. Introduction

The use of ICT at higher educational institutions is be-
coming inevitable recently in any aspects of activities for
teaching, learning and research. This trend makes applica-
tion services at higher educational institutions more com-
plex and required to provide more business centric applica-
tions to support teaching, learning and research, rather than
just communication infrastructures and tools like campus-
wide network and e-mail system. Recently, the most widely
used application services for teaching and learning at higher
educational institutions is Learning Management Systems
(LMSs) and its adoption rate in the United Status is over
90%[1] and the one in Japan is over 50% according to our
recent survey for Academic Cloud Computing in Japan[2].

At Kyoto University, since April 2013, we have started
the use of Sakai Collaboration and Learning Environment

(CLE)[3], which is simply referred to as “Sakai”, to pro-
vide a Web-based LMS for students and faculty. Our Sakai
is named as “PandA (People and Academy)” by students
awarded for a total design competition of Sakai including
logo, naming and its concept (Fig. 1). The introduction
of PandA was the retirement of WebCT Campus Edition
8, which is another proprietary LMS used in the world and
supported by SCSK Corporation in Japan. The transition
from proprietary based LMS to Open Source based one also
indicates the necessity to change our development and op-
eration strategies on LMS, because Sakai is a complex Open

1 Department of Intelligence Science and Technology, Graduate
School of Informatics, Kyoto University

2 IT Planning Office, Institute for Information Management and
Communication, Kyoto University

a) rfukuda@kuis.kyoto-u.ac.jp
b) kajita@media.kyoto-u.ac.jp

Fig. 1 PandA as the Learning Management System at Kyoto
University.

Source system written in Java and has over 0.8 million LoC
(Lines of Code) divided into 50–100 pluggable modules, each
providing a tool of use for higher education, such as syllabi,
assessments, grade books and so on. The Sakai Community,
mainly based on the institutions and individuals from the
member institutions of the Apereo Foundation[4]*1, actively
develops it.

Despite the complexity of the software and the number
of its users in the university, we have only few engineers in
charge of the development and the operations of the LMS.
They have to develop tools customized for the use in the
university. In special, the adoption of Open Source soft-
ware has been increasing in order to reduce ICT costs and

*1 An umbrella organization for Open Source projects for higher
education. Currently, seven Open Source projects are actively
working in Apereo Foundation.

c© 2014 Information Processing Society of Japan 1

Vol.2014-CLE-12 No.4
2014/1/31



IPSJ SIG Technical Report

more importantly have the control of the cost, specifications
and the future by higher educational institutions[5] so that
we need to find a concrete way that is usable widely in the
community to tackle issues posed by limited resources.

In this paper, we describe our challenges for the use of
Open Source in a scarce resource envrionment and propose
the use of the continuous integration method to both the
development and operations to automate the complicated
upgrade procedure. To show the effectiveness, we have de-
veloped a continuous integration environment for our Sakai-
based learning management system, using Jenkins, a contin-
uous integration server, and Chef, an infrastructure automa-
tion system. This paper describes our on-going practice on
continuous integration from the standpoint of a small team.

2. The Problems and Our Approach

2.1 Probrems posed by current workflow

Usually, in order to get up and running a LMS like Sakai
CLE at any higher educational institutions, we have three
kinds of tasks for engineers in our section: development,
testing (quality assurance), and operations. These steps of
tasks are usually sequenced in this order and iterated several
times (Fig. 3):
Development Development is the first step that the en-

gineers write codes for the software to implement new
features and/or to fix problems. The most tidious works
at this stage is to incorporate two directional modifica-
tions (patches) at source codes: one is the results in the
Sakai Community and the other is the ones at Kyoto
University (See Fig. 2). The Sakai Community annu-
ally release the latest version and maintain two released
versions. In other words, we need to upgrade Sakai ev-
ery two years at least. The longer period we have for
development phase, the more patches we need to man-
age in the two directions (See Fig. 2).

Testing (Quality Assualance) Testing is the step to
ensure that the features are properly implemented and
the problems are correctly fixed in the development
step. If a problem is found in this phase, the process
returns to the development step and the engineers fix
the problem.

Operations Finally, in the operation step engineers de-
ploy the software and serve it to the users. If a problem
is discovered in the operation, it is also fixed in the de-
velopment step.

Through the development, testing and operations phases,
some issue tracker is usually used to manage the processes.
The Sakai Community and Kyoto University are using Jira.
However, the issue tracker is just tracking the status of is-
sues and the actual works in the three phases must be done
by engineers. When the human resources are scarce, engi-
neers must have all of tasks in the three phases and it makes
each phase longer. As the result, it costs more and more to
manage a lot of patches. Furthermore, when a problem is
found in the testing step, the longer the release cycle is, the
more difficult it is to find the change in the code base which

Development

Testing

Operations

Fig. 3 Steps of workflow.

Vendor Drop

Patch

Test

Freeze

Fig. 4 Development workflow.

introduced the problem.

2.2 Our Approach

In the real world of software development, the continous
integration has been widely used to treat these issues[6].
However, it highly depends on the development and opera-
tion evnronment so that each software or application service
must have its own continous integration environment even
if in the same organizatin.

In this paper, we propose an implementation of continu-
ous integration for Sakai CLE used for teaching and learning
at Kyoto University.

3. Proposed Implementation of CI Envi-

ronment

The overview of our implemented CI environment is de-
picted in Fig. 5. Its important components are:
• the CI server,
• the source code repository,
• and the virtual machines (VMs).

3.1 The CI Server

The CI server controls the entire system, triggered by the
submissions of patches to the repository. When a developer
submits a patch, it is applied to the source tree and then
built and tested in virtual environments.

There are several software solutions available for contin-
uous integration and deployment. Jenkins[7] we have cho-
sen is an open-source continuous integration server. It is
actively developed by the community and has many plug-

c© 2014 Information Processing Society of Japan 2

Vol.2014-CLE-12 No.4
2014/1/31



IPSJ SIG Technical Report

c/o maintenance patches

local
patches

local
patches

Sakai 2.9.0 Sakai 2.9.3

PandA
1.0

PandA
1.0.5

PandA
1.2

Upstream Releases

Sakai
SVN

ported
local

patches

Fig. 2 Two directions to catch up the latest developments in the Sakai Community and
Kyoto University.

Build Server (VM)

Sakai
SVN

patch

community
developers

local
GIT

patch

local
developers

clone checkout build

Test Server (VM)

deploy

run tests

mark patch
as verified

CI Server

Fig. 5 Our CI environment.

ins to support various development tools, including version
control systems and build automation tools and so on.

Travis CI [8] is another open-source continuous integra-
tion service. Unlike Jenkins, Travis is a hosted (or “cloud-
based”) CI system and integrated with GitHub, a special-
ized social networking service for source code management.
Travis is a rather simple system but suffice for automation
of building and testing of open-source products.

For our experiment, however, we want to automate the
deployment of the product onto our local servers as well as
automate building and testing. Thus, on-premise CI sys-
tems, such as Jenkins, are more suitable for us than hosted
CI services.

3.2 The Source Code Repository

The source code repository manages patches submitted
by the developers. The Sakai Community uses Subversion
as the version control system (VCS) to manage their source
codes. Since Subversion has centralized server-client archi-
tecture, we have to store any modifications on the existing

source codes in the repository owned by the Sakai Com-
munity in Apereo Foundation. This may, however, requires
legally appropriate actions regarding to copyrights and intel-
lectual properties by submitting Contributor License Agree-
ment. Also the centralized repository makes it difficult to
store security-sensitive data, such as server configurations,
in the VCS repository.

In order to avoid these troubles we now have our own
Subversion repository in the local environment and uses
the “vendor branch” technique that we import the original
source tree in the local repository and version control the
modifications on the tree (See Fig. 4). But with this tech-
nique, local revisions are disassociated with the upstream
repository and it becomes difficult to automatically merge
the local and upstream changes. We can overcome this tech-
nical limitation by using some distributed version control
system (DVCS), with which several repositories can share
revision history. So we choose Git as the version control
system, which is the most popularly used amongst many
existing DVCSes. We can use git-svn, a plugin to the Git,

c© 2014 Information Processing Society of Japan 3

Vol.2014-CLE-12 No.4
2014/1/31



IPSJ SIG Technical Report

to clone changes from the upstream Subversion repository
to the local Git repository.

More precisely, we use gerrit as the local Git server. gerrit
is a open-source code review system integrated with the Git
version control system. Every change pushed to the gerrit
repository is treated as a patch submission and queued for
code review. After other developers review the patch and
give the okay, the change can be merged to the source tree.
Combining with Jenkins, we can run automated tests for
every single change and verify it before it gets merged.

3.3 The VMs

We use two VMs to build and test an instance of Sakai
CLE (See Fig. 5). Vagrant [9] is used for the creation of
VMs. In order to automate the processes for building and
testing, we use Chef [10], an infrastructure automation sys-
tem. These automation are crucial for the proposed ap-
proach because the number of required steps are quite large
when we use Open Source software. For example, getting up
and running Kuali, which is another Open Source project for
administrative systems in higher educational institutions,
requires about 7,200 steps[11].

3.4 Improved workflow with CI introduced

The essence of continuous integration is automation. Au-
tomating the development routine reduces the cost of iter-
ations of development cycles and it makes us possible to
release software products in shorter spans. Unfortunately,
the Sakai code base does not have sufficient automated tests.
There are too few unit tests to cover the entire code base
and no integration tests are available.

However, we need to automate the quality assurance pro-
cedure to reduce costs for the development. In the current
implementation, we deploy nightly builds so that we can try
the latest code base and perform manual testing, instead
of introducing automated integration tests using testing au-
tomation frameworks, such as Selenium. In the PandA de-
velopment process, several technical staff has been conduct-
ing QA activities along with the Jira tickets so that such
automation for QA is crucial in a small team.

4. Summary and Future Work

In this paper we examined problems in the current work-
flows for the development and operations of an LMS in Ky-
oto University and discussed how we can improve the work-
flows by adopting continuous integration.

In the experiment, we developed a CI environment for our
own use, but the development scheme for other institutions,
which use Sakai, must not so different from ours. Hence, it
is useful for Sakai institutions if we can automate the pro-
cedure to set up a CI environment, using the infrastructure
automation systems introduced in this paper, in order to
utilize our proposed system for their development. It is also
effective for further evaluation of the proposition.

Furthermore, the automation system for deployment that
we developed runs not only in the CI environment. Since it

runs in VMs, which are automatically configured, the users
just have to prepare VM hosting system. So this can be
also utilized in development phase to check the behavior of
the software and may lower the barrier to contributing Sakai
Project.

Acknowledgments

This work is partially supported by Grant-in-Aid for Sci-
entific Research (B) (Principal Investigator: Shoji Kajita,
No. 22300288), Scientific Research (A) (Principal Investiga-
tor: Tsuneo Yamada (Professor, Open University of Japan),
No. 23240110), Scientific Research (A) (Principal Inves-
tigator: Toru Iiyoshi (Professor, Kyoto University), No.
25242017), and Scientific Research (B) (Principal Investi-
gator: Syuntaro Chida, No. 90464213).

References

[1] Kenneth C. Green, Campus Computing 2007, The 18th Na-
tional Survey of Computing and Information Technology in
American Higher Education.

[2] “Community based Approach for Building Academic Clouds
as Next-Generation ICT Environments among Universities
of Japan”, http://www.icer.kyushu-u.ac.jp/ac

[3] Sakai Project, http://www.sakaiproject.org

[4] Apereo Foundation, http://apereo.org/

[5] Paul Courant, “Software and Collaboration in Higher
Education: A Study of Open Source Software”,
http://www.campussource.de/
opensource/docs/OOSS_Report.pdf

[6] Alan W. Brown, “Enterprise Software Delivery: Bringing
Agility and Efficiency to the Global Software Supply Chain”,
Addison-Wesley Professional, July 2012.

[7] Jenkins CI, http://jenkins-ci.org

[8] Travis CI, https://travis-ci.org

[9] Vagrant, http://www.vagrantup.com

[10] Chef, http://www.getchef.com/chef/

[11] Lance Speelmon, “Kuali in the Cloud”,
http://www.youtube.com/watch?v=s-XO1Wq4MTc

c© 2014 Information Processing Society of Japan 4

Vol.2014-CLE-12 No.4
2014/1/31


