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Algorithms for Finding a Largest Common Subtree of
Bounded Degree

Tatsuya Akutsu1,a) Takeyuki Tamura1,b) Avraham A. Melkman2,c) Atsuhiro Takasu3,d)

Abstract: In this report, we consider the largest common subtree problem, which is to find a bijective mapping be-
tween subsets of nodes of two input rooted trees of maximum cardinality or weight that preserves labels and ancestry
relationship. This problem is known to be NP-hard for unordered trees. In this technical report, we consider a restricted
unordered case in which the maximum outdegree of a common subtree is bounded by a constant D. We present an
O(nD) time algorithm where n is the maximum size of two input trees, which improves a previous O(n2D) time algo-
rithm. We also present an O((H2 · 22H−1 · D2H)D−1 poly(n)) time algorithm, where H is the maximum height of two
input trees.

1. Introduction
Developing algorithms for finding a common structure be-

tween two or more given data sets is very important in com-
puter science. For tree structured data, extensive studies have
been done on finding a largest common subtree (LCST)*1 based
on a bijective mapping between subsets of nodes of the two in-
put trees which preserves labels and ancestry relationship, a map-
ping which is intimately related to the edit distance problem for
rooted trees [21]. The LCST and related problems have various
applications in bioinformatics including comparison of glycans
[5], vascular networks [19], and cell lineage data [10]. They
also have applications in comparison and search of XML data
[11] and documents processed by natural language processing
[18]. In many applications, it is required or desirable to treat
input trees as unordered trees rather than ordered trees because
the ordering of children is not uniquely determined in many cases
[5], [10], [11], [18], [19].

For the LCST and edit distance problems for ordered trees, Tai
developed an O(n6) time algorithm [16], where n is the maximum
number of nodes in the input trees. After several improvements,
Demaine et al. [6] developed an O(n3) time algorithm and showed
that this bound is optimal under a certain model.

On the other hand, the LCST and edit distance problems for
unordered trees are known to be NP-hard even for bounded de-
gree input trees [21]. Furthermore, several MAX SNP-hardness
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*1 Although a LCST is not necessarily a subgraph of the input trees, the

term is commonly used in this context.

results are known for both problems [1], [8], [20]. In order to cope
with these hardness results, approximation algorithms [1], fixed-
parameter algorithms [1], [2], [15], efficient exponential time al-
gorithms [4], and branch and bound algorithms [10], [14] have
been developed for LCST and/or edit distance problems.*2 How-
ever, none of them is yet satisfactory for handling large scale data
and thus further development is needed.

Another approach was recently proposed by Akutsu et al. [2]:
utilization of a constraint on the maximum outdegree (i.e., the
maximum number of children) of common subtrees. They de-
veloped an O(n2D) time algorithm for computing an LCST of
bounded outdegree D, where D is a constant. They also devel-
oped an O(n2) time algorithm for the case of D = 2. Constraining
the maximum outdegree of a common subtree is reasonable in
several applications because the maximum outdegree is usually
bounded by a small constant in such data as glycans [5], vascular
networks [19] and parse trees, and thus the maximum outdegree
of common trees should also be bounded by a small constant (oth-
erwise, it would not be a common structure).

In this technical report, we present an improved O(nD) time al-
gorithm.*3 The improvement is achieved by reducing the num-
ber of combinations to be searched for among the children of
each node in an LCST. All combinations are basically exam-
ined in the previous O(n2D) algorithm, whereas this number is
significantly reduced in the improved algorithm by making use
of tables to avoid redundant calculations and the property that
the parent in an LCST is uniquely determined if at least two
of their children are determined from each input tree. Fur-
thermore, we present a parameterized algorithm that works in
O((H2 · 22H−1 · D2H)D−1 poly(n)) time, where H is the maximum
height of two input trees and the degree of poly(n) does not de-

*2 LCST and edit distance problems are equivalent in optimization, but are
different in approximation and on some parameters.

*3 The algorithm was significantly simplified from that in a preliminary
version [3].

ⓒ 2014 Information Processing Society of Japan 1

Vol.2014-AL-146 No.1
2014/1/30



IPSJ SIG Technical Report

pend on D or H. Since LCST is known to be NP-hard even for
trees of height at most two [1], this result is meaningful at least
from a theoretical viewpoint.*4

2. Preliminaries
For a rooted unordered tree T = (V, E), V(T ) denotes the set

of nodes and r(T ) denotes the root of T . For a node v ∈ V(T ),
p(v) denotes the parent of v (p(v) = v if v is the root), chd(v) de-
notes the set of children of v, deg(v) denotes the outdegree of v
(i.e., deg(v) = |chd(v)|), ℓ(v) denotes the label of v where a label is
given from a finite or infinite alphabet Σ, des(v) and anc(v) denote
the sets of descendants and ancestors of v where v < des(v) and
v < anc(v), and T (v) denotes the subtree of T induced by v and its
descendants.

The LCST problem is defined via a bijective mapping between
subsets of the nodes of two input trees T1 and T2 that preserves
the ancestor-descendant relationship: if u is mapped to v and u′

to v′, then u is an ancestor of u′ in T1 iff v is an ancestor of v′ in
T2. Let f (u, v) denote the weight for a matched node pair (u, v)
by a mapping M. Then the LCST problem is to find a bijective
mapping M maximizing W(M) =

∑
(u,v)∈M f (u, v) (see Fig. 1).

If we define f (u, v) by f (u, v) = del(u)+ins(v)− sub(u, v) where
del(u), ins(v), and sub(u, v) are the costs for deletion of a node u,
insertion of a node v, and substitution of the label of u by the label
of v, respectively, it is known [21] that the edit distance (i.e., the
minimum cost sequence of editing operations that transforms T1

to T2) is given by∑
u∈V(T1)

del(u) +
∑
v∈V(T2)

ins(v) −W(M).

If we define the weight function by f (u, v) = 1 if ℓ(u) = ℓ(v),
and f (u, v) = 0 otherwise, the LCST problem is to find a com-
mon subtree (based on a bijective mapping) with the maximum
number of nodes. In this technical report, we consider a gen-
eral weight function f (u, v) and thus nodes with different labels
can match each other. However, as mentioned in Section 1, we
impose the constraint that the maximum outdegree of a common
subtree is at most D, that is, the subtree of T1 induced by the
nodes appearing in M must have maximum outdegree less than
or equal to D. Therefore, the LCST problem with maximum out-
degree D is to find a mapping M with the maximum weight satis-
fying this condition.

In Section 4, we put on a node v ∈ V(T1), or a node w ∈ V(T2),
the constraint that it does not appear in any mapping giving a
common subtree. Imposing this constraint is equivalent to setting
f (v, y) = −∞ for all nodes y ∈ V(T2), or f (x, w) = −∞ for all
nodes x ∈ V(T1). We call such a node inactive.

3. Previous Algorithms
In this section, we briefly review the previous algorithms for

finding an LCST of bounded outdegree D (see [2] for details)
since our proposed O(nD) time algorithm is based on them.

*4 In a preliminary version [3], we claimed that computation of LCST of
bounded outdegree D is W[1]-hard. However, there is a crucial error in
the proof and it is still unclear whether the problem is W[1]-hard for trees
of unbounded height.

Let S (x, y) be the weight of an LCST of T1(x) and T2(y) of
bounded outdegree D. Then, S (x, y) can be computed by the fol-
lowing dynamic programming procedure (the initialization part is
omitted):

S (x, y) = max


maxh=0,...,D

{
maxx1 ,...,xh∈des(x),y1 ,...,yh∈des(y)[(∑h

i=1 S (xi, yi)
)
+ f (x, y)

]}
,

maxy1∈des(y) S (x, y1),
maxx1∈des(x) S (x1, y),

(1)

where xi < des(x j)∪ {x j} and yi < des(y j)∪ {y j} must be satisfied
for any i , j, and such tuples as (x1, . . . , xh) and (y1, . . . , yh) are
called consistent. It is straightforward to see that this algorithm
works in O(n2D+2) time.

This algorithm was improved by using the least common
ancestors (LCAs). Let lca(z1, z2, . . . , zh) denote the LCA of
z1, z2, . . . , zh. Then, all S (x, y) can be computed by the follow-
ing dynamic programming procedure, where it can be made to
work in O(n2D) time by modifying the innermost ‘for’ loop [2]:

Procedure LcaBasedLCS T (T1,T2,D)
for all (x, y) ∈ V(T1) × V(T2) do S (x, y)← f (x, y);
for all h ∈ {1, . . . ,D} do

for all consistent tuples (x1, . . . , xh) do
xa ← lca(x1, . . . , xh);
for all consistent tuples (y1, . . . , yh) do
ya ← lca(y1, . . . , yh);
for all (x, y) with x ∈ anc(xa) ∪ {xa}
and y ∈ anc(ya) ∪ {ya} do

S (x, y)← max{S (x, y), S (x1, y1)
+ · · · + S (xh, yh) + f (x, y)};

4. Improved Algorithm
4.1 Preliminaries

In this section, we present some preliminary considerations
that will be useful in the development of an O(nD) time algorithm
for computing an LCST of bounded outdegree D.

The following lemma allows attention to be restricted to binary
input trees.
Lemma 4.1. If an LCST of bounded outdegree D can be com-
puted in O(n f (D)) time for T1 and T2 of bounded outdegree 2
where D is a constant, then an LCST of bounded outdegree D
can be computed in O(n f (D)) time for any T1 and T2.

Proof. We modify each node v of outdegree d > 2 by d−1 nodes
v1, . . . , vd−1 with outdegree 2 as shown in Fig. 2. Let T ′1 and T ′2
be the resulting trees. Then, the maximum outdegree of T ′1 and
T ′2 is 2. We inactivate v2, . . . , vd−1 (i.e., v2, . . . , vd−1 cannot appear
in a mapping). Then, it is straightforward to see that an LCST
of bounded outdegree D for T1 and T2 has the same weight as an
LCST of bounded outdegree D for T ′1 and T ′2 has.

Since the number of nodes in each T ′i is at most 2n − 3 < 2n,
the total computation time is

O((2n) f (D)) = O(2 f (D) · n f (D)) = O(n f (D))
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for any constant D. �

Accordingly, we assume below that the maximum outdegree
of input trees is 2. Furthermore, we can assume w.l.o.g. (with-
out loss of generality) that every internal node has outdegree 2.*5

We also assume w.l.o.g. that every internal node of LCST has
outdegree D. We can get such a tree with the same score as the
optimal one by adding D children to each internal node of T1 and
T2 and letting f (x, y) = 0 for any of such children pairs (x, y) and
letting f (x, y) = −∞ if exactly one of x and y is such a node (and
then applying Lemma 4.1). The desired trees can be obtained by
removing nodes corresponding to added nodes. Although this in-
creases the size of input trees, it does not increase the degree of
the polynomial in n.

In the development of the algorithm it will be convenient to
employ the notion of a consistent set of descendants of a node.
Definition 4.2. A set of D descendants {y1, . . . , yD} of a node y
is consistent if none of the descendants is an ancestor of another
descendant, and y is the LCA of {y1, . . . , yD}.

In order to enumerate all possible sets of consistent descen-
dants we will use binary trees with D leaves. We call such a tree
a skeleton tree and denote it T s (see also Fig. 3). For our purposes
it will be sufficient to consider only consistent descendants of y
that are obtained as follows.
( 1 ) Let m be any mapping of the internal nodes of T s to nodes

of T that maps the root of T s to y, and preserves ancestry
relationships.

( 2 ) For each leaf ℓi of T s, if ℓi is the left son of internal node p
set yi = lson(m(p)), and otherwise set yi = rson(m(p)),

where lson(x) and rson(x) denote the left and right children of x,
respectively. The totality of sets of D consistent descendants of
y obtained in this manner will be denoted CD(y). For example,
C2(y) is the singleton containing the set {lson(y), rson(y)}. For
simplicity we let C1(y) be the singleton containing the set {y}.

Noting that a given skeleton tree with D leaves has only D − 1
internal nodes, and that the root of the skeleton tree has to be
mapped to y, yields the following result.
Lemma 4.3. For any node y the number of sets of D consistent
descendants of y obtained as above is O(nD−2), i.e. |CD(y)| =
O(nD−2).

4.2 Main algorithm
We turn now to the description of the improved LCST algo-

rithm. It computes, successively and bottom-up, the following
generalization of S (x, y).
Definition 4.4. Let k ≥ 2, and let Πk be the set of all permuta-
tions π on {1, . . . , k}. Given a node x in T1 and a set of nodes
Y = {y1, . . . , yk} ∈ Ck(y), with y ∈ T2, define

Fk(x; Y) = max
{x1 ,...,xk}∈Ck(x)

max
π∈Πk

k∑
i=1

S (xi, yπ(i)).

For simplicity we set F1(x; {y}) =

max{S (lson(x), y), S (rson(x), y)}.
The value we wish to compute, S (x, y), can be obtained from

*5 This can be done by adding a dummy child w (i.e., w is inactive) to each
node u of outdegree 1.

FD by

S (x, y) = max


max{S (lson(x), y), S (rson(x), y)},
max{S (x, lson(y)), S (x, rson(y))},
f (x, y) +maxY∈CD(y) FD(x; Y).

(2)

To compute FD we use for k ≥ 2 the recursion formula

Fk(x; Y) = max
Z⊂Y,1≤|Z|= j≤k−1

{F j(lson(x); Z)

+Fk− j(rson(x); Y \ Z)}. (3)

In particular, the base case k = 2 is given by

F2(x; {y1, y2}) = max{ S (lson(x), y1) + S (rson(x), y2),

S (lson(x), y2) + S (rson(x), y1)}.

Next we analyze the time required by a bottom-up implementa-
tion of this dynamic programming algorithm. Observe first of all
that once the necessary values of F j have been computed, equa-
tion (3) takes time that depends only on k, i.e. only on D and not
on n. Computing Fk(x; Y) for all x and all Y with |Y | ≤ D − 1
takes therefore in all O(nD) time (with the constant depending on
D).

Consider now the total time taken up by the computations re-
sulting from equation (2). For fixed x and y the third line exam-
ines |CD(Y)| values of FD, each of which is computed in constant
time, using equation (3), from the values of FD−1. According to
Lemma 4.3, |CD(y)| = O(nD−2). Hence the total time necessary
for computing S (x, y) for all x and y is O(nD).

In summary, the above considerations prove the following The-
orem.
Theorem 4.5. A largest common subtree of bounded outdegree
D can be computed in O(nD) time for fixed D.

Readers may think that if the weight of a LCST does not
change if the degree bound is changed from D to D + 1, then it is
an optimal LCST without degree bound. However, it is not diffi-
cult to construct a counterexample. Consider the example shown
in Fig. 4. We consider a weight function defined by f (a, a) = 2,
and f (x, y) = 1 for any other (x, y). Then, the weight of an LCST
is 4 for D = 2 and D = 3, but is 5 for D = 4.

We have so far considered subtrees based on bijective map-
pings (i.e., subtrees obtained by deletions and substitutions of
nodes of arbitrary degree). We can also consider the problem of
finding common homeomorphic subtrees (for which only nodes
with outdegree at most 1 may be deleted) while imposing the
same degree constraints. Although the original problem is known
to be solvable in polynomial time [17], the imposition of the same
degree constraints enables a speeding up of the running time as
follows.
Theorem 4.6. Given trees T1 and T2, on n1 and n2 nodes re-
spectively, a largest common homeomorphic subtree of bounded
outdegree D can be computed in time O(Dn1n2).

Proof. Although the algorithms of [12] are phrased for unrooted
trees they can be easily be adapted to take advantage of the fact
that the trees are rooted, and that a bounded degree largest com-
mon homeomorphic subtree is required, as follows.

Let S D(x, y) be the weight of a largest common homeomorphic
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subtree of bounded outdegree D between T1 and T2. Denote by
C(x) the set of children of x in its tree. The recursion for S (x, y)
is

S D(x, y) = max{ max{S D(x, v) : v ∈ C(y)},
max{S D(u, y) : u ∈ C(x)},
max{MWMD(C(x),C(y)) + f (x, y)}
}.

Here MWMD(C(x),C(y)) is the weight of the maximum weight
matching of size D between C(x) and C(y). The computation
of this weight can be reduced to a min-cost max-flow problem
on the flow network with vertices s1, s2, t in addition to C(x)
and C(y), and the following edges: (s1, s2) with capacity D and
cost 0, (s2, u), u ∈ C(x) and (v, t), v ∈ C(y) all with capacity 1
and cost 0, and (u, v) with capacity 1 and cost −S D(u, v) for all
u ∈ C(x), v ∈ C(y). The number of edges of the network is
dxdy + 1 + dx + dy where dx is the outdegree of x, so that the
time for constructing this network is O(dxdy). By adapting the ar-
guments of [12] it can be shown that the min-cost flow of size D
can be found by repeatedly augmenting the flow by 1 unit along
a min-cost path D times, and that the time required is O(Ddxdy).

Thus the time taken by a dynamic programming implementa-
tion of the recursion is

O(
∑

x∈T1 ,y∈T2

Ddxdy) = O(Dn1n2).

�

5. Parameterized Algorithm
In this section, we present a parameterized algorithm for LCST

that works in O((H2 · 22H−1 · D2H)D−1 poly(n)) time, where H is
the maximum height of two input trees and the degree of poly(n)
does not depend on D or H.

It is to be noted that if the size of an alphabet Σ is also consid-
ered as a parameter, there exists an almost trivial parameterized
algorithm as below.
( 1 ) Enumerate all possible trees under constraints on D,H,Σ
( 2 ) For each tree, check whether it is a subtree of both input trees

using tree inclusion.
It is known that tree inclusion (i.e., deciding whether T2 is ob-
tained from T1 using only insertion operations) for unordered
trees can be solved in O(22D poly(n)) time [9]. For our param-
eterized algorithm the tree inclusion has to be modified so as
to take into account the cost of substitutions and insertions. As
shown in [13], the modified tree inclusion algorithm also runs in
O(22D poly(n)) time. Since the number of possible trees does not
depend on n, the above algorithm works in O( f (D,H, |Σ|)poly(n))
time.

Hereafter, we assume that Σ is not fixed.

5.1 Maximum Weight Bipartite Matching with d-Edges
Let G(U ∪ V; E) be a bipartite graph in which each edge

e = (u, v) has weight w(e) = w(u, v). For a set of edges M ⊆ E,
we define w(M) =

∑
e∈M w(e). We compute a matching M ⊆ E

with maximum w(M) under the condition that |M| = d, where d

is a given constant.
Although this problem can be solved in polynomial time with

respect to |E| and d, we present a fixed parameter version as an in-
troduction to the fixed-parameter algorithm for LCST. Let MOPT

denotes an optimal solution.
The following observations are important (see also Fig. 5).

Proposition 5.1. Let e = (u, v) ∈ E be an edge with highest
weight. Then, either e is an edge in an MOPT or both u and v are
endpoints of edges in an MOPT .
Proposition 5.2. Let e = (u, v) ∈ E be an edge with highest
weight. Suppose that e < MOPT . Let (u, v1), . . . , (u, vd) be edges
in E connecting to u with 2nd to (d+1)-th highest weights (recall
that the highest one is (u, v)). Then, one of these edges appears in
some optimal solution.

Proof. Assume that (u, v0) appears in MOPT and any of (u, vi)
(i ∈ {1, . . . , d}) does not appear in MOPT . Since MOPT consists of
d edges, there is at least one vi (i ∈ {1, . . . , d}) which does not ap-
pear in MOPT . By removing (u, v0) from MOPT and adding (u, vi)
to MOPT , we could increase or keep the weight of the matching
(see also Fig. 5), which contradicts to the assumption. �

These propositions lead to the following algorithm, where
NE((u, v)) = {(u′, v′)|(u′, v′) ∈ E and (u′ = u or v′ = v)}. It is
straight-forward to check that this algorithm works in O((d +
1)d poly(|E|)) time.

Procedure F ptBipartite(M, E, d)
Let e = (u, v) be an edge in E with the highest weight;
if d = 1 then return w(M ∪ {(u, v)});
w← F ptBipartite(M ∪ {e}, E − NE(e), d − 1);
for all vi ∈ {v1, . . . , vd} do
w1 ← FPTbipartite(M ∪ {(u, vi)}, E − NE((u, vi)), d − 1);
if w < w1 then w← w1;

return w.

5.2 FPT-Algorithm
In the following, for a node u in T , we let Anc(u) = anc(u)∪{u}

and Des(u) = des(u)∪{u}, and h(u) and d(u) denote the height and
depth of u, respectively (h(u) = 0 if u is a leaf, and d(u) = 0 if
u is the root). For a tree T , h(T ) denotes the height of T (i.e.,
h(T ) = maxu∈V(T ) h(u)). Let S 0(x, y) denote the weight of an
LCST of T1(x) and T2(y) under the condition that x is mapped
to y. In the following, the score means S 0(x, y).

The basic strategy of the FTP algorithm for LCST, described
below, is the same as that of the basic one described by equa-
tion (1) in Section 3. However, instead of examining all possible
x1, . . . .xd ∈ des(x) and y1, . . . .yd ∈ des(y), the only candidate
d-tuples that are examined are ones generated by a procedure re-
mindful of Section 5.1, but rather more complex and involving
some new ideas.

Procedure F ptBdhLCS T (T1,T2,D)
for all leaf pairs (x, y) ∈ L(T1) × L(T2) do

S 0(x, y)← f (x, y);
for all other pairs (x, y) ∈ V(T1) × V(T2) do
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(in a bottom up manner)
S 0(x, y)← f (x, y) +maxd=0,...,D{

max((x1 ,y1),...,(xd ,yd))∈CandTuples(T1(x),T2(y),d)[
∑d

i=1 S 0(xi, yi)]};
return maxx,y S 0(x, y).

The time complexity of the procedure depends on
the size of the set of candidate tuples generated by
CandTuples(T1(x), T2(y), d). If the size of this set is bounded
by f (D,H) and the time required for generation of this set is
O( f (D,H)poly(n)) where H is the maximum height of two input
trees and n = max(|V(T1)|, |V(T2)|), the total time complexity
is also O( f (D,H)poly(n)). Furthermore, if the set of candidate
tuples always contains at least one tuple consisting of children of
(x, y) in some LCST then it is clear that the procedure is correct.

Next, we describe how to generate a set of candidate d-tuples.
Let V=b(T ) and T≤b denote the set of nodes at depth b in T
and the subtree of T induced by the nodes of depth at most b,
respectively. Basically, a set of candidate tuples is generated
by applying the approach employed in F ptBipartite(M, E, d) to
V=b1 (T1) and V=b2 (T2) for all pairs of b1 ∈ {1, 2, . . . , h(T1)} and
b2 ∈ {1, 2, . . . , h(T2)}. However, since many nodes may become
unavailable once an ancestor or descendant node appears in an
optimal d-tuple, we need to keep many more node pairs.

Suppose that we are trying to find a d-tuple
⟨(x1, y1), . . . , (xd, yd)⟩ that maximizes

∑
S 0(xi, yi), the core

part of F ptBdhLCS T (T1,T2,D). We call such a d-tuple an
optimal d-tuple (for (x, y) and d). Following is the procedure to
generate a set of candidate d-tuples, where we use T 1 and T 2

for the trees from which the candidates are selected, in order to
distinguish them from the original input trees T1 and T2 (T 1 and
T 2 are subtrees of T1 and T2, respectively).

Procedure CandTuples(T 1,T 2, d)
if |V(T 1)| = 1 or |V(T 2)| = 1 then return {};
(x, y)← argmax(x,y)∈(V(T 1)−{r(T 1)})×(V(T 2)−{r(T 2)})S

0(x, y);
if d = 1 then return {(x, y)};
Q← {};
for b1 = 1 to h(T 1) do

for b2 = 1 to h(T 2) do
R← CandPairs(T 1

≤b1
,T 2
≤b2

);
for all (x, y) ∈ R do

P← CandTuples(T 1 ⊖ x,T 2 ⊖ y, d − 1);
Q← ({(x, y)} × P) ∪ Q;

return Q.

Let us briefly explain the procedure (see also Fig. 6). Consider
the case of |V(T 1)| > 1, |V(T 2)| > 1, and d > 1, the other cases
being straightforward. For all depth pairs (b1, b2), we generate
a set R of pairs each of which is a candidate for participation in
an optimal d-tuple. For each candidate pair in R, we recursively
search for candidates for the remaining d − 1 pairs. Note that if x
appears in a pair in a d-tuple, none of its ancestors or descendants
can appear in the remaining d − 1 pairs. Therefore, denoting by
T ⊖ u the tree obtained by deleting Anc(u) ∪ des(u) − {r(T )}, the
recursive call is made on T 1 ⊖ x and T 2 ⊖ y. For each depth pair

(b1, b2), R is analogous to the set {(u, v), (u, v1), (u, v2), . . . , (u, vd)}
in F ptBipartite(M, E, d), although it contains many more pairs.

In order to describe CandPairs(T 1,T 2), we define some terms
(see Fig. 7). For a tree T , let V̂(T ) be a set of nodes each of
which has a descendant whose depth in T is h(T ). Let u ∈ V̂(T )
be a node at depth b = h(T ) − h in T . The set of leaves of
depth h in T (u) will be called a level-h block (headed by u),
and will be denoted B(u). In particular, a leaf of depth h is a
level-0 block, where we identify a leaf with the set consisting
of only this leaf. We identify a set of pairs between B(r(T 1))
and B(r(T 2)) with a set of edges between B(r(T 1)) and B(r(T 2)).
For a node pair (x′, y′) ∈ V(T 1) × V(T 2) and a set of edges P,
deg(B(x′), B(y′), P) denotes the number of edges between B(x′)
and B(y′) in P. If P is clear from the context, we omit P and
simply write deg(B(x′), B(y′)). We impose the constraint that
deg(B(x′), B(y′), P) ≤ g(h(x′), h(y′))dh(x′)+h(y′) for any node pair
(x′, y′) ∈ V̂(T 1) × V̂(T 2), where g(i, j) is given by

g(i, j) =

 1 if i = 0 or j = 0,
g(i, j − 1) + g(i − 1, j) otherwise.

Thus g(i, j) ≤ 2i+ j−1 for i + j ≥ 1.
The procedure CandPairs(T 1,T 2), whose pseudocode follows

below, greadily adds edges (i.e., pairs) between B(r(T 1)) and
B(r(T 2)) (i.e., between leaves of depth h(T 1) in T 1 and leaves
of depth h(T 2) in T 2), in descending order of scores under some
degree constraints (see Fig. 8).

Procedure CandPairs(T 1,T 2)
P← {};
for all pairs (x, y) ∈ B(r(T 1)) × B(r(T 2))
in descending order of S 0(x, y) do

for all pairs (x′, y′) ∈ V̂(T 1) × V̂(T 2) do
if deg(B(x′), B(y′), P ∪ {(x, y)})
> g(h(x′), h(y′))dh(x′)+h(y′) then

skip to next (x, y);
P← P ∪ {(x, y)};

return P.

5.3 Analysis
We begin with analysis of the time complexity.

Proposition 5.3. F ptBdhLCS T (T1,T2,D) works in O((H2 ·
22H−1 · D2H)D−1 poly(n)) time.

Proof is omitted in this version.

Next, we present a key lemma showing that CandPairs(T 1,T 2)
does not miss a required pair. In the following, MOPT means
an optimal d-tuple for the original trees (i.e., T1(x), T2(x) in
F ptBdhLCS T (T1,T2,D)), where a tuple can be regarded as a set
of pairs of nodes.
Lemma 5.4. If there exists a pair (x0, y0) ∈ MOPT such
that (x0, y0) ∈ B(r(T 1)) × B(r(T 2)), then P outputted by
CandPairs(T 1,T 2) must contain (x0, y0) or (x′0, y

′
0) ∈ M′OPT ,

where M′OPT is another (or the same) optimal d-tuple (for the
original trees).
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Proof is omitted in this version.

Theorem 5.5. LCST of bounded outdegree D can be computed
in O((H2 ·22H−1 ·D2H)D−1 poly(n)) time, where H is the maximum
height of two input trees.

Proof. We show by mathematical induction that Q outputted by
CandTuples
(T 1,T 2, d) contains at least one optimal d-tuple for (r(T 1), r(T 2))
if it exists.

When d = 1, an optimal pair (x, y) is clearly contained in Q
(because Q = {(x, y)}).

Suppose d > 2. Let (x, y) be a pair in an optimal d-tuple Mopt,
where d(x) = b1 and d(y) = b2. Lemma 5.4 states that P out-
putted by CandPairs
(T 1
≤b1
,T 2
≤b2

) contains (x′, y′) such that (x′, y′) ∈ MOPT or (x′, y′) ∈
M′OPT , where M′OPT is another optimal d-tuple, d(x′) = b1, and
d(y′) = b2. Then, the remaining d − 1 pairs must be found in
the following recursive calls by the assumption of mathematical
induction.

Therefore, Q outputted by CandTuples(T 1,T 2, d) contains an
optimal d-tuple. Since an optimal d-tuple is not missed for any
d = 0, 1, . . . ,D, F ptBdhLCS T (T1,T2,D) works correctly. By
combining with Prop. 5.3, we have the theorem. �

It is left as an open problem to decide whether the bounded
degree LCST problem without the height constraint is fixed-
parameter tractable or W[1]-hard.
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Fig. 1 Example of an LCST under the weight function giving the maximum number of nodes (i.e., f (u, v) = 1 if ℓ(u) = ℓ(v), and f (u, v) = 0 otherwise) and the
outdegree constraint of D = 3. The corresponding mapping M is shown by dashed curves. If D = 4, a node labeled f can be added as a child of the left
child of the root of LCST.
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Fig. 2 Transformation of a high outdegree node into nodes with outdegree 2.
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Fig. 3 Example of a skelton tree T s and a mapping m. Dotted arrows represent m(p), and dashed arrows represent the resulting mapping between leaves of T s

and {y1, . . . , yD}, where D = 4 in this example.
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Fig. 4 Example for LCST under different degree bounds.
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Fig. 5 Illustration of the proof of Prop. 5.2, where d = 4 in this example.
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Fig. 6 Illustration of CandTuples(T 1, T 2, d). R is chosen from pairs between depth b1 nodes in T 1 and depth b2 nodes in T 2, where all depth pairs are examined.
For each (x, y) ∈ R, the remaining d − 1 pairs are searched between gray regions.
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Fig. 7 Illustration for degree constraints in CandPairs(T 1
≤3, T

2
≤3). In this example, deg(B(x1), B(y2), P) = 2, deg(B(x1), B(y3), P) = 3, deg(B(x2), B(y1), P) = 2,

deg(B(x2), B(y2), P) = 5, deg(B(x2), B(y3), P) = 8, deg(B(x3), B(y3), P) = 17, deg(B(x4), B(y2), P) = 0, and deg(B(x4), B(y3), P) = 2, where curved edges
denote those in the current P. Note that this figure does not illustrate the procedure itself.
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≤1, T

2
≤1) for d = 2. The score is attached to each pair (i.e., each edge) where edges with score 0 are omitted. Bold edges are

included in P but dashed edges are not included in P. Since 2d2 = 8, 8 edges are selected.
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