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The matching of a bipartite graph is a structure that can be seen in various assignment
problems and has long been studied. The semi-matching is an extension of the matching for
a bipartite graph G = (U ∪ V, E). It is defined as a set of edges, M ⊆ E, such that each
vertex in U is an endpoint of exactly one edge in M . The load-balancing problem is the
problem of finding a semi-matching such that the degrees of each vertex in V are balanced.
This problem is studied in the context of the task scheduling to find a “balanced” assignment
of tasks for machines, and an O(|E||U |) time algorithm is proposed. On the other hand, in
some practical problems, only balanced assignments are not sufficient, e.g., the assignment
of wireless stations (users) to access points (APs) in wireless networks. In wireless networks,
the quality of the transmission depends on the distance between a user and its AP; shorter
distances are more desirable. In this paper, We formulate the min-weight load-balancing
problem of finding a balanced semi-matching that minimizes the total weight for weighted
bipartite graphs. We then give an optimal condition of weighted semi-matchings and propose
an O(|E||U ||V |) time algorithm.

1. Introduction

Finding a maximum matching in an undi-
rected graph is one of the most traditional prob-
lems in the field of combinational optimization
and has been intensively studied 3). A match-
ing is a set of edges sharing no vertices with
each other. Actually, the maximum matching
problem for bipartite graphs is one of the most
classic problems and is known to have simple
efficient algorithms 6),7).

In this paper, we are concerned with a vari-
ation of the matching problem on a bipartite
graph G = (U ∪V, E), which is called the semi-
matching problem. A semi-matching is defined
as a set of edges, M ⊆ E, such that each ver-
tex in U is an endpoint of exactly one edge in
M . Suppose U and V represent set of tasks and
set of machines, respectively. An edge between
a task and a machine shows that the machine
can process the task. In this setting, a semi-
matching gives an assignment of the tasks to the
machines. In such an assignment problem, find-
ing a balanced assignment is often considered
under the assumption that machines work in-
dependently in parallel 2). This problem can be
interpreted as the load-balancing problem, that
is, the problem of obtaining a semi-matching
in which the degrees of each V vertex are bal-
anced 5). For the problem, an algorithm which
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runs in O(|E||U |) time is proposed.
Although the above problem is studied for

unweighted graphs, some assignment problems
should be considered under the setting with
weights. As an example, we consider the prob-
lem of assigning wireless stations (users) to ac-
cess points (APs) in wireless networks. A bal-
anced assignment of users to APs is appropri-
ate in wireless networks, otherwise users con-
nected to an overloaded AP cannot expect ef-
fective communication. However the transmis-
sion quality also depends on the distance be-
tween a user and its AP. This implies that only
balanced assignments do not always guarantee
high-quality communication, and we also need
to consider a goodness measure of the commu-
nication quality.

In considering the above discussion, we for-
mulate the problem of finding a balanced semi-
matching in which the total weight is mini-
mized for weighted bipartite graphs, called the
minimum weight load-balancing problem. We
give an optimal condition of min-weight bal-
anced semi-matchings and then propose an
O(|E||U ||V |) time algorithm.

It should be noted that the objective of
our problem is not to minimize the maxi-
mum weighted cost (load) of the semi-matching
but to minimize the total weight of the bal-
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anced semi-matching. (The “balanced” is in
terms of the (unweighted) degrees.) In pass-
ing, the former problem is equivalent to the
restricted scheduling of unrelated parallel ma-
chines, which is known to be NP-hard 8). This
remains to be NP-hard even if the degree of
every vertex in U is exactly 2, because the
graph orientation problem 1), a special case of
the semi-matching by regarding the edges of the
orientation as U , is NP-hard.

The rest of the paper is organized as follows.
Section 2 introduces the load-balancing prob-
lem and an algorithm proposed by Harvey, et
al. 5). In Section 3, we first formulate the min-
weight load-balancing problem. We then dis-
cuss an optimal condition of the weighted bal-
anced semi-matching. Based on this condition,
we propose an algorithm. Section 4 concludes
the paper.

2. Load-Balancing Problem

2.1 Preliminaries
Let G = (U ∪ V, E) be a simple bipartite

graph, where U and V denotes a set of vertices
and E ⊆ U × V denote a set of edges between
U and V . Throughout the paper, let m = |E|,
n1 = |U |, n2 = |V | and n = n1 + n2 for the
input graph. By {u, v} for u ∈ U and v ∈ V
we denote the edge with ends in u and v. Let
δ(v) = {{u, v} ∈ E} and deg(v) = |δ(v)| for
a vertex v ∈ V , that is, δ(v) represents a set
of edges having a vertex v as an endpoint and
deg(v) is the degree of a vertex v. Similarly,
δ(u) and deg(u) are defined for a vertex u ∈ U .

A semi-matching M ⊆ E is defined as a set
of edges such that each vertex in U is an end-
point of exactly one edge in M . Edge e ∈ M
and e /∈ M are called a matching edge and a
non-matching edge, respectively. Let δM (v) =
{{u, v} ∈ M} and degM (v) = |δM (v)| for a
semi-matching M . We similarly use δM (u) and
degM (u) for u ∈ U .

Given a semi-matching M , we define
costM (v) = deg2

M (v) as the cost of a vertex
v ∈ V . The total cost of a semi-matching M is
defined as T (M) =

∑
v∈V costM (v).

2.2 Load-Balancing Problem
The load-balancing problem 5) is given as fol-

lows:
The Load-Balancing Problem
Input: A simple bipartite graph G =

(U ∪ V, E),
Output: A semi-matching M ⊆ E

minimizing the total cost T (M).

T (M) = 14 T (P ⊕ M) = 12

Fig. 1 Example of the switching operation along a
cost-reducing path P .

We will call a semi-matching M minimizing
T (M) a balanced semi-matching from here on.

The load-balancing problem can be repre-
sented as restricted cases of scheduling on un-
related machines. If we respectively regard U ,
V as a set of tasks and machines, a balanced
semi-matching M corresponds to a balanced as-
signment of tasks for machines.

2.3 Properties of Balanced Semi-
Matchings

We introduce paths that characterize the op-
timality of balanced semi-matchings and their
properties.

2.3.1 Alternating Path
For a given semi-matching M in G, define an

alternating path as a sequence of edges P =
({v1, u1}, {u1, v2}, . . . , {uk−1, vk}) with vi ∈ V ,
ui ∈ U , and {vi, ui} ∈ M for each i. For conve-
nience, we treat an alternating path as a se-
quence of vertices P = (v1, u1, . . . , uk−1, vk).
For the path P , let P denote the path of its
reverse order, that is, P = (vk, . . . , v1).

We define the notation A ⊕ B as the sym-
metric difference of sets A and B; i.e. A⊕B =
(A \ B) ∪ (B \ A). If P is an alternating path
with respect to a semi-matching M , then we can
obtain a new semi-matching P ⊕ M by switch-
ing matching and non-matching edges along P .
This switching operation decreases the degree
of v1 by one and increases the degree of vk by
one, but does not affect the degrees of any other
vertices.

2.3.2 Cost-Reducing Path
In an alternating path P = (v1, . . . , vk) with

respect to M , if degM (v1) > degM (vk)+1 then
P is called a cost-reducing path. This is be-
cause by switching edges along a cost-reducing
path P , the total cost T (M) decreases literally;
that is, T (P ⊕ M) < T (M). The following
Eq. (1) shows the correctness of that. Figure 1
shows an example of a cost-reducing path and
its switching operation, where bold lines repre-
sent the matching edges, and dotted lines rep-



Vol. 48 No. 10 Optimal Balanced Semi-Matchings for Weighted Bipartite Graphs 3333

Algorithm ASM1:
Step 0: Set a set of edges M = ∅, a

set of vertices S = U .
Step 1: Select a vertex u ∈ U from

S and let S = S \ {u} if S �= ∅.
Otherwise output M .

Step 2: Build an alternating search
tree T rooted at u, where edges in
M are directed from V to U and
edges not in M are directed from U
to V .

Step 3: Find a path P = (u, . . . , v)
such that degM (v) is as small as
possible in the tree T . Such a path
P is called an augmenting path.

Step 4: ExtendM by switchingmatch-
ing and non-matching edges along
an augmenting path P , and go to
Step 1.

Fig. 2 Procedure of ASM1.

resent the non-matching edges. By switching
the matching and non-matching edges along the
arrow direction (left), we obtain a new semi-
matching (right). Throughout the paper, we
use a similar manner in the figures.

T (M) − T (P ⊕ M)
= 2(degM (v1) − degM (vk) − 1) (1)

2.3.3 Optimality of Balanced Semi-
Matchings

The following theorem about the optimality
of balanced semi-matchings is proved in Ref. 5).

Theorem 1 5) A semi-matching M is a
balanced semi-matching if and only if no cost-
reducing path with respect to M exists. �

We immediately have the next Theorem from
the proof of Theorem 1, by utilizing the convex-
ity of the quadratic function cost.

Theorem 2 If a semi-matching M is a
balanced semi-matching then maximum degree
maxv∈V {degM (v)} is minimized. �

2.4 Algorithm: ASM1

We introduce an algorithm ASM1
5) that

solves the load-balancing problem in Fig. 2.
ASM1 is a variation of Hungarian Algorithm 7)

that is originally used to find a maximum bi-
partite matching.

The following lemma and theorem were
proved about the operation of ASM1.

Lemma 3 5) No cost-reducing path is cre-
ated in G while ASM1 executes. �

Theorem 4 5) ASM1 produces a balanced

semi-matching M in O(mn1) time. �

3. Min-Weight Load-Balancing Prob-
lem

3.1 Preliminaries for Our Problem
In this section, we consider the semi-

matching problem for the weighted simple bi-
partite graph G = (U ∪ V, E, w), where w de-
notes a positive weight function w : E → R+.
Each edge {u, v} ∈ E has a weight w({u, v}).

For a given semi-matching M , we define
w(M) as the total weight, that is to say,
w(M) =

∑
{u,v}∈M w({u, v}). For an alternat-

ing/augmenting path P in M , the weight incre-
ment wP is defined as follows:

wP =
∑

e∈P\M

w(e) −
∑

e∈P∩M

w(e)

wP represents the increasing amount of total
weight from w(M) by switching operation along
the alternating/augmenting path P .

We give some definitions of fundamental
paths. In an alternating path P = (v1, . . . , vk),
if vi �= vj for ∀vi,

∀ vj(i �= j) then P is called a
simple path. If the initial vertex v1 is equal to
the end vertex vk but no other vertices are equal
to each other, we call P a simple cycle. In P =
(w1, w2, . . . , wk−1, wk), moreover, we define a
subpath as P (wi, wj) = (wi, . . . , wj) for 1 ≤
i < j ≤ k. P1 · P2 represents the concatenation
of two paths for P1 = (wi, . . . , wj) and P2 =
(wj , . . . , wk), i.e., P1 ·P2 = (wi, . . . , wj , . . . , wk).

3.2 Min-Weight Load-Balancing Prob-
lem

We give the min-weight load-balancing prob-
lem as follows:

The Min-Weight Load-Balancing
Problem
Input: A weighted simple bipartite

graph G = (U ∪ V, E, w),
Output: A balanced semi-matching

M ⊆ E minimizing the total
weight w(M).

We call a balanced semi-matching M minimiz-
ing the total weight w(M) a min-weight bal-
anced semi-matching.

As mentioned in Introduction, the min-
weight load-balancing problem is useful for the
assignment of wireless stations (users) to access
points (APs) in wireless networks. In wireless
networks composed of multiple APs, each user
needs to choose an AP to connect itself to. It is
known that the following negative effects may
arise 4),9).



3334 IPSJ Journal Oct. 2007

( 1 ) An overload of many users to a few spe-
cific APs deteriorates the throughput of
each user in inverse proportion to the
number of users connecting to them.

( 2 ) As the distance between the user and the
connected AP becomes longer, the com-
munication quality becomes worse lin-
early.

In considering case ( 1 ), a balanced assignment
of users to APs is appropriate to prevent the
throughput degradation. However, distances
between users and APs depend on the commu-
nication quality by ( 2 ), and this implies that
balanced assignments do not always guarantee
high-quality communication. Thus we consider
that appropriate assignments are balanced as-
signments such that distances from users to
APs are as short as possible.

By regarding U , V , E and w as a set of
users, APs, communication links and distances
between users and APs respectively, the min-
weight load-balancing problem provides a min-
weight balanced semi-matching M that is a
good assignment of users to APs from the view
points of both ( 1 ) and ( 2 ).

3.3 Properties of Min-Weight Bal-
anced Semi-Matchings

We give some definitions of min-weight bal-
anced semi-matchings and their properties.

3.3.1 Cost-Preserving Path · Cost-
Preserving Cycle

In an alternating path P = (v1, u1, . . . ,
uk−1, vk), if degM (v1) = degM (vk) + 1 or v1 =
vk we call P a cost-preserving path or cost-
preserving cycle, respectively.

The switching operations along a cost-
preserving path/cycle P preserves the total cost
T (M); that is, T (P ⊕M) = T (M). The Eq. (1)
clearly proves that the total cost T (M) is pre-
served if degM (v1) = degM (vk)+1. In the case
of v1 = vk, degP⊕M (v) = degM (v) holds for
any v ∈ V because P is a cycle. Therefore the
switching operation also does not affect the to-
tal cost in the case of v1 = vk.

3.3.2 Weight-Reducing Path · Weight-
Reducing Cycle

If a cost-preserving path P has a negative
weight increment, i.e. wP < 0, P is called a
weight-reducing path. Similarly, we call P a
weight-reducing cycle for a cost-preserving cycle
P .

Although switching along a weight-reducing
path/cycle P does not affect the total cost
T (M), the total weight of the obtained semi-

degM (v1) = degM (vk) + 1 v1 = vk

Fig. 3 Weight-reducing path and cycle.

matching is smaller than the one of the previous
semi-matching M ; that is, w(P ⊕M) < w(M).
This is obvious from the following equation.

w(P ⊕ M) = w(M) + wP (2)
Figure 3 shows examples of weight-reducing
path and cycle. We adopt similar line types
to Fig. 1. Numbers by edges represent their
weights.

3.3.3 Optimality of Min-Weight Bal-
anced Semi-Matchings

We give an optimal condition of min-weight
load-balanced semi-matchings by proving the
next theorem.

Theorem 5 In a balanced semi-matching
M , M is a min-weight balanced semi-matching
if and only if there exists no weight-reducing
path/cycle with respect to M .

Proof Let G be an input bipartite graph
for the load-balancing problem and M be a bal-
anced semi-matching in G. If weight-reducing
paths/cycles with respect to M exist, M is not
evidently minimum because the total weight
w(M) can be reduced. In the rest of the proof,
we show that weight-reducing paths/cycles al-
ways exist in M when w(M) is not minimum.
Let M be a balanced semi-matching whose to-
tal weight w(M) is not minimum, and let O
be a min-weight balanced semi-matching that
minimizes the size of the symmetric difference
|M ⊕ O|. Let G′ be a subgraph defined by
G′ = (U ∪ V, M ⊕ O).

Lemma 6 If G′ has a vertex v1 ∈ V with
degM (v1) > degO(v1), a cost-preserving path
P = (v1, . . . , vk) with degM (vk) < degO(vk) ex-
ists in G′.

Proof We construct an alternating path
P = (v1, . . . , vk) in G′ from an arbitrary ver-
tex v1 ∈ V with degM (v1) > degO(v1) as fol-
lows: First set P = (v1) and QM = QO = ∅.
We extend QM and QO by following the path
alternately; QM and QO are the sets of edges
in M \ O and O \ M respectively. (1) In each
vertex vi ∈ V , let E(vi) = δM\O(vi) \ QM , i.e.,
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the set of edges connected to vi but not in P . If
both E(vi) �= ∅ and degM (vi) ≥ degO(vi) hold
for vi, we extend P by adding an arbitrary edge
{vi, ui} ∈ E(vi). (Edge {vi, ui} is inserted into
QM .) Otherwise (i.e., vi does not satisfy one
of the two conditions), we stop the construc-
tion of P as vi is the end vertex of P . This
vi satisfies degM (vi) < degO(vi) as explained
later. The initial vertex v1 satisfies the above
two conditions. (2) In each vertex ui ∈ U , we
follow the unique edge {ui, vi+1} ∈ O \ M and
add it into QO. Such an edge always exists by
the definition of a semi-matching.
Now we show that the constructed path P =
(v1, . . . , vk) satisfies degM (vk) < degO(vk). If
degM (vk) ≥ degO(vk) does not hold in (1), P is
obviously an alternating path with degM (vk) <
degO(vk). We then consider the case where
E(vk) = ∅. If v1 = vk holds, i.e., P is a sim-
ple but not necessarily elementary cycle, the
indegree and the outdegree of vk(= v1) on P
are equal. This implies degM (v1) = degO(v1),
which contradicts the condition degM (v1) >
degO(v1). Thus, v1 �= vk holds, and P is not
a cycle but a path, which leads to |δQM

(v1)| =
|δQO

(v1)| + 1, |δQM
(vk)| = |δQO

(vk)| − 1, and
|δQM

(vi)| = |δQO
(vi)| for i = 2, . . . , k − 1.

Since δM\O(vk) ⊆ QM holds by E(vk) = ∅,
|δM\O(vk)| ≤ |δQM

(vk)| holds. These equa-
tions conduce degM\O(vk) = |δM\O(vk)| ≤
|δQM

(vk)| < |δQO
(vk)| ≤ |δO\M (vk)| =

degO\M (vk), which shows P is an alternating
path with degM (vk) < degO(vk).
Next, we show P is a cost-preserving path;
degM (v1) = degO(vk) + 1. Let us consider
P , the reverse of the path P , which is an al-
ternating path with respect to O. Notice that
both P and P are not cost-reducing paths be-
cause M and O are balanced semi-matchings.
This implies that degM (v1) ≤ degM (vk) +
1 and degO(vk) ≤ degO(v1) + 1. These
and degM (v1) > degO(v1) and degM (vk) <
degO(vk) yield degM (v1) = degM (vk) + 1 and
degO(vk) = degO(v1)+1, which mean that both
P and P are cost-preserving paths. �

Lemma 7 If degM (v) = degO(v) holds for
all vertices v ∈ V in G′, a (cost-preserving)
cycle P = (v1, . . . , vk) exists in G′.

Proof From an arbitrary vertex v1 ∈ V in
G′, we build a path P = (v1, . . . , vk) as follows.
QM , QO and E(vi) are defined as Lemma 6.
(1) In each vertex vi ∈ V , if E(vi) �= ∅ then we
extend P by adding an arbitrary edge {vi, ui} ∈

Algorithm WSM :
Step 0-2: Same as ASM1.
Step 3: Apply the breadth-first search

for T to find an augmenting
path P = (u, . . . , v) that gives
min{wP |P ∈ Pu} where Pu =
{(u, . . . , v)| degM (v) is minimum}.

Step 4: Same as ASM1.

Fig. 4 Procedure of WSM .

E(vi) and insert it into QM . Otherwise let vi

be the end vertex of P , and output P . (2) In
each vertex ui ∈ U , we trace the unique edge
{ui, vi+1} ∈ O\M and add it into QO. If vi+1 =
v1 holds, we set vi+1 as the end vertex and stop
the construction.
We say the constructed P = (v1, . . . , vk) is a
cycle. P output in (1) satisfies E(vk) = ∅.
Assume vk �= v1; i.e., P is not a cycle but a
path. By the similar augment of Lemma 6,
degM (vk) < degO(vk) holds, which contradicts
degM (vk) = degO(vk). Thus, P is a cycle. It is
clear that P output in (2) is also a cycle. �

A cost-reducing path/cycle P with respect to
M always exists in G′ from Lemmas 6 and 7.
Let us consider the case of wP > 0. Because
wP = −wP , wP < 0 holds, P is a weight-
reducing path/cycle with respect to O, how-
ever this contradicts the optimality of O. If
wP = wP = 0, by switching P , we can obtain
O′ such that |M ⊕ O′| < |M ⊕ O|. This con-
tradicts the minimality of |M ⊕O|. These con-
tradictions conduce wP < 0 and P is a weight-
reducing path/cycle with respect to M , which
completes the proof. �

3.4 Algorithm: WSM
Utilizing the optimality condition shown in

the previous subsection, we propose an algo-
rithm for solving the min-weight load-balancing
problem. The algorithm extends the idea of al-
gorithm ASM1 introduced in Section 2. In or-
der to adapt the optimality condition, we add
a new condition for the weight increment of an
augmenting path P in Step 3. Figure 4 shows
our algorithm WSM . Note that since the new
requirement for P is just additional, the semi-
matching found by WSM is also balanced by
Lemma 3.

The correctness of WSM is guaranteed by the
next lemma.

Lemma 8 Neither a weight-reducing path
nor cycle is created in G during the execution
of WSM .
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Case (1-1) v1 �= vl Case (1-2) v1 = vl

Fig. 5 Case (1) (|Q| = 1).

Proof Show by the contradiction. Let
P ∗ = (v1, u1, . . . , ul−1, vl) denote the first
weight-reducing path or cycle in G created by
WSM . Let M ′ be the set of matching edges
in the execution of the algorithm just before
P ∗ is created. Here, we assume the path P ′ =
(u′, . . . , v′) is found as the augmenting path for
M ′, and WSM applies the switch operation
along P ′. We define the resulting set of match-
ing edges as M∗. Let Q = (M∗ \ M ′) ∩ P ∗.
By the definition of P ∗, |Q| ≥ 1. Q ⊆ P ′ holds
because P ∗ is a path created by P ′. In this situ-
ation, we show the contradictions by induction
about |Q| when P ∗ is a weight-reducing path
(v1 �= vl) and cycle (v1 = vl) for each case.
(1) First, we consider the case of |Q| = 1.
Let Q = {{v∗, u∗}}. Since P ′ includes it, let
P ′ = (u′, . . . , u∗, v∗, . . . , v′). Figure 5 shows
an example of this case.
(1-1) Case of v1 �= vl. Let degM ′(v1) = d. Since
P ∗ is a weight-reducing path, degM ′(vl) = d−1
and wP ∗ < 0. Additionally, degM ′(v) ∈ {d −
1, d} for any v ∈ V existing on P ∗ because no
cost-reducing paths with respect to M∗ exist by
Lemma 3. Since P ′ has an edge {u∗, v∗} ∈ Q,
P ∗(v1, v

∗) · P ′(v∗, v′) is an alternating path in
M ′. Because P ∗(v1, v

∗) · P ′(v∗, v′) is not a
cost-reducing path by the property of ASM1

(Lemma 3), degM ′(v′) ≥ degM ′(v1)− 1 = d− 1
holds. If degM ′(v′) ≥ d then P ′(u′, u∗) ·
P ∗(u∗, vl) should be chosen as an augment-
ing path other than P ′ because degM ′(vl) <
degM ′(v′), contradiction. In the other case of
degM ′(v′) = d − 1, i.e., degM ′(vl) = degM ′(v′).
Since P ∗(v1, v

∗) · P ′(v∗, v′) is not a weight-
reducing path,

wP ∗(v1,v∗)·P ′(v∗,v′) = wP ∗(v1,v∗)+wP ′(v∗,v′)

≥ 0
holds. Also, we have

wP ∗(v1,v∗)·P ∗(v∗,vl) =wP ∗(v1,v∗)+wP ∗(v∗,vl)

<0

by wP ∗ < 0. These inequalities yield
wP ∗(v∗,vl) < −wP ∗(v1,v∗) ≤ wP ′(v∗,v′).

This inequality is transformed as
wP ∗(v∗,vl) = −w({v∗, u∗}) + wP ∗(u∗,vl)

< wP ′(v∗,v′).
Then,

wP ∗(u∗,vl) < w({u∗, v∗}) + wP ′(v∗,v′)
= wP ′(u∗,v′).

By adding wP ′(u′,u∗) to both sides, we obtain
wP ′(u′,u∗)·P ∗(u∗,vl) = wP ′(u′,u∗)+wP ∗(u∗,vl)

< wP ′(u′,u∗)+wP ′(u∗,v′)
= wP ′ .

The weight increment of P ′(u′, u∗) · P ∗(u∗, vl)
is less than that of P ′ by the above inequal-
ity. Note that P ′(u′, u∗) · P ∗(u∗, vl) is also
a candidate of an augmenting path because
degM ′(vl) = degM ′(v′). This contradicts the
condition of Step 3 of WSM ; wP ′ is minimum.
(1-2) Case of v1 = vl. The following inequalities
hold by wP ∗ < 0, that is,

wP ∗(v1,v∗) − w({v∗, u∗}) + wP ∗(u∗,vl) < 0.
By v1 = vl,

wP ∗(u∗,vl)·P ∗(v1,v∗) < w({v∗, u∗}).
By adding wP ′(u′,u∗) and wP ′(v∗,v′) to both
sides,

wP ′(u′,u∗)·P ∗(u∗,vl)·P ∗(v1,v∗)·P ′(v∗,v′) < wP ′ .
This inequality also contradicts the condition
of P ′ as above. Thus, weight-reducing path P ∗
with |Q| = 1 does not exist by (1-1) and (1-2).
(2) Assuming that P ∗ is not created with any
|Q| ≤ k−1, we show that P ∗ is also not created
in the case of |Q| = k. If degM ′(v′) ≥ d then the
contradiction also arises as in case (1). Thus we
consider the case of degM ′(v′) = d − 1.
(2-1) Case of v1 �= vl. Let {v∗1 , u∗

1}, {v∗2 , u∗
2},

. . . , {v∗k, u∗
k} be edges in Q, where they ap-

pear in P ∗ in this order, i.e., P ∗ =
(v1, . . . , v

∗
1 , u∗

1, . . . , v
∗
k, u∗

k, . . . , vl). We consider
the following two cases (a) and (b), according
to the traced order of edges in P ′. We show
examples of the case of |Q| = 3 in Fig. 6.
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Case (a) Case (b)

Fig. 6 Case (2-1) (|Q| = 3, v1 �= vl).

(a) Consider the case that P ′ traces edges of
Q in the order of {u∗

k, v∗k}, . . . , {u∗
1, v

∗
1}, that

is, P ′ = (u′, . . . , u∗
k, v∗k, . . . , u∗

1, v
∗
1 , . . . , v′). In

this case, a cycle P ∗(u∗
i , v

∗
i+1) · P ′(v∗i+1, u

∗
i ) ex-

ists for each i = 1, 2, . . . , k − 1. Because these
cycles are not weight-reducing cycles, we have
wP ∗(u∗

i
,v∗

i+1)·P ′(v∗
i+1,u∗

i
) ≥ 0, that is,

wP ∗(u∗
i ,v∗

i+1) ≥ −wP ′(v∗
i+1,u∗

i ), (3)
for each i = 1, 2, . . . , k − 1. Since an edge
{v∗1 , u∗

1} ∈ Q is on P ′, P ∗(v1, v
∗
1) ·P ′(v∗1 , v′) ex-

ists for M ′, and it is also not a weight-reducing
path. Thus, wP ∗(v1,v∗

1 )·P ′(v∗
1 ,v′) ≥ 0, that is,

wP ∗(v1,v∗
1 ) ≥ −wP ′(v∗

1 ,v′). (4)
The inequality wP ∗ < 0 is decomposed as

wP ∗(v1,v∗
1 ) +

k−1∑

i=1

{w({v∗i , u∗
i })

+wP ∗(u∗
i
,v∗

i+1)} + wP ∗(v∗
k
,vl) < 0.

Moreover by using (3) and (4),

−wP ′(v∗
1 ,v′) +

k−1∑

i=1

{w({v∗i , u∗
i })

− wP ′(v∗
i+1,u∗

i
)}−w({v∗k, u∗

k})+wP ∗(u∗
k
,vl)

< 0.
Then,

wP ∗(u∗
k
,vl) < w({u∗

k, v∗k})

+
k−1∑

i=1

{−w({u∗
i , v

∗
i }) + wP ′(v∗

i+1,u∗
i )}

+wP ′(v∗
1 ,v′) = wP ′(u∗

k
,v′).

By adding wP ′(u′,u∗
k
), we have

wP ′(u′,u∗
k
)·P ∗(u∗

k
,vl) < wP ′ .

This inequality contradicts the condition of the
augmenting path P ′.
(b) In the cases except for (a), P ′ con-
tains a subpath P ′(u∗

i , v
∗
i+1) for some i.

Let p be the number of edges included in
Q on P ′(u∗

i , v
∗
i+1), and {u′

1, v
′
1}, {u′

2, v
′
2}, . . . ,

{u′
p, v

′
p} be these edges that P ′(u∗

i , v
∗
i+1) traces

in order, i.e., P ′(u∗
i , v

∗
i+1) = P (u′

1, v
′
p) =

(u′
1, v

′
1, . . . , u

′
p, v

′
p).

For a subpath P ′(v′j , u
′
j+1) of each j, a cycle

P ′(v′j , u
′
j+1) · P ∗(u′

j+1, v
′
j) exists for M ′ if u′

j+1

appears earlier than v′j on P ∗. The number of
edges of Q included on this cycle is at most k−2,
because {u∗

1, v
∗
1} and {u∗

k, v∗k} cannot be con-
tained. This conduces wP ′(v′

j
,u′

j+1)·P ∗(u′
j+1,v′

j
) ≥

0 by the assumption of the induction; weight-
reducing cycles are not created. Therefore,
−wP ∗(u′

j+1,v′
j
) ≤ wP ′(v′

j
,u′

j+1)
holds. By adding

w({u′
j , v

′
j}),

−{wP ∗(u′
j+1,v′

j
) − w({v′j , u′

j})}
≤ w({u′

j , v
′
j}) + wP ′(v′

j
,u′

j+1)
.

Then,
−wP ∗(u′

j+1,u′
j
) ≤ wP ′(u′

j
,u′

j+1)
(5)

holds. In the other case, that is, v′j appears
earlier than u′

j+1 on P ∗ by contraries, a path
P ∗(v1, v

′
j) · P ′(v′j , u

′
j+1) · P ∗(u′

j+1, vl) exists for
M ′. Also the number of edges of Q on this path
is at most k − 2, so it is not a weight-reducing
path. Thus, wP ∗(v1,v′

j
)·P ′(v′

j
,u′

j+1)·P ∗(u′
j+1,vl) ≥

0, i.e.,
−wP ∗(v1,v′

j
) − wP ∗(u′

j+1,vl) ≤ wP ′(v′
j
,u′

j+1)

(6)
holds. And by

wP ∗ = wP ∗(v1,v′
j
)·P ∗(v′

j
,u′

j+1)·P ∗(u′
j+1,vl) <0,

wP ∗(v′
j
,u′

j+1)
< −wP ∗(v1,v′

j
) − wP ∗(u′

j+1,vl)

(7)
By combining Eqs. (6) and (7), we obtain

wP ∗(u′
j
,u′

j+1)
< wP ′(u′

j
,u′

j+1)
. (8)

Either Eqs. (5) or (8) is satisfied in each subpath
P ′(u′

j , v
′
j+1) for 1 ≤ j < p, and at least one j is

of the latter case. By summing these equations
up,
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wP ∗(u′
1,u′

p) <

p−1∑

j=1

wP ′(u′
j
,u′

j+1)
= wP ′(u′

1,u′
p).

By adding w({u′
p, v

′
p}),wP ′(u′,u′

1)
and wP ′(v′

p,v′),
wP ′(u′,u′

1)·P ∗(u′
1,v′

p)·P ′(v′
p,v′) < wP ′ .

This inequality contradicts the condition of an
augmenting path P ′, in consequence P ∗ is not
created when v1 �= vl.
(2-2) Case of v1 = vl. As in the case of v1 �=
vl, let P ∗ = (v1, . . . , v

∗
1 , u∗

1, . . . , v
∗
k, u∗

k, . . . , vl).
We then mention that a path P ′(u∗

i , u
∗
i+1) with

respect to M ′ exists for some i because P ∗ is a
cycle. Therefore the proof of case (b) of (2-1)
has already proved this case.
These show P ∗ of |Q| = k is also not created.
By the induction of (1) and (2), a weight-
reducing path/cycle P ∗ does not exist in M∗
for all values of |Q|, which shows no weight-
reducing path/cycle exists in the final semi-
matching produced by WSM . �

The above Lemma 8 guarantees the correct-
ness of our algorithm. We next discuss the time
complexity.

Lemma 9 An augmenting path P found in
Step 3 of WSM is a simple path.

Proof By Lemma 8, no weight-reducing
path exists while WSM executes, which implies
all existing cycles have nonnegative weight in-
crements. Namely, any augmenting path P con-
tains no cycle; P is a simple path. �

Lemma 10 Suppose we execute Step 3 of
WSM . For u ∈ U , let P1 = (u, . . . , v1),
P2 = (u, . . . , v2) as two different paths hav-
ing a common end vertex, i.e., v1 = v2. If
wP1 < wP2 , then P2 is not a subpath of any
augmenting path in the algorithm.

Proof Let T be the alternating search tree
rooted u in arbitrary iteration of the algorithm.
Let T1 and T2 be subtrees of T rooted v1 and
v2 respectively, and let V1 and V2 be the sets
of vertices belonging to T1 and T2, respectively.
We show the contradiction by assuming that
an augmenting path P contains P2, i.e., P =
P2 ·P ′ = (u, . . . , v2, . . . , v), where P ′ is the path
existing in T2.
(1) First let us consider the case that P ′ is also
in T1. In this case, P1 · P ′ exists in T . Thus,
wP1·P ′ < wP2·P ′ = wP holds by wP1 < wP2 .
This contradicts the condition of the augment-
ing path P ; wP is minimum.
(2) In the other case that P ′ does not exist
in T1. Figure 7 shows an example of search
tree T . Since v1 = v2, we can trace a sub-
path of P ′ from v1 in T1, but it ends at some

Fig. 7 Search tree T (Lemma 10(2)).

u′ ∈ U because P ′ is not in T1. (The sub-
path ends at a vertex in U but not in V , be-
cause if we can reach some vertices in V then
we can reach a unique vertex of U by follow-
ing the matching edge.) Let v′ be the node
next to u′ in P ′. This v′ exists in P1, other-
wise we can extend the above subpath from v1.
In this situation, a cycle P1(v′, v1) · P ′(v2, v

′)
exists in the graph because v1 = v2. Since it
is not a weight-reducing cycle by Lemma 8, we
have wP1(v′,v1)·P ′(v2,v′) ≥ 0, i.e., −wP1(v′,v1) ≤
wP ′(v2,v′). This and wP1 < wP2 yields wP1 −
wP1(v′,v1) < wP2 +wP ′(v2,v′), that is wP1(u,v′) <
wP2·P ′(v2,v′). By adding wP ′(v′,v) to both sides,
wP1(u,v′)·P ′(v′,v) < wP2·P ′(v2,v) = wP holds.
This contradicts the condition of the augment-
ing path P .
By cases (1) and (2), P2 is not a subgraph of
any augmenting path when wP1 < wP2 . �

Theorem 11 WSM finds a min-weight bal-
anced semi-matching M in O(mn1n2) time.

Proof It is clear that a semi-matching M
obtained by WSM is a min-weight balanced
semi-matching from Theorem 5 and Lemma 8.
We give the time complexity of WSM . By mak-
ing use of the property of Lemma 10, we cut off
the search from some vertices. If the breadth
first search is done, the number of vertices in V
existing in arbitrary odd depth k is bounded by
at most n2(= |V |). This is because a candidate
of augmenting paths containing v is guaran-
teed to be unique by Lemma 10; the one whose
weight increment is minimum. On the other
hand, the number of U vertices in even depth
k + 1 is at most n1(= |U |) by the definition of
a semi-matching, and at most m(= |E|) edges
exist from depth k to k + 2. Considering that
the depth of a search tree is at most 2n2 − 1
by Lemma 9, building a search tree requires at
most O(n2 + m · (2n2 − 2)/2) = O(mn2) time.
Same as algorithm ASM1, it has exactly n1 iter-
ations. Conclusively the total running time re-
quired by the algorithm is at most O(mn2 ·n1)
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time. �

4. Conclusion

We formulated the minimum weight load-
balancing problem for weighted bipartite
graphs, and characterized the optimality of
weighted semi-matchings by weight-reducing
paths/cycles. As an application for the prob-
lem, we gave assigning users to APs appropri-
ately in wireless networks. We then proposed
an O(mn1n2) time algorithm that finds an op-
timal semi-matching by keeping non-existence
property of weight-reducing paths/cycles. As
a future work, we expect further improvements
of the running time, for example, by utilizing
more elaborate data structures.

Acknowledgments This work is sup-
ported in part by the Grant-in-Aid of the Min-
istry of Education, Science, Sports and Culture
of Japan.

References

1) Asahiro, Y., Miyano, E., Ono, H. and Zenmyo,
K.: Graph Orientation Algorithms to Minimize
the Maximum Outdegree, Proc. Twelfth Com-
puting: The Australasian Theory Symposium
(CATS2006 ), Hobart, Australia. CRPIT, 51,
Gudmundsson, J. and Jay, B. (Eds.), ACS,
pp.11–20 (2006).

2) Bruno, J.L., Coffman, E.G. and Sethi, R.:
Scheduling independent tasks to reduce mean
finishing time, Comm. ACM , Vol.17, pp.382–
387 (1974).

3) Edmonds, J.: Paths, trees, and flowers, Cana-
dian Journal of Mathematics, Vol.17, pp.449–
467 (1965).

4) Fukuda, Y., Abe, T. and Oie, Y.: Decentral-
ized Access Point Selection Architecture for
Wireless LANs, Proc. Wireless Telecommuni-
cations Symposium, pp.137–145 (2004).

5) Harvey, N.J.A., Ladner, R.E., Lovasz, L.
and Tamir, T.: Semi-Matchings for Bipar-
tite Graphs and Load Balancing, Workshop
on Algorithms and Data Structures (WADS),
pp.294–308 (2003).

6) Hopcroft, J.E. and Karp, R.M.: An n5/2 al-
gorithm for maximum matchings in bipar-
tite graphs, SIAM Journal on Computing 2 ,
pp.225–231 (1973).

7) Kuhn, H.W.: The Hungarian method for the
assignment problem, Naval Res. Logist. Quart.
2 , pp.83–97 (1955).

8) Lenstra, J.K., Shmoys, D.B. and Tardos, É.:
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