
Monte-Carlo Tree Search in Crazy Stone

Rémi Coulom∗

Abstract

Monte-Carlo tree search has recently revolution-
ized Go programming. Even on the large 19x19
board, the strongest Monte-Carlo programs are
now stronger than the strongest classical programs.
This paper is a summary of the principle of Monte-
Carlo tree search, and a description of Crazy Stone,
one of those new artificial players.

1 Introduction

The classical approach to game programming is
based on alpha-beta tree search, combined with
heuristic evaluation at the leaves. This approach
has been very successful for games such as chess,
but it is difficult to apply it to the game of Go, be-
cause of its high branching factor, and the difficulty
to build a fast accurate evaluation function.

Instead of building an heuristic evaluation func-
tion, another possible approach to evaluating a po-
sition consists in averaging the outcome of several
random continuation. This is the fundamental idea
of Monte-Carlo search, that will be described in this
paper.

2 History: The Monte-Carlo
Revolution

This section presents a very brief time line of some
of the most significant events in the development
of Monte-Carlo programs.

1993 Bernd Brügmann [2] pioneers the application
of Monte-Carlo ideas to the game of Go.

2003 Bernard Helmstetter, Bruno Bouzy, and Tris-
tan Cazenave revive the idea [1]. They

∗Université Charles de Gaulle, INRIA Sequel, CNRS
GRAPPA, Lille, France

are later joined in their effort by Guillaume
Chaslot (in 2004) and Rémi Coulom (in 2005).

2006 Crazy Stone wins gold at the Computer
Olympiad [4] on the 9× 9 board.

2007 Mogo [7, 6] and Crazy Stone [5] win gold and
silver at the Computer Olympiad on the 19×
19 board. Steenvreter, another Monte-Carlo
program by Erik van der Werf wins gold ahead
of Mogo and Crazy Stone on 9× 9.

2007 Crazy Stone beats KCC Igo (winner of the
Gifu challenge, four times in a row from 2003
to 2006) in a match, with a score of 15 wins
and 4 losses, thus confirming the strength of
Monte-Carlo programs on the 19× 19 board1.

3 Crazy Stone’s Algorithm

Crazy Stone performs a global Monte-Carlo tree
search of the position, with the UCT algorithm.
Patterns are used to improve the quality of random
simulations, and to prune bad moves in the search
tree, with progressive widening. Details of these
method can be found in other papers [4, 5, 8].

4 Playing Style

The playing style of Monte-Carlo programs is very
different from the playing style of classical pro-
grams. This section summarizes some of the char-
acteristics of the playing style of Crazy Stone, and
tries to highlight the strengths and weakness of the
current Monte-Carlo algorithms.

The most striking aspect of the playing style of
Monte-Carlo programs is that they maximize their

1This match was played on KGS and organized by Hiroshi
Yamashita. Game records are available in the KGS archives
of KCConGUI and CrazyStone.

1

-74-

HKameko
Rectangle



probability of winning, not their amount of terri-
tory. As a consequence, they play very safe moves
when they are ahead, and try very aggressive and
dangerous moves when they are behind. Very few
of the classical programs know how to do it that
well. This aspect of Monte-Carlo programs is one
of their major strengths.

Another strength of Monte-Carlo programs is
their ability to have a global understanding of the
position. This helps them a lot against classical
Go programs who perform local searches focused
on just one goal. Monte-Carlo programs can read
fights that involve several high-level goals at the
same time.

A major weakness of Crazy Stone is its frequent
inability to determine correctly the life-or-death
status of a group. Sometimes random playouts will
incorrectly estimate that a dead group is alive, or,
conversely, that a living group is dead. In some sit-
uations, search is not enough to compensate for the
ignorance of playouts, and it leads to huge blunders.

5 Future of Monte-Carlo
Search

Monte-Carlo search has already brought a lot of
novelties to computer Go, but it is likely that the
strength of the current strongest Monte-Carlo pro-
grams can be improved further. First, the addition
of more knowledge in random playouts and selec-
tivity algorithms should allow significant progress.
Also, a more ambitious plan for further research
would be to cure the weakness of life-and-death
evaluation described in the previous section, by
adaptively changing the playout policy. The cur-
rent tree-search approach adapts the playout pol-
icy only near the root. The next breakthrough in
Monte-Carlo search may come from algorithms that
adapt the policy also far from the root. According
to some discussions in the computer-go mailing list,
some programmers are currently researching this
direction.

Beyond computer Go, one may expect that tech-
niques developed here could be applied to other
domains. Other games, such has the game of Hex,
have features that make them similar to Go, so they
may be able to benefit from the same techniques.
More generally, Monte-Carlo search can be applied

to other planning and optimization problems [3].

References

[1] Bruno Bouzy and Bernard Helmstetter. Monte
Carlo Go developments. In H. J. van den Herik,
H. Iida, and E. A. Heinz, editors, Proceedings of
the 10th Advances in Computer Games Confer-
ence, Graz, 2003.

[2] Bernd Brügmann. Monte Carlo Go, 1993. Un-
published technical report.

[3] Guillaume Chaslot, Steven De Jong, Jahn-
Takeshi Saito, and Jos W. H. M. Uiterwijk.
Monte-Carlo tree search in production man-
agement problems. In Pierre-Yves Schobbens,
Wim Vanhoof, and Gabriel Schwanen, editors,
Proceedings of the 18th BeNeLux Conference on
Artificial Intelligence, pages 91–98, Namur, Bel-
gium, 2006.

[4] Rémi Coulom. Efficient selectivity and backup
operators in Monte-Carlo tree search. In
P. Ciancarini and H. J. van den Herik, editors,
Proceedings of the 5th International Conference
on Computer and Games, Turin, Italy, 2006.

[5] Rémi Coulom. Computing Elo ratings of move
patterns in the game of Go. In H. Jaap
van den Herik, Mark Winands, Jos Uiterwijk,
and Maarten Schadd, editors, Proceedings of the
Computer Games Workshop, Amsterdam, The
Netherlands, June 2007.

[6] Sylvain Gelly and David Silver. Combining on-
line and offline knowledge in UCT. In Pro-
ceedings of the 24th International Conference
on Machine Learning, pages 273–280, Corvallis
Oregon USA, 2007.

[7] Sylvain Gelly, Yizao Wang, Rémi Munos, and
Olivier Teytaud. Modification of UCT with pat-
terns in Monte-Carlo Go. Technical Report RR-
6062, INRIA, 2006.

[8] Levente Kocsis and Csaba Szepesvári. Bandit-
based Monte-Carlo planning. In J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, editors, Pro-
ceedings of the 15th European Conference on
Machine Learning, Berlin, Germany, 2006.

2

-75-

HKameko
Rectangle




