
MIA: A World Champion LOA Program

Mark H.M. Winands and H. Jaap van den Herik

MICC-IKAT, Universiteit Maastricht, Maastricht
P.O. Box 616, 6200 MD Maastricht, The Netherlands

{m.winands, herik}@micc.unimaas.nl

Abstract

MIA (Maastricht In Action) is a world-class LOA pro-
gram, which has won the LOA tournament at the 8th

(2003), 9th (2004), and 11th (2006) Computer Olympiad.
It is considered as the best LOA-playing entity of the
world. In this extended abstract we will present MIA’s
search engine and evaluation function.

1 Introduction

Around 1975 LOA received its first credits as an AI re-
search topic. For instance, then the first LOA program was
written at the Stanford AI laboratory by an unknown au-
thor. In the 1980s and 1990s “hobby” programmers wrote
several LOA programs. However, all were easily beaten
by humans [14]. At the end of the nineties LOA became a
clear objective or even target of AI researchers. Consider-
ing the role of LOA in the AI domain we may distinguish
two different categories.

The first category consists of researchers using LOA as
a test domain for their algorithms. Below we mention six
telling examples. Eppstein [15] mentioned his dynamic
planar-graph techniques to evaluate the connectivity of
LOA positions. Kocsis ([22]; [23]) applied successfully
his learning time-allocation algorithms and his new move-
ordering method in LOA, called the Neural MoveMap
heuristic. Moreover, Björnsson [6] confirmed the good
results of his multi-cut method for LOA. Up to then the
multi-cut was only tested for Chess. Donkers [12] used
LOA to test the admissibility in opponent-model search.
Sakutaet al. [28] investigated the application of the killer-
tree heuristic and theλ-search method to the endgame
of LOA. These techniques were initially developed for
Shogi. Hashimotoet al. [19] chose LOA as a test domain
for his automatic realisation-probability search method.

The second category consists of researchers trying to
build strong LOA programs by using new ideas. For in-
stance, the four programs MIA (Maastricht In Action),

BING, YL, and MONA belong to this category. Since 2000
LOA is played at the Computer Olympiad, a multi-games
event in which all of the participants are computer pro-
grams.

This extended abstract is mainly based on the thesisIn-
formed Search in Complex Games[35]. Below we will
reveal some of the secrets of the program MIA. It is con-
sidered to be the best LOA-playing entity of the world. A
demo version of MIA can be played online at the website:
http://www.cs.unimaas.nl/m.winands/loa/.

The remainder of the extended abstract is organised as
follows. Section 2 explains the game of Lines of Action.
The search engine is described in Section 3. In Section 4
the evaluation function is explained. Section 5 provides
information on the performance of MIA at the LOA tour-
naments of the various Computer Olympiads.

2 Lines of Action

Lines of Action (LOA) is a two-person zero-sum game
with perfect information; it is a chess-like game with a
connection-based goal, played on an 8×8 board. LOA
was invented by Claude Soucie around 1960. Sid Sackson
[27] described the game in his first edition ofA Gamut of
Games. The objective of a connection game is to group
the pieces in such a way that they connect two opposite
edges (a static goal) or form a fully-connected group (a
dynamic goal). The precise definition of what constitutes
a connection depends on the game in question. Whatever
the case, the notion of connection became one of the great
themes in the world of abstract gaming. Many prominent
game inventors made a contribution to this theme. Other
examples of connection games are TwixT [9] and Hex [4].
In contrast to the typical connection games, LOA is more
chess-like because (1) pieces are moved over the board
instead of put on the board, and (2) pieces can be captured.

1

-84-

HKameko
Rectangle



2.1 The Rules

LOA is played on an 8×8 board by two sides, Black and
White. Each side has twelve (checker) pieces at its dis-
posal. Below we are describing the rules used at the Com-
puter Olympiads and at the MSO World Championships.
They are formulated in nine rules. In some books, maga-
zines or tournaments, the rules 2, 7, 8, and 9 are different
from what is specified here.

1. The black pieces are placed in two rows along the top
and bottom of the board, while the white pieces are
placed in two files at the left and right edge of the
board (see Figure 1a).

2. The players alternately move a piece, starting with
Black.

3. A move takes place in a straight line, exactly as many
squares as there are pieces of either colour anywhere
along the line of movement (see Figure 1b).

4. A player may jump over its own pieces.

5. A player may not jump over the opponent’s pieces,
but can capture them by landing on them.

6. The goal of a player is to be the first to create a
configuration on the board in which all own pieces
are connected in one unit. Connected pieces are on
squares that are adjacent, either orthogonally or di-
agonally (e.g., see Figure 1c). A single piece is a
connected unit.

7. In the case of simultaneous connection, the game is
drawn.

8. If a player cannot move, this player has to pass.

9. If a position with the same player to move occurs for
the third time, the game is drawn.

The possible moves of the black piece ond3 in Figure
1b are indicated by arrows. The piece cannot move tof1
because its path is blocked by an opposing piece. The
move toh7 is not allowed because the square is occupied
by a black piece.

2.2 Characteristics

Analysis of 2585 self-play matches showed an average
branching factor of 29 and an average game length of 44
ply. The game-tree complexity is estimated to beO(1064)
and the state-space complexityO(1023) [37]. The game-
tree complexity and state-space complexity are compara-
ble with those of Othello [3]. Considering the current

state-of-the-art computer techniques, it seems that LOA
is not solvable by brute-force methods.

A characteristic property of LOA is that it is a con-
verging game [2], since the initial position consists of 24
pieces, and during the game the number of pieces (usu-
ally) decreases. However, since most terminal positions
have still more than 10 pieces remaining on the board [34],
endgame databases are (probably) not effectively applica-
ble in LOA. As a case in point, we remark that an endgame
database of ten pieces would require approximately 10 ter-
abytes.

3 MIA’s Search Engine

The standard framework ofαβ search [21] with all kinds
of enhancements [24] offers a good start for building a
strong LOA-playing program. Thus, MIA started its ca-
reer with anαβ depth-first iterative-deepening search. Be-
low we briefly describe MIA’s original basic design, which
serves as a starting point for our research. Several tech-
niques were implemented to enhance the search. We men-
tion (1) Principal Variation Search (PVS), (2) transposi-
tion tables, (3) forward pruning, (4) move ordering, (5)
quiescence search, and (6) realisation-probability search.

First, the program uses PVS to narrow theαβ window
as much as possible [25]. This means that theβ value
equalsα+1. Such an algorithm is in general more efficient
than the originalαβ. The basic idea behind the method is
that it is cheaper to prove a subtree inferior, than to deter-
mine its exact value. It has been shown that this method
does well for bushy trees such as occur in Chess. Because
the branching factor of LOA (29) is in the same range as
that of Chess (38), it works fine in LOA too. Another pop-
ular algorithm for searching game trees is NegaScout [26].
The two algorithms (PVS and NegaScout) are essentially
equivalent to each other; they expand the same search tree
[6].

Second, atwo-deeptransposition table [8] is applied to
prune a subtree or to narrow theαβ window. The well-
known Zobrist-hashing method [40] is used for storing the
entries in the table. At all interior nodes which are more
than 2 ply away from the leaves, the program generates all
the moves to perform the Enhanced Transposition Cutoffs
(ETC) scheme [31].

Third, two forward-pruning techniques are applied. A
null move [13] is performed before any other move and
it is searched to a lower depth (reduced byR) than other
moves. At a CUT node a variable scheme, called adaptive
null move [20], is used to setR. If the remaining depth is
more than 6,R is set to 3. When the number of pieces of
the side to move is lower than 5 the remaining depth has
to be more than 8 to setR to 3. In all other casesR is set to

2

-85-

HKameko
Rectangle



Figure 1: (a) The initial position. (b) An example of possible moves. (c) A terminal position.

2. For ALL nodesR= 3 is used. If the null move does not
cause aβ cut-off, multi-cut [7] is performed. Experiments
showed that using multi-cut is not only beneficial at CUT
nodes but also at ALL nodes [38].

Fourth, for move ordering, (1) the move stored in the
transposition table, if applicable, is always tried first. Then
(2) two killer moves [1] are tried. These are the last two
moves, which were best or at least caused a cut-off at the
given depth. Thereafter follow: (3) capture moves going
to the inner area (the central 4×4 board) and (4) capture
moves going to the middle area (the 6×6 rim); finally,
(5) all the other moves are ordered decreasingly accord-
ing to the relative history heuristic [39]. The latter is a
new method for move ordering, called the relative his-
tory heuristic. It is a combination of the history heuris-
tic [29] and the butterfly heuristic [18]. Instead of only
recording moves which are the best move in a node, we
also record the moves which are applied in the search tree.
Both scores are taken into account in the relative history
heuristic. In this way we favour moves which on average
are good over moves which are sometimes best. Experi-
ments in LOA show that our method gives a reduction be-
tween 10 and 15 per cent of the number of nodes searched.

Fifth, in the leaf nodes of the tree a quiescence search
is performed, since the evaluation function should only be
applied to positions that are quiescent. This quiescence
search looks at capture moves that form or destroy con-
nections [37] and at capture moves going to the central
4×4 board.

Sixth, the realisation-probability search (RPS) [32] is
applied. The RPS algorithm is a new approach to frac-
tional plies. It performs a selective search similar to for-
ward pruning and selective extensions. In RPS the search
depth of the move under consideration is determined by
the realisation probability of its move category. These re-
alisation probabilities are based on the relative frequencies
which are noticed in master games. In MIA, the move
categories depend on centre-of-mass, board position, and

capturing. In total there are 277 weights.
Finally, we remark that we tested successfully vari-

ous proof-number search algorithms. PN, PN2, PDS, and
PDS-PN clearly outperformedαβ in solving endgame po-
sitions in LOA. A subject of future research is to find a
dynamic strategy which determines when to use proof-
number search instead ofαβ in a real-time game.

4 Evaluation Functions

In this section the relevant features of the evaluation func-
tion are enumerated and explained. The evaluator consists
of the following nine features:concentration, centralisa-
tion, centre-of-mass position, quads, mobility, walls, con-
nectedness, uniformity, andplayer to move. The choice
of features that fully cover the description of a position
is most relevant. It is better to have all features correct
and all the initial weights wrong than to have the initial
weights correct and miss one of the (important) features
[10]. The description of the features follows below; rel-
evant examples and clarifications are given, adequate ref-
erences to further details are supplied (Subsections 4.1 to
4.9). It is followed by some information about the use of
caching (Subsection 4.10).

4.1 Concentration

The concentration feature is based on the basic principles
of threats and solid formations. It measures how close
pieces are to each other. By doing so, we reward positions
with pieces in each other’s neighbourhood. It is hoped that
the pieces eventually will be connected in a solid forma-
tion or will create threats to win.

The concentration of the pieces is calculated by a
centre-of-mass approach (see also the third feature). In
MIA it is done in four steps. First, the centre-of-mass
of the pieces on the board is computed for each side (in
MIA this is done incrementally to save time). Second,

3

-86-

HKameko
Rectangle



Figure 2: Position with an outlier onb8.

we compute for each piece its distance to the centre-of-
mass. The distance is measured as the minimal number of
squares from the piece to the centre-of-mass. These dis-
tances are summed together, called the sum-of-distances.
Third, the sum-of-minimal-distances is looked up in a ta-
ble. The sum-of-minimal-distances is dependent on the
number of pieces on the board (see the example below)
and it is defined as the sum of the minimal distances of
the pieces from the centre-of-mass. This number is nec-
essary since otherwise boards with a few pieces would be
preferred. For instance, if we have ten pieces, there will
be always eight pieces at a distance of at least 1 from the
centre-of-mass, and one piece at a distance of at least 2.
In this case the sum-of-minimal-distances is 10. Thus, the
sum-of-minimal-distances is subtracted from the sum-of-
distances, the result being called the surplus-of-distances.
Fourth, we calculate the concentration, defined as the in-
verse of the average surplus-of-distances.

The disadvantage of this feature is that it aims to con-
nect as many pieces as possible in a local group, hardly
worrying about some remote pieces (orphans). It is some-
times hard to connect these orphans. For instance, in Fig-
ure 2 the black pieces are grouped around their centre-of-
mass ate2, but the black piece onb8 is rather far away
from this group.

4.2 Centralisation

According to the centralisation feature pieces controlling
the centre are more important than others. Centralisation
is important because pieces have to move through the cen-
tre to connect with each other.

Analogous to piece-square tables in Chess, each piece
obtains a value dependent on its board square in MIA.
Pieces at squares closer to the centre are given higher val-
ues than the ones farther away. Pieces at the edge are given
a negative value. This is done because such pieces are easy
to block by a wall (but see Subsection 4.6). Pieces at the

Figure 3: Scattered pieces.

corner are punished even more severely. To prevent the
program from over-aggressively capturing pieces, the av-
erage is computed instead of the sum of piece values.

We remark that centralisation can also be obtained indi-
rectly by punishing moves not going to the centre. This is
done in the mobility feature.

4.3 Centre-of-Mass Position

The centre-of-mass position feature is indirectly based on
the basic principle of solid formations. It evaluates the
global position of all the pieces. This means that it looks
at the position of the centre-of-mass on the board. The ini-
tial idea was to prevent formations from being built on the
edges, where they are rather easily destroyed or blocked.

The value of this feature is dependent on the board
square of the centre-of-mass. We use a simple table
lookup for computation in MIA. Interestingly, after ap-
plying Temporal-Difference (TD) learning to enhance the
weights, the weight for the centralised centre-of-mass fea-
ture changed its sign [36], which means that opposite to
expectations it is good to have the centre-of-mass closer
to the edge instead of in the centre.

If the centre-of-mass is in the centre, it is possible that
pieces are scattered over the board (e.g., the white pieces
in Figure 3). If the centre-of-mass is at the edge, pieces
have to be in the neighbourhood of each other, otherwise
they would lie outside the board. Therefore, this feature
contributes to the concentration and indirectly to the con-
nectedness (see Subsection 4.7). Another plausible expla-
nation of why it is worse to have the main piece formation
in the centre is that it can be more easily attacked at that
place, whereas groups residing closer to the edge can only
be attacked from one side.

4.4 Quads

The quads feature is based on the basic principles of solid
formations and material advantage. It looks at the solid-

4

-87-

HKameko
Rectangle



Qd

A quad with two 

diagonally-adjacent

pieces

Q0

A quad with no 

pieces

Q1

A quad with one 

piece

Q2

A quad with two 

pieces

Q3

A quad with three 

pieces

Q4

A quad with four 

pieces

Figure 4: Six different quad types.

ness of the formation in particular. The feature favours
pieces, which are connected in more than one direction,
because it is harder for the opponent to disconnect them.
The use of quads for a LOA evaluation function was first
proposed and implemented by Dave Dyer in 1996 in his
program LOAJAVA and empirically evaluated by Winands
et al. [37]. The heuristic is based on the use of quads, an
Optical Character Recognition method. A quad is defined
as a 2×2 array of squares [16]. In LOA there are 81 quads
for each side, including also quads covering only a part of
the board along the edges. Taking into account rotational
equivalence, there are six different quad types, depicted in
Figure 4.

In this feature we only consider quads of three (Q3) or
four pieces (Q4) of the same colour, since it is impossible
to destroy these formations by a single capture. However,
the danger exists that many of those quads are created out-
side the neighbourhood of the centre-of-mass. So, in MIA
we reward onlyQ3’s andQ4’s, which are at a distance of
at most two squares of the centre-of-mass. For instance,
Black has twoQ4’s in Figure 5. In passing we note that
this feature implicitly favours a material advantage.

The effect of implicitly favouring a component due to
the introduction of another feature is first described by
Schaeffer [30] for chess. Obviously, it is a challenge to
analyse the interrelationship in LOA too, since it turns out
to be an issue for almost all components. A possible dis-
advantage of this feature is that if the position becomes too
solid, its flexibility may decrease drastically. The mobility
feature may adjust this disadvantage.

4.5 Mobility

The mobility feature looks at the potential of the moves
in a position. The idea is that it is easier to connect your

Figure 5: Position with two blackQ4 ’s.

own pieces or obstruct the connection of opponent pieces
if you have more and better moves. The feature was first
implemented in MONA and YL.

When evaluating a position in MIA, the possible moves
of both sides are generated (irrespective of who is to
move). The moves are not rewarded equally. Experiments
have shown that certain move types are to be preferred
above others (see also [19]). Therefore, in MIA the fol-
lowing bonus/malus system is applied: the value of a cap-
ture move is doubled, the value of a move going to an edge
or a move along an edge is halved. If a move belongs to
multiple categories, the bonus/malus system is used multi-
ple times. For example, let us assume that a regular move
gets value 1, then a capture move gets value 2, a capture
move going to an edge gets value 1, a capture move in an
edge line going to a corner gets value 0.5. The computa-
tional requirements of this feature are not high. For each
line configuration (represented as a bit vector) the mobil-
ity can be precomputed and stored in a table. During the
search, the index scheme can be updated incrementally
and in the evaluation function only a few table lookups
have to be done.

An advantage of this feature that it is fast to evaluate. A
disadvantage of this implementation is that it is too static.
For example, all capture moves are given a bonus, even
the ones which capture the last unconnected opponent’s
piece. Moreover, all edge moves are given a penalty, even
if they connect to the main group. A more global look of
the position would be needed to distinguish these kind of
exceptions.

4.6 Walls

The wall feature is based on the basic principle of block-
ing. Because a piece is not allowed to jump over the oppo-
nent’s pieces, it can happen that the piece is blocked, i.e.,
cannot move. Blocking a piece far away from the other
pieces is an effective way of preventing the opponent to

5

-88-

HKameko
Rectangle



Figure 6: Position with walls.

win. Even partial blocking, called a wall [17], can be quite
effective, since it forces a player to find a way around the
wall. Detecting whether a piece is (partially) blocked can
be expensive as we have to know what the moves of the
piece are and what its goal is.

In MIA we look only at walls that prevent the oppo-
nent’s edge pieces from moving toward the centre. These
walls are quite common and effective. The patterns can be
precomputed and stored in a table. Using a bit-board rep-
resentation they can be easily looked-up. We remark that
we take special care of walls which block corner pieces.

For example, in Figure 6 the piece ona4 is blocked
in three ways going to the centre, whereas the piece on
h4 is only blocked in two centre directions. In the eval-
uator, we distinguish between walls which block two or
three centre directions. The piece onh8 is blocked only
in two directions, but we evaluate this position as if it was
blocked in 3 centre directions. The totally isolated piece
on a8 is evaluated as if there were two walls which both
block the piece in three directions. The pieces onb1 and
c1 are completely blocked, but we take only the two 3-
centre-directions blocks into account. Thus, we only look
at certain blocking patterns for edge pieces.

4.7 Connectedness

The connectedness feature is based on the basic principles
of threats and solid formations. It measures the pairwise
connections between the pieces. We reward positions with
high connectedness; it is hoped that they eventually will be
connected in one unit or will create threats to win.

In MIA we compute the average number of connec-
tions of a piece. In some evaluation functions the total
number of connections is taken into account (e.g., YL),
but this could implicitly be a material advantage. Any
kind of material feature in LOA evaluation functions can
be dangerous because the program might wildly capture
pieces. This feature does not take into account whether

a connection is important. To distinguish among connec-
tions, a global look at the board would be needed, which
is time consuming. The number of connections for each
side in each line configuration can be precomputed as is
done with the mobility feature.

Of course the connectedness feature is highly corre-
lated with the concentration feature and the quads fea-
ture. Though each has its own merits, these three features
should be carefully tuned consequently.

4.8 Uniformity

The uniformity feature is based on the basic principle of
solid formations. It is used to achieve a uniform distribu-
tion of the pieces [11] to counterbalance the negative ef-
fects of the centre-of-mass approach. It prevents that one
or more pieces become too remote from the main group.

In MIA this is done in a way which is primitive but
effective. The smallest rectangular area covering the dis-
tributed pieces is computed. The smaller the area is, the
higher the reward is. An analogous implementation was
first realised in the program YL [5].

4.9 Player to Move

The player-to-move feature is based on the basic principle
of the initiative. It rewards the moving side. Having the
initiative is mostly an advantage in LOA [34] like in many
other games [33].

Since MIA is using variable-depth search(because of
the adaptive null move, the multi-cut, and quiescence
search) not all leaf nodes are evaluated at the same depth.
Therefore, leaf nodes in the search tree may have a differ-
ent player to move, which is compensated in the evalua-
tion function. This is done by giving a small bonus to the
side to move.

4.10 Caching certain Features

It is possible in our evaluation function to cache computa-
tions of certain features, which can be used in other posi-
tions. For example, let us assume that we investigate the
moveb8-c8 in Figure 2 and evaluate the resulting position.
If we next investigateb8-b7 we notice that certain prop-
erties of White’s position remain the same (e.g., the num-
ber of pieces, centre-of-mass, the number of connections),
whereas others can change (e.g., moves, blockades). It is
easy to see that we do not have to compute the concentra-
tion, centralisation, centre-of-mass position, quads, con-
nectedness, and uniformity for White again. Evaluation of
these six features, which are independent of the position
of the other side, are stored in an evaluation cache table.
In the current evaluation function this gives a speed-up of

6

-89-

HKameko
Rectangle



at least 60 per cent in the number of nodes investigated per
second.

5 MIA at the Computer Olympiads

MIA has participated in six Computer Olympiads. In
2000, MIA I finished third at the 5th Computer Olympiad.
In retrospect its evaluator was primitive, although MIA I
won a game against the runner-up MONA and the win-
ner YL. In 2001, the tournament program (MIA II) shared
the first place with YL in the regular tournament at the
CMG 6th Computer Olympiad. The play-off match was
won by YL. The improved MIA III finished second at the
7th Computer Olympiad in 2002. The program scored 1.5
points out of 4 against the much improved winner YL.
MIA IV won the 8th Computer Olympiad in 2003, los-
ing only one game against BING. At the 9th Computer
Olympiad (2004) MIA 4.5 won the the tournament scor-
ing 11.5 points out of 12. In Turin, Italy, 2006, MIA 4.5
won the 11th Computer Olympiad with a perfect score.

References

[1] S.G. Akl and M.M. Newborn. The principal con-
tinuation and the killer heuristic. In1977 ACM An-
nual Conference Proceedings, pages 466–473. ACM
Press, New York, NY, USA, 1977.

[2] L.V. Allis. Searching for Solutions in Games and
Artificial Intelligence. PhD thesis, Rijksuniversiteit
Limburg, Maastricht, The Netherlands, 1994.

[3] L.V. Allis, H.J. van den Herik, and I.S. Herschberg.
Which games will survive? In D.N.L. Levy and
D.F. Beal, editors,Heuristic Programming in Artifi-
cial Intelligence 2: the Second Computer Olympiad,
pages 232–243. Ellis Horwood, Chichester, England,
1991.

[4] V.V. Anshelevich. A hierarchical approach to com-
puter hex.Artificial Intelligence, 134(1-2):101–120,
2002.

[5] D. Billings and Y. Björnsson. Search and knowledge
in lines of action. In H.J. van den Herik, H. Iida, and
E.A. Heinz, editors,Advances in Computer Games
10: Many Games, Many Challenges, pages 231–248.
Kluwer Academic Publishers, Boston, MA, USA,
2003.

[6] Y. Björnsson. Selective Depth-First Game-Tree
Search. PhD thesis, University of Alberta, Edmon-
ton, Canada, 2002.

[7] Y. Björnsson and T.A. Marsland. Multi-cut alpha-
beta pruning. In H.J. van den Herik and H. Iida, ed-
itors,Computers and Games, Lecture Notes in Com-
puting Science 1558, pages 15–24. Springer-Verlag,
Berlin, Germany, 1999.

[8] D.M. Breuker, J.W.H.M. Uiterwijk, and H.J. van den
Herik. Replacement schemes and two-level tables.
ICCA Journal, 19(3):175–180, 1996.

[9] D. Bush. An introduction to TwixT.Abstract Games,
1(2):9–12, 2000.

[10] S. Bushinsky, 2004. Personal Communication.

[11] C. Chaunier and K. Handscomb. Lines of action
strategic ideas – part 4.Abstract Games, 2(1):12–
14, 2001.

[12] H.H.L.M. Donkers, J.W.H.M. Uiterwijk, and H.J.
van den Herik. Admissibility in opponent-model
search. Information Sciences, 154(3-4):119–140,
2003.

[13] C. Donninger. Null move and deep search:
Selective-search heuristics for obtuse chess pro-
grams.ICCA Journal, 16(3):137–143, 1993.

[14] D. Dyer. Lines of Action Home-
page. http://www.andromeda.com/people/
ddyer/loa/loa.html, 2000.

[15] D. Eppstein. Dynamic Connectivity in Digital Im-
ages. Information Processing Letters, 62(3):121–
126, May 1997.

[16] S.B. Gray. Local properties of binary images in
two dimensions.IEEE Transactions on Computers,
20(5):551–561, 1971.

[17] K. Handscomb. Lines of action strategic ideas – part
1. Abstract Games, 1(1):9–11, 2000.

[18] D. Hartmann. Butterfly boards.ICCA Journal, 11(2-
3):64–71, 1988.

[19] T. Hashimoto, J. Nagashima, M. Sakuta, J.W.H.M.
Uiterwijk, and H. Iida. Automatic realization-
probability search. Internal report, Dept. of Com-
puter Science, University of Shizuoka, Hamamatsu,
Japan, 2003.

[20] E.A. Heinz. Adaptive null-move pruning.ICCA
Journal, 22(3):123–132, 1999.

[21] D.E. Knuth and R.W. Moore. An analysis of alpha-
beta pruning.Artificial Intelligence, 6(4):293–326,
1975.

7

-90-

HKameko
Rectangle



[22] L. Kocsis, J.W.H.M. Uiterwijk, and H.J. van den
Herik. Learning time allocation using neural net-
works. In T.A. Marsland and I. Frank, editors,Com-
puters and Games, Lecture Notes in Computer Sci-
ence 2063, pages 170–185, Berlin, Germany, 2001.
Springer-Verlag.

[23] L. Kocsis, J.W.H.M. Uiterwijk, and H.J. van den
Herik. Move ordering using neural networks. In
L. Montosori, J. Váncza, and M. Ali, editors,Engi-
neering of Intelligent Systems, Lecture Notes in Arti-
ficial Intelligence, Vol. 2070, pages 45–50. Springer-
Verlag, Berlin, Germany, 2001.

[24] T.A. Marsland. A review of game-tree pruning.
ICCA Journal, 9(1):3–19, 1986.

[25] T.A. Marsland and M. Campbell. Parallel search of
strongly ordered game trees.Computing Surveys,
14(4):533–551, 1982.

[26] A. Reinefeld. An improvement to the Scout search
tree algorithm.ICCA Journal, 6(4):4–14, 1983.

[27] S. Sackson.A Gamut of Games. Random House,
New York, NY, USA, 1969.

[28] M. Sakuta, T. Hashimoto, J. Nagashima, J.W.H.M.
Uiterwijk, and H. Iida. Application of the killer-
tree heuristic and the lamba-search method to lines
of action. Information Sciences, 154(3–4):141–155,
2003.

[29] J. Schaeffer. The history heuristic.ICCA Journal,
6(3):16–19, 1983.

[30] J. Schaeffer. The relative importance of knowledge.
ICCA Journal, 7(3):138–145, 1984.

[31] J. Schaeffer and A. Plaat. New advances in
alpha-beta searching. InProceedings of the 1996
ACM 24th Annual Conference on Computer Science,
pages 124–130. ACM Press, New York, NY, USA,
1996.

[32] Y. Tsuruoka, D. Yokoyama, and T. Chikayama.
Game-tree search algorithm based on realization
probability. ICGA Journal, 25(3):132–144, 2002.

[33] J.W.H.M. Uiterwijk and H.J. van den Herik. The
advantage of the initiative.Information Sciences,
122(1):43–58, 2000.

[34] M.H.M. Winands. Analysis and implementation of
Lines of Action. Master’s thesis, Universiteit Maas-
tricht, Maastricht, The Netherlands, 2000.

[35] M.H.M. Winands. Informed Search in Complex
Games. PhD thesis, Universiteit Maastricht, Maas-
tricht, The Netherlands, 2004.

[36] M.H.M. Winands, L. Kocsis, J.W.H.M. Uiterwijk,
and H.J. van den Herik. Temporal difference learn-
ing and the Neural MoveMap heuristic in the game
of Lines of Action. In Q. Mehdi, N. Gough, and
M. Cavazza, editors,GAME-ON 2002 3rd Interna-
tional Conference on Intelligent Games and Simu-
lation, pages 99–103, Ghent, Belgium, 2002. SCS
Europe Bvba.

[37] M.H.M. Winands, J.W.H.M. Uiterwijk, and H.J.
van den Herik. The quad heuristic in Lines of Ac-
tion. ICGA Journal, 24(1):3–15, 2001.

[38] M.H.M. Winands, H.J. van den Herik, J.W.H.M.
Uiterwijk, and E.C.D. van der Werf. Enhanced for-
ward pruning. Information Sciences, 175(4):315–
329, 2004.

[39] M.H.M. Winands, E.C.D. van der Werf, H.J. van den
Herik, and J.W.H.M. Uiterwijk. The relative his-
tory heuristic. In H.J. van den Herik, Y. Björnsson,
and N.S. Netanyahu, editors,Computers and Games,
Lecture Notes in Computer Science 3846, pages
262–272, 2006.

[40] A.L. Zobrist. A new hashing method for game play-
ing. Technical Report 88, Computer Science Depart-
ment, The University of Wisconsin, Madison, WI,
USA, 1970. Reprinted (1990) inICCA Journal, Vol.
13, No. 2, pp. 69–73.

8

-91-

HKameko
Rectangle




