
Developments in Monte-Carlo Proof-Number Search

Jahn-Takeshi Saito Guillaume Chaslot Jos W.H.M. Uiterwijk

H. Jaap van den Herik Mark H.M. Winands

MICC-IKAT Universiteit Maastricht

P.O. Box 616, 6200 MD Maastricht, The Netherlands

{j.saito, g.chaslot, uiterwijk, herik, m.winands}@micc.unimaas.nl

Abstract

Over the years, proof-number search has success-
fully been applied to many game domains. Only
recently, the combination of Monte-Carlo samp-
ling and proof-number search was introduced. This
proof-number enhancement applies Monte-Carlo
sampling to initialize proof numbers. This arti-
cle outlines Monte-Carlo Proof-Number Search and
presents two refinements to the algorithm: (1) novel
tuning of standard parameters, and (2) static pat-
tern evaluation. Experiments yield that (1) tun-
ing of parameters can lead to better results than
recorded previously, and (2) static patterns are dif-
ficult to apply directly. Future work will focus on
examining how Monte-Carlo sampling can be car-
ried over to depth-first proof-number search.

1 Introduction

Proof-number search (PNS, [2]) is a tree-search al-
gorithm for finding binary goals, i.e., goals which
can either be reached (yielding a proof) or not
reached (yielding a disproof).

Monte-Carlo Proof-Number Search (MCPNS,
[12]) is a variation of PNS. It was able to double the
speed required for proving goals compared to PNS.
Yet several questions remained open. This article
will investigate two of these previously unanswered
questions: (1) Can further tuning of standard pa-
rameters speed up MCPNS? (2) Do small patterns
suffice to represent domain knowledge (for the game
of Go) such that their application speeds up the
proof procedure?

The structure of this article is as follows. Section
2 provides an outline of PNS and MCPNS. Section 3
describes two possible improvements to MCPNS (1)
tuning standard parameters, and (2) implementing
pattern knowledge. Two small experiments are doc-
umented, one for testing each improvement. The re-
sults of the experiments are discussed and evaluated
in Section 4. Section 5 concludes by summarizing
this work and giving an outlook on future research.

2 PNS and MCPNS

The PNS algorithm performs search on AND-OR
trees. This characteristic renders PNS an attrac-
tive choice for the two-player combinatorial games
domain.

The improvements suggested to extend standard
PNS can be divided into two categories. The first
category contains procedural and implementational
refinements. These yield speed gains by systemat-
ically introducing hash-tables and minimizing the
cost of tree traversal (e.g., df-pn by [10], or PN* by
[13]). The second category contains heuristic exten-
sions of PNS (e.g., [14], [15], [7]). Such extensions
may help ordering branches to reach the proof or
disproof by fewer node expansions.

The MCPNS variation is an instance of a heuris-
tic move-ordering extension for PNS. It applies
Monte-Carlo sampling (MCS, [1]) as follows. Ran-
dom sequences of moves are launched for each
heuristic evaluation to estimate the minimal num-
ber of moves required to prove or disprove a goal.
This number then serves as heuristic evaluation for
newly expanded nodes.

2.1 Proof-Number Search

PNS is a best-first search algorithm for proving or
disproving binary goals in AND-OR trees. For OR-
level nodes, proving one successor node is sufficient
to prove the goal. For proving AND-level nodes,
all successor nodes must be proved. For disprov-
ing OR- or AND-level nodes the corresponding re-
verse holds. PNS ’s best-first heuristic is defined as
follows: expand first the node that promises to re-
quire the least number of further node expansions
to prove or disprove the goal.

A proof number (pn) and a disproof number (dn)
are introduced for each node M. They keep record
of the most promising node in the whole search tree.
Following the heuristic above, pn is the number of
nodes which are at least required to prove the goal
at M. Analogously, dn is the number of nodes which
are at least required to disprove the goal starting
at M. We denote the corresponding pn and dn for
some node X by pn(X) and dn(X) if required by

1

-27-



the context.

The PNS algorithm has two stages which are re-
peated during the search. In the first stage, PNS
descends from the root node to a leaf node with
lowest pn or dn. The numbers pn and dn do
not increase along the path. In OR nodes, the
branch with smallest pn is chosen for descending. In
AND nodes the branch with smallest dn is selected.
When a leaf node L with smallest value is found, L
is expanded. The values of the newly expanded chil-
dren are set as follows: pn = 0 and dn = ∞ in case
the goal is proved, pn = ∞ and dn = 0 in case the
goal is disproved, pn = 1 and dn = 1 otherwise.
According to the number of its children pn(L) and
dn(L) are set. The second stage tracks back from
the leaf node to the root node. Starting at L, pn
and dn are adjusted for all predecessors following
the path back up to the root node.

The repetition of this cycle terminates when
pn(root) = 0 or pn(root) = ∞. In the first case,
the goal is proved as no further node requires to be
expanded. In the second case, a disproof is reached
because an infinite number of expansions would be
required to prove the goal.

PNS produces the correct solution but requires
maintenance of a large search tree.

2.2 Monte-Carlo Proof-Number

Search

The basis for MCPNS is MCS which applies a sim-
ple principle. Random actions gain an evaluation
for a given state S under investigation. In combi-
natorial games, the board configuration constitutes
such a state. A random action here consists of a
random sequence of legal moves. Each sequence is
evaluated, e.g., by scoring the end position of a se-
quence. The value of S is a statistical aggregate of
all random sequence values. The mean of the scores
of all random sequences is an example for such an
aggregate.

MCPNS launches N random sequences with a
fixed length la (i.e., the number of moves) from the
leaf node X to be evaluated. The statistical evalu-
ation performed is a ratio. It takes into account
the number of sequences yielding a proof (N+) for
setting the value of dn. It takes into account the
number of sequences not yielding a proof (N

−
) for

setting the value of pn. It may seem paradoxical
that counting fewer sequences proving the goal cor-
responds to the value of a greater proof number.
The underlying rationale is that the proof number
represents the minimal number of nodes which re-
quire expanding. Thus, a smaller proof number rep-
resents better chances of reaching the goal soon.

More formally the heuristic is hpn(X) = N
−

+1
N

and hdn(X) = (N++1)
N

.

3 Extending MCPNS

As shown in [12], MCPNS can double the speed
of the search process for Life-and-Death problems
in the Go domain by reducing the number of vis-
ited nodes to a quarter compared to standard PNS.
This section proposes two means for extending
MCPNS. Both means target at increasing the speed
of MCPNS even further.

Subsection 3.1 describes tuning of parameters be-
yond the previously documented scope, Subsection
3.2 outlines how to apply domain knowledge by
small patterns.

3.1 Tuning Standard Parameters

In previous research [12], the authors tested the im-
pact of several parameters on MCPNS. It was found
that the speed of MCPNS is controlled mainly by
two parameters, namely: (1) the number N of ran-
dom sequences played at each evaluation, and (2)
the sequence length la (cf. Section 2.2). The
ranges of the parameters which were tested are
N ∈ 3, 5, 10, 20 and la ∈ 3, 5, 10. Within these
boundaries, the solver was found to perform fastest
with smallest N and largest la yielding an increase
of speed by a factor of 2 in comparison with stan-
dard PNS.

This result proposes that small N and large la
are a good choice for speeding up the algorithm but
it leaves unanswered which parameter setting pro-
vides for an optimal speed performance. The num-
ber of sequences N cannot grow arbitrarily small
without impeding the search speed at some point,
because it is bounded by N = 0 (representing the
stage at which no evaluation takes place). Similarly,
la must be limited by an upper bound for achiev-
ing less run time, because playing longer sequences
requires additional evaluation time.

It is not so much of interest to record the strongly
domain-dependent parameter setting of the de-
scribed parameters per se but it is of interest to
utilize an optimal parameter setting for estimating
the algorithm’s maximal speed enhancement.

Thus motivated, a parameter tuning was con-
ducted with N ∈ [1, 4] and la ∈ [8, 25] measuring
the speed and the number of expanded search tree
nodes for this work. The algorithm was tested on a
set of 30 Tsume Go problems as described in [12].

The optimal setting was found to be N = 4 and
la = 25 yielding a 16% increase of speed (on each
test case on average) compared to the best pre-
viously found setting. Omitting small statistical
noise, a single rule characterizes the outcome in de-
pendence of the two parameters within the tested
limits. The rule is: the exploration effort is pro-
portional to the time gain. Parameter settings with
N = 4 produced the fastest results. The bigger the
choice of la the faster the algorithm.

-28-



3.2 Implementing Pattern Knowl-

edge

A common principle of extending heuristic search
is the exploitation of domain-specific knowledge.
This section investigates an instance of combining
domain-specific knowledge in the form of patterns
with MCPNS.

Patterns are a standard means for representing
knowledge in the test domain of computer Go (e.g.,
[9], [3], [4]). A pattern in computer Go is a con-
figuration of intersections. High-level representa-
tions contain features additional to the colouring of
the intersections. Two examples are tactical infor-
mation on connectivity and Life-and-Death status.
The sizes of patterns vary considerably depending
on the application’s purpose. Large-scaled patterns
are employed for openings, while tactical analysis is
often guided by smaller patterns. Patterns can be
hand-tuned or auto-generated ([3], [6], [16], [5]).

The patterns applied in the small experiment de-
scribed in this section are auto-generated 3×3 pat-
terns. They offer the advantage of low pattern-
matching costs. This characteristic is a precon-
dition to any application of MCS as required by
MCPNS because it must be feasible to match each
pattern for each move in each random sequence.
The patterns are generated by statistical ranking
in self play as described in [5]. Each of the 6,561
patterns is assigned with a numerical value repre-
senting the desirability of the move in the pattern’s
centre. The patterns do not account for information
on the edge of the Go board. They were generated
for the whole game and are not specifically tailored
to Life-and-Death problems.

The patterns are employed to alter the proba-
bility distribution of the moves selected for the ran-
dom sequence. Pure MCPNS plays randomly dis-
tributed legal moves in each random sequence im-
plying a uniform distribution of the probability for
selecting a move. This uniform distribution is al-
tered by matching the patterns. Whenever a move
is played in a random sequence on an intersection
I, the pattern values of the effected intersections in
the vicinity of I are updated. The neighbours’ new
pattern values are set according to the matching
patterns. The probability to play at a neighbour
is proportional to its pattern value. Thus, moves
evaluated well by the patterns are more likely to be
played than moves less promisingly assessed by the
patterns.

In a small experiment for this work, the suggested
patterns are found to slow down the proof proce-
dure overall slightly by about 3%. In more detail, a
third of the test problems are solved slightly faster
with patterns than without while the majority is
solved slightly slower. A positive effect of the pro-
cedure can be seen in a decrease in node expansions
of about 6% on average per test case. This effect is
small compared to the reduction of node expansions

by 75% which MCPNS achieves on PNS.

4 Discussion

The results described in the previous section indi-
cate that parameter tuning can improve MCPNS
beyond previously documented limits while the
straight forward pattern application does not yield
an increase in efficiency.

The outcome of the tuning within the space of
parameters that was open for investigation suggests
two conclusions. Firstly, MCPNS yields better re-
sults with more frequent and deeper sampling given
the constraints of the domain found in previous
experiments. Secondly, the speed can still be im-
proved by another 16% (on average per test case)
in addition to the highest previously found speed.

The principal reason for the pattern matcher’s
disappointing performance is the negative trade-off
between the time invested in pattern matching and
the time gained by cutting off nodes. This nega-
tive trade-off in turn could be produced by differ-
ent causes. Two candidates seem particularly likely:
(1) too expansive pattern matching, and (2) too
static evaluation. Too expansive pattern matching
costs could be countered by training patterns specif-
ically for Tsume-Go problems and by only matching
the most promising patterns. A too static evalu-
ation constitues a principle problem. Patterns al-
ter the probability distribution of random moves
statically, i.e., the evaluation is subject to an in-
herent static bias which is not altered in the cause
of developing the game tree. In situations requir-
ing untypical moves, the pattern matcher will sug-
gest to play wrong moves (namely those which are
typically good), because it does not take into ac-
count the search history or any other information
derived from the search process. This effect must
be expected to impact our choice of patterns partic-
ularly strongly because the patterns are very small
and thus untypical moves will occur frequently. A
mechanism for detecting untypical sequences might
change this unwanted effect and render matching
more dynamical.

5 Conclusions and Future Re-

search

This contribution has provided an overview of the
working of MCPNS. It has proposed and examined
two means of extending the algorithm: (1) tuning
of standard parameters, and (2) inclusion of pattern
knowledge. We found experimentally that tuning
could further increase MCPNS’s speed slightly be-
yond what had previously been documented result-
ing in an overall reduction of the time cost to 42%
of the time cost of PNS on the test set. The pat-
tern approach chosen for the current work so far did
not lead to an increase in the algorithm’s efficiency.

-29-



We therefore may tentatively conclude that simple
pattern matching does not seem to be sufficient to
increase the speed of MCPNS. It may be character-
ized as possible reason that that pattern matching
is too slow and too static.

The next research steps will elaborate on three
points: (1) comparing the results with existing work
on initialization in PNS, (2) assessing the possibility
of improving the use of patterns, and (3) applying
MCS to df-pn.

Ad (1). Nagai and Imai [11] propose an enhance-
ment of df-pn (df-pn+) including heuristic initial-
ization of proof and disproof numbers and reports
that the number of nodes visited is thereby reduced
by a factor of 1/6 in Othello endgames. Kishimoto
[8] showed that the total time and the number of
nodes expanded are reduced by a factor of 1/2 by
using heuristic initialization in Tsume-Go problems.
While the first of these two contributions is difficult
to compare with this work because it is applied in
a different domain, the second work described by
Kishimoto [8] seems somewhat comparable. How-
ever, the test sets are different. Future work needs
to account for a direct comparison of the differ-
ent methods and describe if and how the two ap-
proaches mentioned can be combined with the cur-
rent framework.

Ad (2). To improve the pattern approach, we
suggest to reduce the number of patterns by a se-
lection mechanism and to elaborate on a less static
evaluation.

Ad (3). In practical applications, PNS is usu-
ally subject to time constraints and thus replaced
by faster variations. The arguably most prominent
representative of practical PNS variations is df-pn
proposed by [10]. This variation offers two advan-
tages. Firstly, it reduces the memory cost by apply-
ing depth-first search (but it requires a large hash
table). Secondly, it reduces the time cost by avoid-
ing unnecessary traversals. As described above,
MCPNS uses heuristic knowledge to initialize the
proof numbers and achieves a reduction of node ex-
pansions. Because both MCPNS and df-pn differ
without interfering, they can be combined easily.
Future work will therefore investigate the integra-
tion of MCS and df-pn and address the research
question: What is the speed gain of MCS in df-pn
compared to the speed gain of MCS in MCPNS?

Acknowledgements

We would like to thank Bruno Bouzy for his willing-
ness to share the patterns developed in co-operation
with him. This work is financed by the Dutch Or-
ganization for Scientific Research NWO as part of
the project Go for Go, grant number 612.066.409

References

[1] Bruce Abramson. Expected-Outcome: A Gen-
eral Model of Static Evaluation. In IEEE
Transaction on PAMI, volume 12, pages 182–
193, 1990.

[2] L. Victor Allis, Maarten van der Meulen, and
H. Jaap van den Herik. Proof-Number Search.
Artificial Intelligence, 66(1):91–124, 1994.

[3] Bruno Bouzy. Go Patterns Generated by Ret-
rograde Analysis. In Jos W.H.M. Uiterwijk,
editor, The CMG Sixth Computer Olympiad.
Computer-Games Workshop. Technical Re-
ports in Computer Science, CS 01-04. IKAT,
Department of Computer Science, Universiteit
Maastricht, Maastricht, 2001.

[4] Bruno Bouzy and Tristan Cazenave. Computer
Go: An AI Oriented Survey. Artificial Intelli-
gence, 132(1):39–103, 2001.

[5] Bruno Bouzy and Guillaume Chaslot. Monte-
Carlo Go Reinforcement Learning Experi-
ments. In G. Kendall and S. Louis, editors,
IEEE 2006 Symposium on Computational In-
telligence in Games, Reno, USA, 2006. 8 pages
(in print).

[6] Thore Greapel, Mike Goutrie, Marco Krüger,
and Ralf Herbich. Learning on Graphs in
the Game of Go. In Georg Dorffner, Horst
Bischof, and Kurt Hornik, editors, ICANN. Vi-
enna, Austria., volume 2130 of Lecture Notes
in Computer Science, pages 21–25. Springer,
2001.

[7] Tomoyuki Kaneko, Tetsuro Tanaka, Kazunori
Yamaguchi, and Satoru Kawai. Df-pn with
Fixed-depth Search at Frontier Nodes. In Hi-
toshi Matsubara, editor, 10th Game Program-
ming Workshop in Japan, pages 1–8, 2005.
Hakone, Japan. In Japanese, abstract in En-
glish.

[8] Akihiro Kishimoto. Correct and Efficient
Search Algorithms in the Presence of Repeti-
tions. PhD thesis, University of Alberta. Ed-
monton, Canada, 2005.

[9] Takuya Kojima and Atsushi Yoshikawa.
Knowledge acquisition from game records. In
Johannes Fürnkranz and Miroslav Kubat, ed-
itors, Workshop Notes: Machine Learning in
Game Playing. 16th International Conference
on Machine Learning. Bled, Slovania. 1999.

[10] Ayumu Nagai. Df-pn Algorithm for Searching
AND/OR Trees and Its Applications. PhD the-
sis, University of Tokyo. Tokyo, Japan, 2002.

-30-



[11] Ayumu Nagai and Hiroshi Imai. Application of
df-pn+ to Othello Endgame. In Hitoshi Mat-
subara, editor, Game Programming Workshop
in Japan ’96, pages 16–23, 1999.

[12] Jahn-Takeshi Saito, Guillaume Chaslot,
Jos W.M.H. Uiterwijk, and H. Jaap van den
Herik. Monte-Carlo Proof-Number Search for
Computer Go. In H. Jaap van den Herik,
Paolo Ciancarini, and Jeroen Donkers, editors,
Computers and Games 2006. International
Computer Games Association, 2006. 12 pages
(in print).

[13] Masahiro Seo, Hiroyuki Iida, and Jos W.H.M.
Uiterwijk. The PN*-Search Algorithm: Appli-
cation to Tsume-Shogi. Artificial Intelligence,
129(1-2):253–277, 2001.

[14] Seiichi Tanaka, Iida Hiroyuki, and Yoshiyuki
Kotani. An Approach to Tsume-Shogi: Ap-
plying Proof-Number Search with Estimation
Function of Mating. In Hitoshi Matsubara, ed-
itor, Game Programming Workshop in Japan
’95, pages 138–147, Kanagawa, Japan, 1995.
In Japanese, abstract in English.

[15] Seiichi Tanaka and Yoshiyuki Kotani. Check-
mate Search with Checkmate Estimation Func-
tion. In Hitoshi Matsubara, editor, Game Pro-
gramming Workshop in Japan ’96, pages 141–
149, Kanagawa, Japan, 1996. In Japanese, ab-
stract in English.

[16] Erik C. D. van der Werf. AI Techniques for the
Game of Go. PhD thesis, Universiteit Maas-
tricht. Maastricht, The Netherlands, 2004.

-31-


