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Abstract. Realization-Probability Search (RPS) searches deeper after probable moves and shal-
lower after improbable moves. It can efficiently perform a selective search similar to forward pruning
and selective extensions, while using a considerably simpler algorithm in a systematic way. RPS
calculates move-category probabilities from master games. Even without master games, Automatic
Realization-Probability Search (ARPS) enables a computer to acquire move-category probabilities
from self-play games. ARPS learns reasonable search parameters automatically. This paper presents
a game program automatic design scheme with a focus on the tuning of evaluation function within
the ARPS framework. It enables to make a reasonably strong program automatically for any game.
Experiments performed with Lines of Action show the effectiveness of the proposed idea.

1 Introduction

Most approaches to computer game playing are
based on game tree search and position evalua-
tion. While these approaches have been very suc-
cessful for many games including Chess and Oth-
ello, it has been less successful when applied to
games with high branching factors and complex
positions, such as Go and Shogi. One would also
argue that it is still difficult to make a strong pro-
gram for a new game since making a strong pro-
gram needs a lot of domain-specific knowledge.
Therefore, it is currently an important challenge
to create a strong program possibly with little
domain knowledge and less hand-tuning task.

In this paper we propose a method to auto-
matically generate evaluation components to be
used for search control. Using the method, pro-
grammers can tune automatically both an eval-
uation function and search control. The method
is applicable to any game because it does not as-
sume any domain specific knowledge. It also en-
ables to make a stronger program with less cost
than before. Section 2 describes some methods
that have been used for tuning an evaluation func-
tion and search control. Section 3 shows a method
we propose. In Section 4 we apply the proposed
method to our Lines of Action program (T-T).
Section 5 presents the results of self-play exper-

iments and show that the proposed method im-
proves the strength of our program. Finally, con-
clusions are given as well as future works.

2 Related Work

Many ideas to enhance search control and tune an
evaluation function have been proposed. We men-
tion some of them related to our present work.
We first describe the basic idea of Realization-
Probability Search. We then explain the exten-
sion of Realization-Probability Search, called Au-
tomatic Realization-Probability Search. We also
give a short sketch of the Temporal Difference
Learning, '

2.1 Realization-Probability Search

In the Realization-Probability Search (RPS) [9],
at first moves are classified into many categories
by using several features like check, capturing
piece, attack, and so on. Note that a human deter-
mines these features beforehand. Then the statis-
tics of all move categories are obtained from mas-
ter games. Move-category probability reflects how
often masters play such a move.

The probability of a move category is calcu-
lated as follows.

N,

M, =32



M,, represents the probability of a move-category.
N, means the frequency of the chosen move’s cat-
egory and N, the number of times this category
is applicable.

‘The realization probability at a position in a
search is calculated as follows.

RPnyy = RP.zM,

RP, means the realization probability at the par-
ent position.

RPS performs iterative deepening while de-
creasing an upper bound on the realization proba-
bility instead of increasing the search depth. Since
a "probable” move has a large probability while
an ”improbable” one has a small probability, the
search proceeds deeper after probable moves and
shallower after improbable moves. This means
that RPS can efficiently perform a selective search
similar to forward pruning and search extensions,
while using a considerably simpler algorithm in a
systematic way. The fact that GEKISASHI won
the 12th World Computer Shogi Championship is
an indication of the superiority of RPS in Shogi.

2.2 Automatic Realization-Probability
Search

In many games such as LOA we face the prob-
lem of having much fewer good game scores
available for calculating the statistics of the
move categories than in Shogi. Then Automatic
Realization-Probability Search (ARPS) was pro-
posed[2]. It can obtain the move-category proba-
bilities through automatic learning, which makes
RPS in principle applicable to any game.

In ARPS, at first moves are classified into many
categories by using several features chosen by a
human. The initial value of every move-category
probability is set arbitrarily to a fixed value be-
tween zero and one (a value of 0.5 was chosen).
Then many automatic self-play games are played
using RPS. At every turn the number of possible
moves and the chosen move-category at the root
are recorded. After a certain number of games
are played, each move-category probability is re-
calculated. Then the self-play is repeated using
the new probabilities until no significant changes
in the probabilities occur.

Since ARPS calculates the move-category
probabilities through automatic learning, it works
well in a game that has a good evaluation func-
tion. An evaluation function is important in
ARPS to obtain reasonable probabilities. To sum-
marize, ARPS can provide a strong self-learning
mechanical brain for games only when a good
evaluation function and move categorization is
available. ’

2.3 Temporal Difference Learning

Many Al systems use evaluation functions for
guiding search tasks. In the context of strategy
games they usually map game positions into the
real numbers for estimating the winning chance
for the player to move. Evaluation function con-
struction is always a hard problem, even when
focusing only on the particular domains.

There are two important issues: selecting fea-
tures and combining them. In the 1950s Samuel
proposed a way for automatically tuning weight
[6] similar to Temporal Difference Learning or
TD-Learing in short [7].

TD-Learning learns with the predict of the near
future. A computer can tune factors (features)
automatically through self-play games because
TD-Learning does not require teaching signals.
Weights between factors are updated after every
move as follows.

¢
W1 = We + a(Pry1 — P) Z/\t-kaPk
k=1

W is a vector of weights of evaluation element. P
is prediction. P is the wining rate of the position.
« affects the rate of learning. A is the weight for
P. Vw P is the vector of partial derivatives with
respect to each component of W.

TD-Gammon (8], a master-level backgammon
program is an example of learning evaluation
function using the TD-Learning.

3 Automation of tuning

To make a strong game playing system, param-
eters of search control and evaluation function
have to be tuned properly. Applying ARPS af-
ter learning evaluation function by TD-Learning
enable to a make strong program automatically.
To do this, there are following four things to deal
with.

. selecting factors for evaluation function
. tuning factors for evaluation function
. classifying moves into some categories
. calculating move-category probability

W N

ARPS is able to deal with the task (4) auto-
matically. TD-Learning is also able to deal with
the task (2) automatically. This paper shows a
method that can deal with the task (3) automat-
ically. Now only you have to do is selecting fea-
tures.

We classify according to whether a move in-
creases evaluation value of each evaluation ele-
ment, or it reduces to classify moves into some



Table 1. Classifying moves.

f(@) — fa)[g(t') —g(b)[v" — v
Category 1 + + +
Category 2 + — +
Category 3 + - -
Category 4 - + +
Category 5 - + —
Category 6 - — —

categories. The following situations are consid-
ered as an example. There are two evaluation fac-
tors: A and B. The evaluation value of position,
v, is given by the following formula.

v = f(a) +g(b)

f(a) is an evaluation value of factor A, and g(b)
is an evaluation value of factor B. After play-
ing move X, the evaluation value of position
changes as v’. The evaluation value of factor A
also changes f(a’) and the evaluation value of
factor B changes g(b'). Using f(a), g(b), v, f(a’),
g(b') and v, we can classify moves as shown in
Table 1. If f(a) = 10, g(b) = 70, f(a’) = 30 and
g(b’) = 40, move X is classified into Category 3.

The moves that evaluation falls directly are sel-
dom played when search depth is sallow. When
search depth becomes deeper, such kind of moves
could be played because those moves could lead
an advantageous position. However, we expect
that the moves that evaluation raises directly be
more often played than the moves that evalua-
tion falls directly. If all move-category has very
high probability or very low probability, RPS
can search deeper in ”probable” position and sal-
lower in "improbable” position. Our method uses
evaluation factors that mean directly advantage
or disadvantage; therefore we expects all move-
category has very high probability or very low
probability.

4 Application to Lines of Action

We implement our proposed method to Lines of
Action program (T-T) to examine its effective-
ness. There are two reasons why we apply the
method to LOA. One is that we already imple-
ment ARPS to (T-T) and ARPS works well on
(T-T). The other one is that LOA is not so com-
plex. According to [12], the average branching fac-
tor of LOA is about 25 and average game length is
40; therefore we expect that TD-Learning works
well.

Figure 1. The initial position.

We give a short description of the rules of LOA.
Then we show the detail of our method applied
to LOA.

4.1 The rules of LOA

LOA is two persons zero-sum finite certain perfect
information game with 8 x 8 board. The initial
position is given in Figure 1. If stones are side by
side, they are connecting. The goal of this game
is to connect all of player’s stones. Figure 2 is an
example of the terminal position. In this figure
all of black’s stones are connected; therefore this
game is won by Black.

The line has an important meaning, as it is also
the name of this game. Each player must move
its stone. A move takes place in a straight line,
exactly as many squares as there are stones any-
where along the line of movement. A player can
jump over its stones but cannot jump over op-
ponent’s stones. A player can capture opponent’s
stone by landing on them. Figure 3 is an example.

The stone, placing in fourth line from top and
fourth line from left, can move to six squares ar-
rowed in the figure. That stone cannot move left
side because there is own stone in the destination
square. That stone also cannot move down side
because that stones cannot jump Black stone. A
move to down right side is a capture move. If you
want to know more detail, please refer to Home
Page of Mark Winands [11].

4.2 Implementation in LOA program
(T-T)



Figure 2. An example of terminal position.
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Figure 3. An example of legal moves.

Evaluation function learning There are four
evaluation factors used in evaluation function of
(T-T). Referring evaluation factors used in YL
and MIA([1][13]), most strong LOA programs, we
select four factors as follows.

— Relative position evaluation from the center
of gravity

— Line pattern evaluation

— 3x3 pattern evaluation

— Player to move

As relative position evaluation from the center
of gravity, we give values every 0.5 distance. This
factor means concentration of stones. If stones are
concentrate, each stone can easily connect; there-
fore if stones are concentrate, a player can easily
win. The factor of concentration is implemented

Figure4. An example of Line pattern 1.

e

Figure 5. An example of Line pattern 2.

in most LOA programs although the way to im-
plement may differ.

Line pattern evaluation is the factor that evalu-
ates which player has the advantage in a line. For
example, White has more advantage in Figure 4
than in Figure 5 because White can connect eas-
ier in Figure 4 than in Figure 5. (T-T)’s evaluator
evaluates line pattern evaluation if a line is longer
than 5 squares; therefore there are 2382 factors in
Line pattern evaluation.

3x3 pattern evaluation is the factor that eval-
uates which player has the advantage in the 3x3
area around stone. For example, White has more
advantage in Figure 6 than in Figure 7. (T-
T)’s evaluator evaluates 651 3x3-patterns. Line
pattern evaluation and 3x3-pattern evaluation
are implemented to evaluate blocking opponent’s
stones and strength of connection.

The factors of blocking and connectedness are
evaluated in YL and MIA evaluator although the
way to implement may differ. Player to move is
implemented in MIA evaluator. This factor means
an advantage of moving side. (T-T)’s evaluator
calculates the sum of those four factors as an eval-
uation value.

These four factors are well tuned by TD-
Learning. The prediction P is set as follows.

: v
Ri= szgm(m)
v means evaluation value. jFrom the formula for
updating weights, the amount of updating Aw; ;
is given by the following formula.

t

MN=FP(1 — Po)ak;
Aw’:i=a(}>ﬂ+1"‘Pt)Z k( k‘)lk,
k=1

3000

Tk is an input of evaluation i** factor. We ini-
tialize all weights by giving randomized values
distributed from -10 to 10. We decrease a from
100000 to 1. X is set as 0.8 and the threshold
search depth is set as 4. The factors are learned
through 20000 self-play games. The factors of rel-
ative position evaluation from the center of grav-
ity are learned as shown in Table 2 and Figure 8.



evaluation value

distance

Figure 8. Results of factor’s weight learning.
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Figure6. An example of
3x3 pattern 1.

Figure7. An example of
3x3 pattern 2.

Self-play experiments are performed to exam-
ine the accuracy of this evaluation function. We
prepare three types of programs.

— Typel, (T-T) 2002 version
— Type2, (T-T) 2003 (before learning) version
— Type3, (T-T) 2003 (after learning) version

Type 1 is the version that took part in 7th Com-
puter Olympiad held on August 2002 and won the
bronze medal. This version evaluates only the fac-
tor of relative position evaluation from the center
of gravity. The weights of factors are tuned by
hand. Type 2 is the version before learning eval-
uation function and Type 3 is the version after
learning. These three programs are the same ex-

Table 2. Results of factor’s weight learning.

Distance from Distance from
the center | Weight|| the center | Weigh
of gravity of gravity
0, 0.5 2793.86 3.5 578.87
1.0 2508.31 4.0 159.76
1.5 1868.31 4.5 -317.57
2.0 1387.73 5.0 -847.50
2.5 1092.33 5.5 -927.62
3.0 832.42 6.0 ~ -233.42

cept evaluation functions. Their search algorithm
is brute force.

100 self-play games are performed under the
five different conditions on time control: 10 sec-
onds per a move, 20 seconds per a move, 30 sec-
onds per a move, 5 ply and 6 ply.

We show, in Table 3, the experimental results.
We deal with a draw game as 0.5 win and 0.5
lose. Type 3 won under all conditions of time con-
trol against Type 1 and Type 2; therefore Type 3
could learn the best evaluation function.

Search control learning Four factors are se-
lected as evaluation factors. Using these factors,
we apply ARPS. Unfortunately, we cannot use the
factor of “player to move” because moving side
changes after moving any kinds of moves; there-
fore all moves reduce evaluation value of player
to move. Using another three factors, we classify
moves into groups shown in Table 4.

Using the evaluation function learned in the
previous experiment, we apply ARPS with the
move categories. We initialize all move-category



Table 3. The results of self-play experiment.

conditions of stopping search]10 sec/move|20 sec/move|30 sec/move| 5 ply [6 ply

Typel - Type3 37-63

40-60 43-57  |47.5-52.5|32-68

Type2 - Type3 0-100

0-100 0-100 0-100 |0-100

Table 4. Move categories.

Relative] Line | 3x3
position|pattern|pattern|jtotal

+

Category 1
Category 2
Category 3
Category 4
Category 5
Category 6
Category 7
Category 8
Category 9
Category 10
Category 11| -
Category 12| —
Category 13| —
Category 14| —
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Table 5. Results on the learned move-category prob-
abilities.

Category |probability] Category |probability
Category 1| 41.28% | Category 8| 4.87%
Category 2| 18.91% | Category 9| 0.98% |
Category 3| 3.86% |Category 10| 4.20% |
Category 4| 21.04% [Category 11| 3.68%
Category 5| 4.97% [Category 12| 4.96% |
Category 6] 8.22% |Category 13| 2.81%
Category 7| 6.11% |Category 14| 1.62%

probability as 50% before applying ARPS.
Through 500 self-play games under the 5-ply
search, we calculate move-category probability.
The move-category probabilities given by ARPS
is shown in Table 5 and Figure 9.

5 Experiment

Self-play experiments are performed to evaluate
our method. We prepare four different programs
for the experiments.

- Type 1, (T-T) 2002 version

— Type 2, (T-T) 2003 (before learning) version

— Type 3, (T-T) 2003 (after learning) version

— Type 4, (T-T) 2003 (after apply ARPS) ver-
sion

Type 1, Type 2 and Type 3 are used experiment
performed in Section 4.2. Type 4 is the version
that applied ARPS to Type 3. These programs
are same except evaluation function and search
control. 100 self-play are played under the four
conditions of time control: 10 seconds per a move,
20 seconds per a move, 30 seconds per a move and
1,000,000 search positions.

We show, in Table 6, the results of the experi-
ments. Since type 4 is applied ARPS, it took an
extra cost for classifying moves. The search speed
of Type 1 is 100,000 positions per second, Both
Type 2 and Type 3 search 58,000 positions per
second, while Type 4 searches 36,000 positions
per second in the initial position. Type 4 has more
complex search control and evaluation function
than other programs and won against other pro-
grams under the condition of time control when
it searches 1,000,000 positions.

This means that Type 4 has good search con-
trol and accurate evaluation function. Type 4 also
won against other programs under the conditions
of time control when it searches certain times.
Type 4 only lost against Type 3 under the 10
second time control. This is because Type 4 can-
not search sufficiently positions within 10 sec-
ond. From this result, we observe that Type 4 is
stronger than all other programs. In other words,
the proposed method makes (T-T) stronger.

6 Conclusion and Future Work

In this paper we proposed a method that en-
ables to automatically generate evaluation fea-
tures to be used in search control in Auto-
matic Realization-Probability Search. The pro-
posed method enables a programmer to automat-
ically tune both evaluation function and search
control We showed an application in the domain
of LOA using our program (T-T). Experiments
performed showed the effectiveness of the pro-
posed idea.

We will apply the method to other more com-
plicated games such as Azazons or Shogi. The
method needs to select evaluation factors. Kaneko
[3] and other researchers have investigated how to
learn evaluation factors automatically. Following
their ideas, the task for creating a strong game
program will be completely automatic.
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Figure 9. Results on the learned move-category probabilities.

Table 6. The results of experiments.

time control [10 sec/move|20 sec/move[30 sec/move[1,000,000 positions
Typel - Typed| _ 30-70 32-68 34-66 31.5-685
Type2 - Typed 0-100 0-100 0-100 0-100
Type3 - Typed 55-45 42-58 38-62 26-74
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