
An Automatic Tuning of Game Playing System 
based on the Realization-Probability Search 

Jun Na店舗hima1, Tsuyoshi H乱shimot03 ， Makoto Sakuta4 , Jos W.H.M. Uiterwijk5 ，品nd Hiroyuki Iida1,2 

1 Department of Computer Science, Shizuoka University 
2 PRESTO, Japan Science and Technology Agency 

。 Faculty of Engineering, Shizuoka University 
4 School of Science and Engin伺ring， Ishinomaki Senshu University 

5 Department of Computer Scienω， Universiteit M舗.stricht

E-mail: {cs8066 ，hasimoω}@cs.iぱ'.shizuoka.ac伊，
sakuta@isenshu-u.ac.jp , uiterwijk⑬ω.u凶maas.叫， iida@cs.inf.shizuoka訓.jp

Abstract. Realization-Probability Search (RPS) search田 deeper a氏er probable mov，田 and shalｭ
lower after improbable moves. It can efficientIy perform a 田lective 民archsimilar to forward pruning 
and selective extensions, while using a considerably simpler algorithm in a systematic way. RPS 
calculates mov,• category probabilities from master games. Even without master games, Automatic 
Realization-Probability Search (ARPS) enables aωmputer to acquire mov，←ω.tegory probabiliti飽
from selιplayg制nes. ARPS learns reasonable search p紅白netersautomaticaIly. This p晶.per presents 
a game program automatic design scheme with a おcus on the tuning of evaluation function within 
もhe ARPS framework. It enables to make a reasonably strong progr副n automatically for 阻ygame. 
Experiments performed wiもh Lines of Action show the effectiveness of the proposed idea. 

1 Introduction 

Most approaches to computer game playing are 
bωed on game tree search and position evaluaｭ
tion. While these 乱pproaches have been very sucｭ
cessful for many g乱mes including Ch偲s and Othｭ
ello, it hωbeen less successful when applied to 
games with high branching factors and complex 
positions, such ωGo and Shogi. One would also 
argue th乱t it is still difficult to make 乱 strong proｭ
gram for a new g乱me since making a strong proｭ
gram needs a lot of domain-specif� knowledge. 
Therefore, it is currently an important challenge 
to create a strong program possibly with little 
domain knowledge 姐dl倒s hand-tuning task. 

In this paper we propose 乱 method to autoｭ
matically generate evaluation components to be 
us吋 for search control. Using the method, prcト
grammぽs c乱n tune autom乱tically both an eval・
uation function 阻d search control. The method 
is applicable to 岨y game because it does not asｭ
sume any domain spec泊.c knowledge. It also enｭ
ables to make a strongぽ program with less cost 
出an before. Sec色ion 2 describes some methods 
that have been used for tu凶nganev晶luationfuncｭ
tion and seぽ'ch control. Sωtion 3 shows a method 
we propωe. In Section 4 we 叩ply 七he proposed 
method to our Lin関 of Action program (T・T).
Section 5 pr醜nts the results of self-play 田per-

iments and show that the proposed method imｭ
proves the stren広th of our program. Finally，∞n
clusions are given 鎚 wellωfuture works. 

2 Related Work 

Many ideas to e:出anceseぽchcontrol and tune 叩
evalu乱.tion function have been proposed. We menｭ
tion some of them related to our present work. 
We first describe the basic idea of Realizationｭ
Probability Seぽch. We then explain the 位ten

sionofR朗lization-Prob品bility Search, called Auｭ
tomatic Rβalization-Prob油ility Search. We also 
give a short sketch of the Temporal Difference 
Le紅ning.

2.1 Realization-Probability Search 

In the Realization-Probab出ty Search (RPS) [9], 
畠t firs色 moves are class泊.ed into many c乱tegories
by using several featur倒 like check, captur泊g
piece, at色悦k， and so on. Note that 乱 hum叩 deter
min回 these features beforehand. Then the statisｭ
tics of all move categories 紅'eobtained 仕omm個
terg晶mes. Move-category probability refiects how 
often masters play such a move. 
The probability of a move category is calcuｭ

lated as follows. 

Mp= 争
d晶れe



Mpreprωents the probability of a mov←catego.η. 

Np meansthe 仕equencyof the chosen move's catｭ
egory and Ne the number of times this category 
is applicable. 
The re乱.lization probability at a position in a 

search is calculated as follows. 

RPn+l = RPnxMp 

R九 means the realization probability at the parｭ
ent position. 
RPS pぽforms iterative deepening while d争

creasing an uppぽ boundon the realization probaｭ
bility instead of increasing the search depth. Since 
a "probable" move has 乱 large probability while 
阻 "improbable" one has a small probability, the 
search proceeds deeper after probable moves and 
shallower after improbable moves. This means 
that RPS can efficiently perform a selective search 
similar 七o forward pruning and search extensions, 
while using a considぽ乱.bly simpler algorithm in a 
systematic w乱，y. The f:乱ct th乱t GEKISASHI won 
the 12th World Computer Shogi Championship is 
an indication of the superiority of RPS in Shogi. 

2.2 Automatic Realization-Probability 
Search 

In many games such as LOA we face the probｭ
lem of having much fewer good game scores 
available for calculating the statistic酒 of the 
move categories th叩 in Shogi. Then Automatic 
Realization-Probability Search (ARPS) was pro・

posed[2]. It can obtain the mov• category probaｭ
bilities 出rough automatic learning, which makes 
RPS in principle 乱pplicable to any game. 
In ARPS, at first moves ぽeclassified into many 

categories by using several features chosen by a 
human. The iniむial value of every move-category 
probability is set arbitrarily to a fixed value beｭ
tween zero and one (a value of 0.5 was chosen). 
Then many automatic self-play g出nes are played 
田ing RPS. At every turn the number of possible 
mov四 and the chosen move-category at the root 
are recorded. After a cert乱in number of games 
are played, each move-category probability is reｭ
calculated. Then むhe selιplay is repeated using 
the new probabilities until no significa同 changes
in the probabilities occur. 
Since ARPS calcul抗es the move-c乱tegory

probabili七ies 七hroughautomatic learning, it works 
well in a game that has a good evaluation funcｭ
tion. An evaluation function is important in 
ARPS to obtain reasonable probabiliもies. To sumｭ
m位協e， ARPS c阻 provide a strong self-learning 
mechanic乱1 brain for gamωonly when a good 
evaluation function and move categorization is 
available. 

2.3 Temporal Difference Learning 

M乱ny AI systems use ev乱luation functions for 
guiding search tasks. In the context of strategy 
games they usually map game positions into the 
real numbers for estimating the winning chance 
for the pl乱，yer to move. Evaluation function COl1-

struc七ion is alw乱，ys a hard problem, even when 
focusing only on the partic叫乱r domains. 
There are two important issues: selecting feaｭ

tures and combining them. In the 1950s Samuel 
proposed a way for automatically tuning weight 
[6] similar to Tempor乱1 Difference Learning or 
TD・Leari時 in short [7]. 
TD-Learning learns with the predict of the near 

future. A computer can tune fadors (features) 
乱utomatically through self-play games because 
TD・Learning does not require teachinεsignals. 
Weights between factors are updated after every 
move as follows. 

W削 =Wt +叫ん1 - Pt} 乞ν-k\7w凡

W is a vector of weights of evaluation element. P 
is prediction. P is the wining rate of the position. 
αaffects the rate of learning.λis the weight for 
P. ¥7w Pk is the vector of partial derivatives with 
respect to each component of W. 
TD・G乱mmon [8] , a master占vel backgammon 

program is an example of learning evaluation 
function using the TD-Le乱rning.

3 Automation of tuning 

To make a strong game playing system, paramｭ
eters of se乱rch control and evaluation fundion 
have to be tuned properly. Applying ARPS afｭ
ter learning evaluation function by TD-Learning 
enable to a make strong program automatically. 
To do this, there are followin広 four things to deal 
with. 

1. selecting f:乱ctors for evaluation function 
2. tuning factors for evaluation function 
3. classifying moves into some categories 
4. calculating move-category probability 

ARPS is able to deal with the task (4) autoｭ
matically. TD-Learning is also able to deal with 
the task (2) automatically. This paper shows a 
method that can deal with the task (3) automatｭ
ically. Now only you have to do is selecting feaｭ
tures. 
We classiをy according to whether 乱 move inｭ

creωωevaluation value of each ev乱luation ele司

ment, or it reduces to classi宅y moves intoωme 

内
'
u



Table 1. Classifying moves 

f(a') -f(a) g(ll) -g(b) v -v 
Category 1 + + + 
Category 2 + + 
Category 3 + 
Category 4 十 + 
Category 5 + 
Category 6 

categories. The following situations are considｭ
ered as an example. There are two ev品luation facｭ
tors: A and B. The evaluation value of position, 
v , is given by 七he fo11owing formula. 

v = f(α) + g(b) 

f(α) is an evaluation value of factor A，乱nd g(b) 
is an evaluation value of factor B. After playｭ
ing move X , the evalu乱tion value of posi七ion

changes 乱s v'. The evaluation value of factor A 
also changes f(α') and the evaluation value of 
factor B ch乱nges g(b'). Using f(α) ， g(b) , v , f(α') ， 
g(b') and v' , we can cl乱ssify moves as shown in 
Table 1. If f (α) = 10, g(b) = 70, f(a') = 30 and 
g(b') = 40, move X is classif�d into Category 3 
The moves that evaluation fa11s directly are selｭ

dom played when search depth is sallow. When 
search depth becomes deeper, such kind of moves 
could be played because those moves could lead 
an advant明朗凶 position. However, we expect 
七ha七位le moves 七h前 evaluation raises directly be 
more often played than the moves th乱t evaluaｭ
tion fa11s directly. If a11 move-category h乱s very 
high prob乱bility or very low prob品bility， RPS 
can se乱rch deeper in "probable" position and sal・
lower in "improbぬle" position. Our method uses 
evaluation f;乱ctors that mean directly advant唱e

or disadvantage; 七herefore we e却ects all movか
categoηr has ve巧r high probability or veη， low 

probability. 

4 Application to Lines of Action 

We implement our proposed method to Lines of 
Action program (T-T) to examine its effectiveｭ
ness. There are two reωons why we apply the 
method to LOA. One is thωwe already imp!eｭ
men七 ARPS もo (T-T) 阻d ARPS works we11 on 
(T・T). The other one is that LOA is not so comｭ
plex. According to [12J, the avera酔 branching f;乱c・
七orof LOA is about 25 and 乱veragegame length is 
40; therefore we expect 出品，t TD-Learning works 
we11. 

-3-

Figure 1. The initial posiもlon.

We give a short description of the rules of LOA. 
Then we show the detail of our method 叩plied

to LOA. 

4.1 The rules of LOA 

LOA is two persons zero-sum f�ite certain perfect 
information g乱me with 8 x 8 board. The initial 
position is given in Figure 1. If stones are side by 
side, they are connecting. The goal of this game 
is to connect a11 of player's stones. Figt江e2isan
世間lple of the terminal position. 1n this f�ure 
all of black's ston偲紅e connectedj therefore this 
game is won by Black. 
The line h品s an important meaning, as it is also 

the name of this game. E乱ch player must move 
its stone. A move takes place in a straight line, 
exactlyωmany squ紅白 ωthere are stones 乱ny

where along the line of movement. A player can 
jump over its stones but cannot jump ov<ぽ op

ponent's stones. A playぽ C姐 capture opponent's 
stone by landing on them. Figure 3 is an example 
The stone, placing in fourth line 金om top and 

fourth line from !eft, can move to six squぽ関 ar

rowed in the f�ure. Th品t stone cannot move !eft 
side because there is own stone in the des七ination
square. That stone also cannot mo'刊 down side 
because that stones c叩not jump Black stone. A 
move to down right side is a capture move. If you 
want to know more detail, p!eωe refer to Home 
Page of Mark Winands [11 J. 

4.2 Implementation in LOA program 
(T-T) 



Figure 2. An example of terminal position 

Figure 3. An example of legal moves. 

Evaluation function learning There are four 
evaluation f，乱ctors used in evalu剖ion function of 
(T・T). Referring ev乱luation factorsωed in 礼

and MIA([1][13]) , most strong LOA progr品ms ， we 
select fo ur f，乱ctors as follows. 

-Relative position evaluation from the center 
of gravity 

-Line pattern evaluation 
-3x3 p抗tern evaluation 
-Player 七o move 

As relative position evaluation 仕om the center 
of gravity, we give values every 0.5 distance. This 
faεtor means concentr乱tionof stones. If stone酒乱re
concentr乱，te ， each stone can easily connectj thereｭ
fore if stones are concentrate，乱 player can eωily 
win. The factor of concentration is implemented 

-4-

Eコ ロ
Figure4. An example of Line pattern 1. 

C温 ロ
Figure 5. An example of Line pattern 2. 

in most LOA progr乱ms although the way to imｭ
plement may differ. 
Line pattern 肝心uation is the factor that evaluｭ

a総s which player has the advantage in a line. For 
exarnple, White has rrωre advantage in Figure 4 
七han in Figure 5 bec山総 White c乱n connect e時
ier in Figure 4 th叩 in Figure .5. (T-T)'s evaluator 
evaluates line pattern evaluation if a line is longer 
th叩 5 sq凶.reS j t民間fo閃t.here are 2:382 factors in 
Line pattern evaluation. 
3x3 pattern evaluation is the factor that evalｭ

uates which player has the advantage in the 3x3 
area 乱round stone. For e..'Cample, White has more 
advantage in Figぽe 6 than in Figurち 7. (Tｭ
T)'s evaluator evaluates 651 3x3-patterns. Li田
pattern evaluation and 3x3・p乱，ttern evaluation 
are implemented to evaluate blocking opponent's 
stones and strength ofωnnection. 
The factors of blocking and ∞nnectedness are 

evaluated in YL and MIA evaluator although the 
way to irnplernent rnay differ. Player to move is 
implernented in MIA ev品luator. This factor rnealls 
an advantage of moving side. (T -T) 's ev叫uator

calculates the surn of those four factors as 乱nevalｭ
u乱tion value. 
These four factors are well tuned by TDｭ

Learning. The prediction P is set. as おllows

Pzszgm(-L) 
3000 

v means ev乱luation value. i,Frorn t.he formula for 
updat.ing weight.s, the amoullt of upd乱ting .óu勾"
is given bヴ the following formula. 

十入吋凡(ト凡)Xk ， i
A叫，も =α(九+1 -Pt ) 、、

と~ 3000 

Xk ,i is an input of evaluation ith factor. We iniｭ
tialize all weights by giving randomized values 
distributed 仕om ・ 10 to 10. We de氾reaseα 仕om

100000 to 1.入 is set as 0. 8 叩d the threshold 
search depth is set as 4. The factors a民 learned

仕立ough 20000 selιplay games. The factors of relｭ
ative posit.ion evaluatioll 仕om the center of gravｭ
ity are learnedωshown inτ'able 2 乱nd Figure 8 



3∞o 

2ぬO

2∞。

3" > 1闘

33 雪. 1側500 
。

<> 

-1∞o 

distance 

Figure 8. Results of factor's weight learning. 

Figure 6. An example of 
3x3 pattern 1. 

Figure 7. An example of 
3x3 pattern 2 

Selιplay experiments are performed to examｭ
ine the accuracy of this evaluation function. We 
prepare three types of programs 

-Type1, (T -T) 2002 version 
-Type2, (T-T) 2003 (before learning) version 

-Type3 , (T・T) 2003 (拍er learning) version 

Type 1 is the version that took part in 7th Com司
puter Olympiad held on August 2002 乱nd won t.he 
bronze medal. This version evaluates only the facｭ
tor of relative position evaluation 仕om the center 
of gravity. The weights of factors are tuned by 
hand. Type 2 is the version before learning ev乱1-

uation function and Type 3 is the version after 
learning. These three programs are the s乱m守 ex-

-5-

Table 2. Results of factor's weight learning. 

Distance from Distance from 
もhe center Weight the center Weigh 
of gravity 。f gravity 

0, 0.5 2793.86 3.5 578.87 
1.0 2508.31 4.0 159.76 
1.5 1868.31 4.5 -317.57 
2.0 1387.73 5.0 -847.50 
2.5 1092.33 5.5 -927.62 
3.0 832.42 6.0 - -233.42 

cept evalua七ion functions. Their search algorithm 
is brute force 

100 self-play games are performed under t.he 
five different condit.ions on time control: 10 sec・
onds per a move, 20 seconds per a move, 30 secｭ
onds per a move, .5 ply and 6 ply. 
We show, in Table 3, the experimental results. 

We deal with a draw game as 0.5 win 叩d 0.5 
lose. Type 3 won under all conditions of time conｭ
trol against Type 1 and Type 2; therefore Type 3 
could learn the best evaluation function. 

Search control learning Four factors are 骨
lected as evaluation factors. Using these f乱ctors ，

we apply ARPS. Unfortunately, we cannot use the 
factor of “player to move" because moving side 
changes after moving any kinds of moveSj 七here

fore all moves reduce evalu乱tion value of player 
to move. Using another three factors， 鴨 classi王y
moves into groups shown in Table 4 
Using the evaluation function learned in the 

previous experiment , we apply ARPS with the 
move categories. We initialize all move-category 



Table 3. The resu1ts of se1f-p1ay experiment. 

τ子戸1-TYPe3 
τ'ype2 -τ'ype3 

日.ble 4. Move ωもegories.

Re1晶，tive Line 3x3 
position patもempattem tota1 

Category 1 + + + + 
Category 2 + + ー + 
Category 3 + + 
Category 4 + + + 
Category 5 + + 
Category 6 + + 
Category 7 + 
Cate伊ry8 一 + + + 
Category 9 + + 
Category 10 一 + 一 + 
Category 11 + 
Category 12 + + 
Category 13 一 + 
Cat句;ory 14 

Table 5. Res叫ts on the 1eamed move-category probｭ
晶bilities.

Category proba.bility Category probability 
Category 1 41.28% Category 8 4.87% 
Category 2 18.91% Ca;句ory 9 0.98% 
Ca;旬'gory 3 3.86% Category 10 4.29% 
Category 4 21.04% Cat暗;ory 11 3.68% 
Ca;旬'gory 5 4.97% Category 12 4.96% 
Category 6 8.22% Ca;旬gory 13 2.81% 
Ca;旬'gory 7 6.11% Cat居'gory 14 1.62% 

pro.ba.bility 鋪 50% befo.re a.pplying ARPS. 
Thro.ugh 500 selιpla.y g，問問 under もhe 5・ply
se町ch， we calc叫ate mO'時catego.ry pro.bability. 
The move-category pro.babiliti句 giv叩 by ARPS 
is shown in Table 5 and Figure 9. 

5 Experiment 

Self-play expぽ加ents are perfo.rmed to eva1uate 
o.ur metho.d. We prepare four different pro.grams 
for the experiments. 

一Type 1, (T・T) 2002 version 
-Type 2, (T-T) 2003 (before leぽ凶時)柑sion
-巧pe 3, (T-T) 2∞3 (after leぽ瓜喝) version 
-苛pe 4, (T-T) 2003 同er 乱，pply ARPS) ver-

sion 

Type 1，苛pe 2 and 苛pe 3 are used 四Pぽiment

performed in Section 4.2. Type 4 is the version 
th叫乱.pplied ARPS to. Type 3. Th飽e programs 
ぽ'e same except evaluation function a.nd search 
contro1. 100 self-play 紅e played under the four 
conditions of time control: 10蹴:ondsper a. move, 
20 関condsper a move, 30 seconds per a move and 
1,000,000 se町chp回itio.田.

We show, in Table 6, the 悶ults of 出.e experiｭ
ments. Since type 4 is applied ARPS, it took 阻
慌tra ∞st for clas自ifying moves. The search speed 
of Type 1 is 100,000 positions per second, Both 
Type2 組d Type 3 search 58，0∞ positions per 
鉛cond， while Type 4 seぽches 36,000 positio国
per second in the iniむialposition. Type 4 h鎚 more
compl位 search control and evaluation function 
色han other programs 阻.d won 乱gainst other prcト
grams under ぬ.e conditio.n of time control when 
it searches 1 ，0∞，000pωitio.悶.
This m脇田色hat Type 4 hωgood search conｭ

trol 姐d accur晶，teeva1uation function. Type 4 also 
wona広島i田to山町 programs under 出e conditions 
of time control when i色配arches ce比ain tim関.
巧pe 4 only lost agai凶巧pe 3 undぽ the 10 
second time co凶ro.1. This is bec乱国:e Type 4 c乱n
not search sufficiently pωitions wiぬin 10 民c・
ond. Fﾌ'om this 閤ult ， we obsぽve that 巧pe 4 is 
strongぽ th姐 all othぽ prc寧a.ms. In other words, 
もhe proposed method makes (T・T) stronger. 

6 Conclusion and FUture Work 

In this pa叩.peぽr 鴨 pro.p卯os鴎制ed 晶 m悶etぬho吋d t出ha抗，t e.偲n
畠油bles tωo 畠叫utωom晶“色icall:砂y g酔eneぽra“，te e例va叫山lua“もion fea-F 

色ure飽自 tωo b加e used 泊n s飽e釘dぬ1 control in Autoｭ
m 乱説副t“ic Re伺a晶叫liz
p伺e吋dm且eωth加lod 叩畠.bles a progr畠mmぽ to 乱utomat

ically 七四e bo出 evaluation function 姐.d search 
∞ntrol We sh側ed an applicatio.n in 出e domain 
of LOA using our program (T.・T). Experiments 
performed sh側ed the effec色iven闇 of the prcト
posed id田.
We will a.pply the method to othぽ more com・

plicated gam偲 suchω Azazons or Sho.gi. The 
methodn関dsto select 例畠lua;色ionfacωrs.K叩位。
問阻.d othぽ E慨ぽcher百 haveinv醐iga'ぬdhowω
learn eva1uation facto.rs auto.matically. Fo.llowing 
色heir ideas, the 色畠sk 量:>r cre飢ing a sもrong game 
program will be completely automatic. 

n
H
U
 



45 

40 

235 
-8 30 
ls. 25 

Lo 
@ 

11 15 
@ 

~ 10 

5 

0 

Figure 9. Results on the learn凶 mov←category probabilities. 

Table 6. The results of experiments. 

References 

1. Billings, D. and Björnsson, Y.: SEARCH AND 
KNOWLEDGE IN LINES OF ACTION , acｭ
cepted for publication , ACGI0 (2003) 

2. Hashimoto, T. , Nagashima, J. , Sakuta， 恥1. . Uiterｭ
wijk , J.W.H.M. and Iida,H.: Application of Realｭ
ization Probability Search for Any Games -a case 
study using Lines of Action-" , Game Programing 
Workshop 2002 

3. Kaneko, T. and Yamaguchi. K.: Pattern Selection 
Problem for Automatically Generating Evaluaｭ
tion Functions for General Game Player, The 7th 
Game Programming Workshop, pp.28-35 (2002) 

4. Matsubara, H. and Takizawa, T.: How Shogi Prか
grams Become Such String As Amature ιdan ， 
Journal of the Japanese Society for' Artif�ial Inｭ
telligence, Vo1.l6, No.3, pp.379・384 (2001) 

5. Sakuta, M. , Nagashima, J. , Hashimoto, T. and 
lida, H ・

Application of もhe methods developed in the 
endgame search of shogi to Lines of Action, 
Journal of the lnformation Proc田sing Society of 
Japan, Vo1.43, No. lO, pp.2964-2972 (2002) 

6. Samuel, A.L.: Some studies in machine learning 
llsing the game of checkers, IBM Journal of Reｭ
search Development 3(3) 211-229. (1959) 

7. Sutton, R. S.: Learning to predict by the methods 
of temporal differences, Mach. Learning 3, (1988) 、

pp.9・44

-7-

8. Tesauro, G.: Temporal Difference Learning TD・

Gammon , (',omm. ACM 38(3) 58-68. (1995) 
9. Tsuruoka, Y., Yokoyama, D., Maruyama, T. and 

Chikayama, T.: Game-Tree Search Algorithm 
Bω吋 on Realization Probability, The 6th Game 
Programming Workshop, pp.17-24, (2001) 

10. Usui , K. , Suzuki, T. and Kotani, Y.: Parameter 
Learning Using Temporal Difference in Shogi, 
http ://shouchan.ei. tuat.ac .jp/ ーshougiJold-shougi/ 
presentation/ 1999-1 0-07P .pdf 

11. Winands, M.H.M.: The Rules, Mark's LOA 
Homepage, 
http://www.cs.unimaas.nl/m.winands/loa/ 
rules.html 

12. Winands, M.H.M.: Analysis and Implementation 
of Lines of Action, M.Sc. Thesis, Universiteit 
M掛川cht， The Netherlands (2000) 

13. Winands, M.H.M. , van den Herik, H.J. and Uiterｭ
wijk, J.w.H.M.: AN EVALUATION FUNCｭ
TION FOR LINES OF ACTION, ac誄ted for 
publicatiol1 , ACGIO (2003) 


