Pattern Selection Problem for Automatically Generating
Evaluation Functions for General Game Player

KANEKO Tomoyuki

YAMAGUCHI Kazunori

KAWAI Satoru
Graduate School of Arts and Sciences
The University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, JAPAN
{kaneko, yamaguch, kawai }@graco.c.u-tokyo.ac.jp

Abstract

Patterns are widely used to make evaluation functions,
however, the identification of suitable patterns in a game-
independent manner is difficult. Our approach is (1) to
generate patterns by translation of such features written
in logic that can be generated without assistance by ex-
pert players of a target game, and (2) to select a suit-
able patterns among generated ones. The problem is that
we have to examine a large number of patterns in the
selection, in order to generate accurate evaluation func-
tions. We propose a lightweight selection method based
on statistics and an optimization technique on pattern
matching that reduces the cost of selection. Experiments
on Othello showed significant improvements on accuracy
of evaluation functions made of patterns selected by the
proposed method.

1 Introduction

1.1 General game players

One of the most ambitious goals of artificial intelligence
research is the development of a general game player that
can learn and play an arbitrary instance of a certain class
of games. Strong game programs must have an accurate
and efficient evaluation function that estimates the result
of a match of a position. Since an evaluation function
is specific to a target game, the development of general
game players requires the automatic construction of eval-
uation functions without assistance by human experts.

1.2 Learning of evaluation functions

A popular way to construct an evaluation function is to
make it a (linear) combination of evaluation primitives
called features, and adjust the parameters of the combi-
nation [2].

There is a general method that generates features writ-
ten in logic programs (we call them logical features) (4],
however, logical features are not practical due to slow
evaluation of logic programs. On the other hand, practi-
cal evaluation functions are constructed by using a large
number of patterns as features [3, 2]. However, mechani-
cal identification of suitable patterns is difficult, and there
is few game-specific techniques (e.g. [12]).

1.3

Our goal is to construct efficient and accurate evaluation
functions by the combination of general methods:

Our approach

1. generation of patterns by the two steps; (a) gener-
ation of logical features, and (b) extraction of pat-
terns from them,

2. selection of suitable patterns,

3. composition of a diagram so as to perform incre-
mental pattern matching in position evaluation.

This paper is organized as follows. The next section
reviews related researches and problems. After the intro-
duction of basic definitions in Sect. 3, methods of pattern
generation and position evaluation are briefly explained
in Sect. 4 and Sect. 5. Then, Sect. 6 proposes a method
of selecting patterns. Sect. 7 shows the experimental re-
sults in Othello and Sect. 8 concludes this paper.

2 Related Work and Problems

Fawcett developed a general method that constructs fea-
tures written in logic programs by transformation of the
specification of a target game [4]. It is general and ac-
tually applied to many games; Othello, a single-agent
search problem[4, 5], symmetric chess like games [15]
and a variant of Shogi [10]. However, logical features

12 3 45 6 7 8

s®

12 3 456 7 8

T Q Mo p oo
FQ mmo 00U e

owns(d5, x). owns(e4, x).
owns(d4, o). owns(e5, 0).

owns(c4, x), owns(d4, x).
owns(d5, x). owns(e4, x).
owns(e5, o).

blank(al). blank(a2). ... blank(al). blank(a2). ...

Figure 1: Othello initial position (left) and a position af-
ter black played c4 (right). Facts below each board define
a position.

prohibitively cost on position evaluation. In spite of re-
cent improvements achieved by a combination of opti-
mization techniques [11, 8], the efficiency does not reach
to that of evaluation functions made of patterns [9].

As for the evaluation, patterns can be evaluated much
more efficiently than logical features. Buro developed
efficient and accurate evaluation functions in Othello,
made of a large number of patterns in fixed shapes [3, 2].
The use of fixed shapes contributes to both accuracy and
efficiency. However, it is difficult for general game play-
ers to automatically identify such shapes.

Recently, we developed a method to generate pat-
terns from logical features [9]. The accuracy of gener-
ated evaluation functions is much improved compared to
those of logical features, but, does reach to that of Buro’s
evaluation functions. The difference is in the number of
patterns used in evaluation functions where Buro used
more than 270,000 patterns while we used only about
8,000 patterns at that time. Since it is not difficult to gen-
erate a large number of patters in our scheme, the main
problem is the selection of patterns. The main contribu-
tion of this paper is a selection methods applicable to a
large number of candidates and improvements on pattern
matching by using cube extraction.

3 Specification of a Game

This section introduces how to write the specification of a
game in logic, on which the generation method depends.

3.1 Positions and domain theory

A position, which is an intermediate status of a match,
is described by a set of special facts. A fact is a clause

legal_move (Square, Player):-
square (Square), bs(Square,-End,Player).
bs(S1,83,P):-blank(S1), opponent (P,0Opp),
neighbor(Si,D,S82), span(S2,S3,D,0pp),
neighbor(S3,D,S4), owns(P,S4).
span(S1,S2,D,0wner) : -
square (S1) ,square(S2),
player (Owner), owns(Owner, S1),
neighbor(S1,D,S3),span(S3,S2,D,0wner) .
span(S,S,D,Owner) : -
square(S) ,player (Owner) ,owns (Owner, S) ,
direction(D).
line(S,S,D) :-square(S),direction (D).
line (From,To,D) : -
neighbor(From,D,Next), line(Next,To,D).
opponent (x, o). opponent (o, x).
direction(n) .direction(ne) .direction(e).
direction(se) .direction(s) .direction(sw).
direction(w) .direction(nw) .
square(al) . square(a2). square(a3).
(-+-)
square(d2) . square(d3). square(d4).
neighbor(al, s, a2). neighbor(a2, n, al).
neighbor(a2, s, a3). neighbor(a3, n, a2).
(---)
neighbor(c4,ne,d3) . neighbor(d3,sw,c4).

Figure 2: A sample domain theory of Othello (4 x 4)

without body. In Othello, owns and blank represent
a position. For example, the facts defined in the initial
position in Othello and the position after black played c4
are shown in Figure 1. Here, we use x for black, and
use o for white. In the initial position, owns (d5, x),
owns (e4,x), owns (d4,0), owns (e5,0) are de-
fined for squares with a disc. Also blank is defined for
each empty squares.

A domain theory is a main part of the specification of
a game that specify the rules of the game and the goal
conditions. It is described by a set of Horn Clauses. As
an example in Othello, we use a domain theory shown in
Figure 2.

3.2 Logical features

A logical feature is defined as such a Horn Clause in the
predicate logic that predicates in their body are defined
in a domain theory or a position. The following clause is
an example of a logical feature.!

f(A) : -owns (x,A) . % pieces for black

tis written as £2 (Num) :- count ([A], (owns(x,A)),
Num) in the work by [4]. In this paper, we assume counting as the
default semantics of logical features and omit the predicate “count”.

29

The value of a logical feature upon a state is defined as
the number of solutions, where solutions are the bindings
of such constants to variables that make the clause true.
In the above feature, A is a variable, and the solutions in
the initial position shown in Figure 1 (left) are {35, e4}
and the value is two, which is the number of squares cur-
rently owned by black.

3.3 Patterns

A pattern is defined as a conjunction of facts describing
a part of position. The value of a pattern is 0 or 1 accord-
ing to its Boolean value, where we consider the Boolean
value of a fact 1 (0) if the fact is defined (undefined) in
a given position respectively. The following conjunction
is an example of a pattern,

blank(al) A owns(x, a2) A owns(o, a3)

This pattern suggests white can play at a square al if it
match a position.

4 Pattern Generation

Patterns are generated by the following steps:

1. generation of logical features by using a method of
Fawcett [4],

2. translation into the equivalent set in propositional
logic by unfolding, and

3. extraction of patterns.

First, logical features are generated by using Fawcett’s
method [4]. It generates features by means of syntactic
translation of Horn Clauses which are extracted from the
domain theory of a target game. For example, a mobility
feature is written by using predicate legal.move, as
follows.

f(A):-legal.move(A,0) . % mobility for white

Complex features can be generated by taking precondi-
tions of existing features. See Fawcett [4] for more de-
tails about automated construction.

In the next step, generated features are translated into
the propositional logic by unfolding which is a technique
in partial evaluation of logic programming [1]. Figure
3 shows a part of the results of unfolding the feature in
the above example £ () : -legal_move (A, 0). After
the translation, features are represented in the form of
conjunctions and disjunctions of facts. Detailed methods
of the translation is described in [9].

Finally, patterns are extracted from the translated fea-
tures by simply taking conjunctive part of their propo-
sitional formulae. Figure 4 lists patterns extracted from

legal_move (al,o) :- :

blank(al), owns(x,a2), owns(o,a3).
legalmove(al,o) :-

blank(al), owns(x,bl), owns(o,cl).
legal_move (al,o) :-

blank(al), owns(x,b2), owns(o,c3).

Figure 3: Partial result of unfolding of
£f(A) :- legal._move(A,o0)

e blank(al) A owns(x, a2) A owns(o, a3)
e blank(al) A owns(x, b1) A owns(o, c1)
e blank(al) A owns(x, b2) A owns(o, c3)

Figure 4: Extracted patterns

unfolded features shown in Figure 3. We can see that
each pattern has a corresponding clause whose body (the
right hand of a clause) is equivalent to the pattern.

5 Pattern Matching

This section propose an efficient method to compute
matching of a large number of patterns. Pattern matching
is required in position evaluation and also in selection of
patterns. The basic ideas are (1) to perform incremental
calculation and (2) to utilize partial order on patterns.

5.1 Hasse diagrams

For example, let each of a, b, and c is such a fact that used
to describe a position, and consider that there are six pat-
terns listed in Table 1. Here, ab means a conjunction of
a and b, and so on. A naive way to perform incremental
pattern matching is to construct such an index about de-
pendency of patterns on facts, as sketched in Figure 5. A
square node denotes a pattern, and a circle denotes a fact.
Using this index, when a fact “a” changed, we can deter-
mine that matching of only a, ab and abc are required
because the values of other patterns are independent to
the fact a.

By using an optimized index (we call it a diagram)
as sketched in Figure 6, we can reduce matching further
because it is clear that matching of a pattern ’abc’ is re-
quired only when the value of the pattern *ab’ changed.

Table 1: Six sample patterns
abc ab be a
{ab,bc} {a,b} {b,c} a

pattern

b
dep b

c
[4

30.

@ @ B [e
@“({“'—‘e’

Figure 5: A naive index of sample patterns

Figure 6: A Hasse diagram of sample patterns

Actually, the diagram is a Hasse diagram [6] on the par-
tial order on sample patterns. In the diagram, a node rep-
resents a pattern, and an edge from pattern p to g repre-
sents a relation that the pattern p is covered by ¢. Details
are discussed in [9].

5.2 Counters for matching

In order to speedup individual matching of a pattern, an
integer counter cur(p) is associated with each pattern p
such that the matching is determined by integer compar-
ison instead of naively computing a logical conjunction
of each facts in the pattern.

Let dep(p) (upd(p)) be children (parents) of pattern p
in a diagram, respectively. We define a counter cur(p)
as the number of children of p whose current value is
true. Then, as long as cur(p) is properly maintained, the
Boolean value of cur(p) = |dep(p)| coincides with the
value of the pattern p.

5.3 Incremental matching

Our algorithm, named cover propagation is listed in Fig-
ure 7, which updates the truth values of patterns by ad-
justing counters of patterns. In the figure, the algorithm
for the case that a fact becomes true is shown. The algo-
rithm for the case that a fact becomes false can be stated
similarly, and is omitted for the sake of simplicity. It is
shown that cur(p) is properly managed by the algorithm
[10].

54 Efficiency and optimization

The computational cost of the algorithm can be estimated
by the number of adjustments of the counters. Because
the algorithm will go along at most once for each edge,
the worst cost is propositional to the number of edges.
Cube extraction is performed here in order to reduce
edges, as well as other optimizations,

// Let p be the input variable which becomes true
W« {p}.
while W # 0 do // W keeps patterns to visit
Pick g € W. // pick a pattern to visit
W — W —{q}.
for each r € upd(q) do
cur(r) — cur(r) + 1
/1 if all the covered patterns become true
// then the pattern r itself becomes true
if cur(r) = dep(r) then
W —Wu{r}

Figure 7: The cover propagation algorithm

Figure 8: Diagram before cube extraction

5.4.1 Cube extraction

Cube extraction is a classic method in the area of logic
circuit optimization [16], which reduces the number
of edges by the identification and creation of common
subexpressions. The method can directly be applied to
the diagrams for pattern matching. For example, Figure
8 draws a diagram for two patterns {abcd, bede} which
has eight edges. In Figure 9, an optimized diagram is
shown. The diagram has just seven edges because edges
from a set of nodes ({b,c,d}) to another set of nodes
({abed, bede}) in Figure 8 are replaced those from the
set of nodes to a common subexpression bed and those
from the subexpression to the other set of nodes. The re-
duction of edges also contribute s to the reduction of the
cost of construction of diagrams.

5.4.2 Elimination of redundant edges

Sometimes, we can safely eliminate an edge in a dia-
gram. The condition is that if upd(q) is constructed so
that (U, Ppeupd(q) base(q)) = base(p) holds for every
p. A typical example is a case that if there are four pat-
terns {abc, ab, bc, ca} and three edges from ab, abc and
be to abe, then an edge from ca to abe can be eliminated.
This is because if the both patterns ab and bc are true,

Figure 9: Diagram afier cube extraction

1e+08

buro
ourg -
100000
10000 |,
i
s 1000 |]
2 .'._J':’
E 100
3

101l i
TS |

0 005 0.1 0.15 0.2 025 0.3 0.35 0.4 045 05
frequency of matching positions

Figure 10: Histogram as to the frequency of matching
positions

facts a, b and c are true, and the pattern abc must be true.

6 Pattern Selection

Now, our goal is to improve accuracy of evaluation func-
tions by increasing the number of patterns to those used
in practical evaluation functions. In order to select such
a large number of patterns, selection methods must han-
dle a very large number of candidates and also positions.
Popular selection methods such as F-test in statistics are
not applicable here. For example, the number of candi-
dates we prepared in Othello is about 8,000,000 and we
cannot store covariances of them in normal computers,

Our idea is to solve the problem by the combination
of two computationally inexpensive methods. Of course,
they do not guarantee the optimality of results. It should
be noted that the cost of identification of the optimal pat-
tern subset is known to be exponential to the number of
candidate patterns [7], and it is not acceptable in our sit-
uation,

6.1 Selection by frequency

The first idea is to select patterns by their frequencies.
There are two backgrounds: (1) if patterns of low fre-
quencies are used, the efficiency of position evaluation
by using the method explained Sect. 5 will improve, and
(2) it is said that the use of patterns of extremely low fre-
quency causes over-fitting [2]. Thus, it seems natural to
drop patterns of high or extremely low frequency.

In order to determine appropriate thresholds, frequen-
cies .of part of Buro’s horizontal patterns [2] are mea-
sured and shown in Figure 10. The result suggests that
good evaluation functions can be generated only using
patterns whose frequencies are below 0.075. Figure 10

pproximated sequential forward selection
10.5
10
=
5 os
oo
w
85} ..
8t L,
7.5 n A i
0 500 1000 1500 2000
number of pattems

Figure 11: Accuracy of evaluation functions with pat-
terns selected by approximated sequential forward selec-
tion

also shows the result of measurement as to our patterns.
We can see that many patterns can be dropped by the fre-
quency.

6.2 Approximated forward selection

The second idea is to apply a selection method of ex-
planatory variables in regression [7], by treating a pattern
as an explanatory variable. We found that an approx-
imated sequential forward selection is suitable for our
purpose. It is an efficient selection method that approx-
imates multivariate regression by accumulation of uni-
variate regressions. This method had been mainly used
in order to perform computation by hand, before com-
puters became widely available [14].

The outline of the algorithm is listed in Figure 12. A
termination criterion at the fourth line is usually the num-
ber of selected variables. Priority function at the fifth
line is usually the correlation with y;,2 however, we used
covariance with y; instead in the hope that patterns of
moderate frequency will take precedence. What function
should be used as a priority function is not deeply exam-
ined yet and is one of our future work.

A preliminary experiment is performed in order to
confirm suitability of the method for pattern selection.
Figure 11 shows the standard error of evaluation func-
tions made of patterns that are selected by the method
among about 4,000 patterns. From the observation that
the error is decreasing (accuracy is improving) as the
number of patterns increases, we can conclude that the
method selects useful patterns.

2n that case, selected variables by the method are known to be the
same as variables selected by normal sequential forward selection if
and only if explanatory variables do not have correlation with each
other [14].

-39

// let yo be a target variable,
!/ X = {zo,x1,,,Zp} be explanatory variables
10
while (termination criterion is not satisfied)
pick x4, of the highest priority
compute a,,, b, by univariate regression
S.t. G, To, + bo, predicts y;
Yit1 — Yi — (o, Za, + ba,) // residuals
te—i+1

Figure 12: Approximated forward selection algorithm

// let y§ be a target variable,

N Xo, X1, ... Xy be sets of variables

10

while (X is not empty)
select variables among X;; to predict y/

by approximated forward selection

Yiyq < residuals after the selection
i—1i+1

Figure 13: Iterative selection algorithm

For each iteration, the priority of each pattern can be
updated without position evaluation if a table of the num-
ber of cooccurrences of patterns is available. It becomes
difficult to keep such a table in memory if the num-
ber of patterns becomes large. We can still avoid fre-
quent position evaluation by iteratively applying approx-
imated forward selection, as listed in Figure 13. Patterns
should be split into sets of moderate number of patterns
(Xo,X1,...X,) in advance. The order of patterns is
important because the result differs according to the or-
der. Also, a termination criterion in each approximated
forward selection should be modified because we cannot
use the number of selected variables. We propose to use
a test whether the priority of a selected pattern is beyond
a given threshold.

7 Experimental Results

In order to show the proposed method can generate ac-
curate evaluation functions, experiments on Othello are
performed. For these experiments, a computer with
Athlon MP 2100+ CPU running Linux is used and the
program is implemented in GNU C++.

Positions of 60 discs 55 discs are used in the selection
and training, which are extracted from matches played
between LOGISTELLO and KITTY. 3 About 50,000

3They are available at ftp: //external . nj.nec.com/pub/
igord/108/misc/.

Table 2: Attributes of selected patterns

~ discs threshold #patterns length match
60 (a) 5.00-107° 481552 8.58 641.6
(b) 2.50-10"5 326157 8.19 6279

() 1.25.107% 125734 690 5774

(d 5.00-10" 46739 5.55 486.0

(¢) 1.25-1073 23069 4.61 4014
2501073 13239 406 323.9

(g 5.00-1073 7531 3.74 2392

(h) 0.01 4147 3.62 1594

55 (i) 5.00-10~° 878602 9.37 -
G) 125-107% 206918 7.46 831.0

(k) 5.00-1074 69101 591 6879

(I 5.00-1073 9885 3.90 3227
(m) 0.01 5139 3.62 216.1

Table 3: Accuracy of evaluaution functions

60 discs error | 55 discs error
(c) 6.07 Q) 8.38
(d) 6.31 (k) 8.54
(e) 6.58 Q)] 9.65
(2) 7.39 (m) 10.18
(h) 7.81

positions are selected by eliminating duplicate positions
considering symmetry of geometry and players. Then,
we generated two disjoint sets of positions expanding
symmetric ones again. One set is about 800, 000 posi-
tions for training and the other is about 6,000 positions
for test.

7.1 Pattern generation and selection

First, we generated 11,079 logical features and then
8,502,664 unique patterns are extracted from the logi-
cal features. The frequency of the patterns are shown in
Figure 10 in the previous section.

Then, we applied selection by frequency described in
Sect. 6.1, and selected 540,724 patterns. Thresholds
used are [1.25-10~5,0.075]. They are sorted by their fre-
quency. Finally, we applied iterative sequential selection
described in Sect. 6.2 with various thresholds. The re-
sults are listed in Table 2. We can see that larger number
of patterns are selected as lower threshold are used. In
the tables, “match” means the number of patterns whose
values are true in a position on average. It also increase
as threshold becomes lower. The computation of whole
selection takes about two hours on average.

33

Table 4: Accuracy of other evaluation functions

type #patterns error match
60 55
Buro 272032 5.77 839 38
Basic 3952 8.17 107 970
3 proposed selection (60) +
12} buro (60) ~
colegon o8 &
1|) PP e o (58 -
basic (55) o
0} °
B ot
8t ’: i 4
71
et ']
5) .
1000 10000 100000 16406
#7718 #Hpattems 1%

WA ',}' Lo

Figure 14: Accuracy of evaluation functions

7.2 Accuracy of evaluation functions

Evaluation functions made of the patterns selected by the
proposed method are generated. They use linear combi-
nation and their weights are adjusted by means of least
mean squares so that they predict the final score (the dif-
ference between the number of black discs and that of
white ones at the end of the match after both players
played in the best way).

The accuracy of evaluation functions are listed in Ta-
ble 3. In the table, “error” is square root of mean squared
errors. Table 4 lists the results of experiments performed
in [9] about the accuracy of Buro’s function (Buro) and
that of our previous work (Basic) [9].* Figure 14 illus-
trates the same data. We can see that the accuracy is
improved by using larger number of patterns, better than
that of our previous work and approaching to those of
Buro’s.

73

We gathered a sequence of about 3,000,000 positions
that df-pnt search [13] visited whose root positions are
of 49 discs which are extracted from 23 matches in I0OS
records.’ The efficiency of evaluation functions become
worse as the number of patterns increase, as shown in

Efficiency of evaluation functions

“#Note that different positions were used for training.
5They are available at ftp: / /external .nj .nec.com/pub/
igord/othello/ios/.

100

T ; proposed :‘m‘g: 2% :
g .
é 10 -
g x
!‘000 10600 100.000 1e+06
#ipattems

Figure 15: Efficiency of evaluation functions

ot)
3 L
! 8000 -
§ 160000 | 16000 o
E 140000 |
o
2 120000 |
3
§ 100000 | -

80000 |
% 60000 |

40000 =

zm * A A ! 1 i

10000 20000 30000 40000 50000 60000 70000
#edges with cube extraction

Figure 16: Edge reduction by cube extraction

Figure 15. The improvements on efficiency is our future
work.

7.4 Improvements by cube extraction

In order to measure improvements by cube extraction,
the number of edges and efficiency of such pair of dia-
grams are compared that are constructed with or without
cube extraction made of the same patterns. Patterns are
randomly picked up from automatically generated pat-
terns, and five sets of patterns are prepared for each size.
The results are shown in Figure 16 and Figure 17. It
is observed that cube extraction reduced the number of
edges about a half, consequently improved the efficiency
of pattern matching about two to four times.

8 Concluding Remarks

In this paper, a method of constructing accurate evalua-
tion functions without assistance by expert players of a

72000
8000

30000 | 1
20000 | - 1
10000
70000 80000 90000 100000 110000 120000 130000 140000
efficiency with cube extraction (positions/sec.)

efficiency wio cube extraction (positions/sec.)

Figure 17: Improvments on efficiency by cube extraction

game is described, which is crucial to construct a gen-
eral game player. We showed that accurate evaluation
functions in Othello are constructed by selecting patterns
among a large number of candidates. The accuracy is
better than that of our previous work and approaching to
that of Buro’s. On the other hand, still there is a room for
improvements as to the efficiency of position evaluation
and it is our future work.

References

[1] A.Bossi, N. Cocco, and S. Dulli. A method for spe-
cializing logic programs. ACM Trans. Prog. Lang.
Syst., 12(2):253-302, Apr. 1990.

[2] M. Buro. From simple features to sophisticated
evaluation functions. In Proceedings of the First In-
ternational Conference on Computers and Games,
pp. 126-145, Tsukuba, Japan, Nov. 1998. Springer-
Verlag.

[3] M. Buro. Improving heuristic mini-max search by
supervised learning. Artificial Intelligence, 134(1-
2):85-99, Jan. 2002.

[4] T. E. Fawcett. Feature Discovery for Problem Solv-
ing Systems. PhD thesis, Department of Computer
Science, University of Massachusetts, Amherst,
1993.

[5] T. E. Fawcett and P. E. Utgoff. Automatic fea-
ture generation for problem solving systems. In
Proceedings of the 9th International Conference
on Machine Learning, pp. 144-153. Morgan Kauf-
mann, July 1992.

[6] D. Gries and F. B. Schneider. 4 Logical Approach
to Discrete Math. Springer-Verlag, New York,
1993.

[71 A. Jain, P. Duin, and J. Mao. Statistical pattern
recognition: a review. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 22(1):4 -
37, Jan. 2000.

[8] T. Kaneko, K. Yamaguchi, and S. Kawai. Compil-
ing logical features into specialized state-evaluators
by partial evaluation, boolean tables and incremen-
tal calculation. In PRICAI 2000 Topics in Artifi-
cial Intelligence, pp. 72-82, Melbourne, Australia,
Aug./Sept. 2000.

[9] T. Kaneko, K. Yamaguchi, and S. Kawai. Au-
tomatic feature construction and optimization for
general game player. In The Sixth Game Program-
ming Workshop, No. 14 in IPSJ Symposium Series
2001, pp. 25-32, Oct. 2001.

[10] T. Kaneko, K. Yamaguchi, and S. Kawai. Au-
tomatic construction of pattern-based evaluation
functions for game programming. IPSJJOURNAL,
43(10):3040-3047, Oct. 2002. in Japanese.

[11] T. Kaneko, K. Yamaguchi, and S. Kawai. Com-
piling logical features into specialized boolean net-
works with incremental propagation. JEICE Trans-
action on Information and Systems, J85-D-I(11):(to
appear), Nov. 2002. in Japanese.

[12] T. Kojima, K. Ueda, and S. Nagano. An evolution-
ary algorithm extended by ecological analogy and
its application to the game of Go. In Proceedings
of the 15th International Joint Conference on Arti-
ficial Intelligence, Nagoya, Japan, 1997.

[13] A.Nagaiand H. Imai. Application of df-pn+ to oth-
ello endgames. In Game Programming Workshop
in Japan '99, pp. 16-23, Oct. 1999.

[14] T. Okuno, H. Kume, T. Haga, and T. Yoshizawa. &
iThk ZZERFNTIE. HRHEGE, 1981, in Japanese.

[15] B. D. Pell. Strategy Generation and Evaluation
Jfor Meta-Game Playing. PhD thesis, University of
Cambridge, 1993.

[16] R. L. Rudell. Tutorial: Design of a logic synthe-
sis system. In Design Automation Conference, pp.
191-196, Las Vegas, NV USA, June 1996.

