Solving 5 X 5 Amazons

Martin Muller
Department of Computing Science
University of Alberta
Edmonton, Canada
mmueller@cs.ualberta.ca

Abstract

We show that the game of Amazons played on a
5 x 5 board with four playing pieces each is a first
player win. The proof uses a standard minimax
game tree search with several enhancements that
reduce the depth and the width of the required
search tree. We develop divide-and-conquer tech-
niques which are inspired by combinatorial game
theory, but use only integer-valued bounds on the
value of subgames. After partitioning an Amazons
board into independent subgames, upper and lower
bounds on the game value are computed for areas
which contain amazons of both players.

Key words: Amazons, game tree search, perfect
play

1 The Game of Amazons

A B C D E

®

)

Figure 1: Starting Position in 5 x 5 Amazons

The game of Amazons is played on a square
board by two players, Black and White. Each
player controls four playing pieces, called amazons,
which move like a chess queen. After each move an
amazon shoots an arrow, which travels in the same
way as a chess queen moves. The point where an ar-
row lands is burned off the playing board, reducing

the effective playing area. Neither amazons nor ar-
rows can travel across a burned off square or over
another amazon. The last player able to make a
move wins the game. In this paper, we consider
play on a 5 x 5 board, with the starting position
shown in Figure 1. We assume that Black moves
first.

1.1 Partitioning the Board

The aim of partitioning a board is to separate a
position into smaller pieces which can be analyzed
independently, or nearly independently from each
other. A basic board partition is given by the 8-
connected components of all points on the board
which have not been burned off by arrows. In Fig-
ure 2, partitioning the position shown on the left
results in the areas ¢, b and c in the picture in the
middle. An improved board partitioning can be
achieved with the help of blockers, amazons that
further divide a component into two or more re-
gions such that some of these regions are only ad-
Jacent Lo amazons of one color [2]. The picture on
the right in Figure 2 shows the resulting five areas
a...e.

Regions on the board can be classified into four
categories, depending on the amazons of that re-
gion.

1. A region that contains at least one empty
square, and contains or is blocked by amazons
of both colors is called an active area or active
region.

2. A region that contains at least one empty
square, and contains or is blocked by amazons
of a single color is a territory for that player.

— 64—

Figure 2: Board position and

3. A neutral region contains no amazons.

4. A dead region contains only amazons, no
empty squares.

The neutral and dead regions are irrelevant since
there are no possible moves there. In territories, the
main question is how many moves the controlling
player can make there. In active regions, both play-
ers compete for the right to make as many moves
as possible.

2 An Evaluation Function for
an Amazons Solver

Arrow-Sis a specialized program for solving Ama-
zoms positions The progranm resolves only wins and
losses. it does not try to determine by how many
extra moves a player can win. Using this solver
5 x5 Nmazons was proven Lo be a frst player win.
The search space of this game is about 9.92 x 10!*
positions. As the experiments in Section 4 indi-
cate, a brute force search of this game takes a long
time. Therefore this paper describes rules to rec-
ognize wins and losses earlier in the game, as well
as an exact method to prune some types of moves.

2.1

In the following, we will assume that positive in-
tegers represent a number of moves for Black, and
negative integers represent moves for White. The
program computes an upper and a lower bound
on the difference (black moves - white moves) for
each area on the board. Sometimes, for example in
simple territories, these bounds coincide and there-
fore give the exact value of a region. Bounds on
the overall game value are computed by summing
up the bounds of each region. If the overall lower

Estimating the Game Value

bound is greater than zero, the game 15 a sure win

[1 alafalafa] [b[b[b]b alala] [p]b]b]b
| alafa[Ja] [b[b]n]o alafa] [o]b]b]b
X alajala Lb]b b 3lajala (6o)0
@ aja| [a) b {b a)a a b| |b
aB j o Safl oo
XX X a b| |[b]b|b a ° [o] [o]o]o

X X[X alafaJa] [bv]e] [o alafaJa] [b]o] [b
XIXIXIX blblb|b blblb|b
X X <) b b b b
X[XX T 3 [[c] [l bbb

basic decomposition, from (2]

for Black, and if the upper bound is below zero it
is a win for White. Likewise, a lower bound of ex-
actly zero is a win for Black if it is White’s turn to
play, and an upper bound of zero means a win for
White if it is Black’s turn to play.

|

@

Figure 3: White to play, Black wins

Example: White is to play in Figure 3. In this
position. the program can prove a win for Black
by its static evaluation. The black territory at the
boltoni is worth exactly 5 moves, while White can
wake al most 5 moves at the top. White has to
move first, so Black is guaranteed to get the last
move and therefore wins.

2.2 Counting Moves in Territories

The number of empty squares is an obvious upper
bound on the number of moves in a territory, and
often it coincides with the precise value. However,
defective territories exist, which cannot be com-
pletely filled in [2]. There are several ways of com-
puting the size of a territory or at least finding a
lower bound on its size, including exhaustive search
and using a database of defective areas [2]. Within
our solver, we currently use the simplest and fastest
method, a plodding walk without any backtracking,
to compute a lower bound on the number of moves a
player can make in a territory. A plod [1] is a move
sequence where an amazon moves to an adjacent
square and fires back at its origin square. Such a
plod s very quick to implement by just marking the

— 65—

squares visited so far. In the case when there are
two or more nonmarked adjacent empty squares, a
simple heuristic determines which of these squares
an amazon should visit next. This method is good
enough to completely fill most of the small nonde-
fective territories that occur on small board sizes,
such as 5 x 5 or 6 x 6. In this case, the lower bound
coincides with the upper bound and the exact value
of an area has been determined.

(XU

[igure 4: Sure move for Black going first

(_IXO@O

Figure 5: Sure moves for Black going second, 3 AES

(XX

Figure 6: Sure move for Black going second, 2 AES

2.3 Counting Moves in Regions In-
volving both Players

Cousider an active region which involves amazons
of both players. When playing out such a region,
the ouly result that matters for the overall outcome
15 the dullerence i the nwuber ol black moves mi-
uns the number of white moves made in this re-
gion. The goal is to identify easy to compute up-
per and lower bounds on that value and use such
bounds to estimate the overall outcome. The basic
lower bound for the value of a region with n empty
squares is —n, for the case where White can make
all the moves there, and the upper bound is n in

(IXO

Figure 7: No safe move for Black going second

Figure 8: Safe moves far away from opponent

case Black gets all the moves. These bounds can
be tightened in two ways:

L. By finding safe moves for a player that the op-
ponent canvotl eliminate even if the opponent
moves first.

2. By finding a move for the player who goes first.

In each case a bound is improved by 2, since the
difference in the number of moves changes from n :
0=nto(n—1):1=n—2 However, the second
rule can only be used in the case where the player
moves first in a region.

2.3.1 Finding safe moves for an amazon go-
ing first.

Each amazon that has an adjacent empty square
(AES) can make at least one move by moving there
and shooting back. For example, the black amazon
in Figure 4 has one AES.

2.3.2 Finding safe moves for an amazon go-
ing second.

With each move, the opponent can take away at
most two AES of an amazon, one by moving an
ammazon there and another by shooting. So an ama-
zon with three or more AES can always make a
move, even if the opponent goes first. In Figure 5,
the black amazon has three AES. An amazon with
only one or two AES might still have a safe move in

@,

Figure 9: One amazon can block two opponents

® O
@

Figure 10: Dependency between safe moves

the cases where the opponent either cannol reach
all AES or. in the process ol reaching thew, has
to move one ol its amazouns away from an adjacent
square, thereby creating a new AES. For example,
in Figure 6 the black amazon has only two AES
but the only opponent amazon that can block both
squares is adjacent to the black amazon and cannot
control all three squares including its origin square.
However, in Figure 7 the white amazon in the mid-
dle of the board can completely block Black. In
Figure 8 each amazon has a safe move because the
opponent is too far away to block it.

2.3.3 Combining safe moves for several
amazons

If there are several amazons in the same region,
their moves can easily interact, as the following two
cases illustrate.

Dependencies between several amazons The
while atnazon in Figure 9 has a safe move:
even though each ol its AES 1s easily blockable
by the opponent, they cannot both be blocked
in one move. However, this argument cannot
be combined for several ainazons, as shown
Figure 10. Each white amazon taken by itself
has a safe move, but they are dependent, and
if Black moves first then White cannot make
two safe moves in this area.

Move going first If two amazons are in the same
area, one opponent might be able to block
both, as shown in Figure 9. If there are sev-
eral amazons that can make a move going first,
only one in three amazons can be sure to make

a move, e.g. the first and forth amazon of the
same color, but not the second and third one.
When amazons are not in the same area, every
other amazon can move.

We could not find a good way to statically check
these dependencies, so in our current implementa-
tion only one amazon per area of each player is used
to improve the bound.

2.4 Territories and Active Areas
with a Common Blocker

Figure 11: Territories with a common blocker, and
active region with value 0

In the case where a blocker blocks off two or more
territories at once, the blocker in general cannot fill
in more than one territory. For example in Figure
11 on the left, the white amazon blocks off three
separate territories but will be able to fill only one
of them. Likewise, the blocker cannot move into an
adjacent active area without giving up its moves
in all the territories. We use the following simple
greedy heuristic: First, all non-blocking amazons
will plod to make as many moves as possible. Then
blockers are allowed to plod in the remaining areas
of each territory or are used in an adjacent active
area, and [ov each blocker its single most valuable
action is chosen for improving the bound of that
region.

3 The Search Process

A 5 x 5 Amazons board with 4 amazons each ini-
tially has 17 empty squares, so the maximum game
length is 17 ply. The branching factor is 262 for the
first move, and typically about 80 after 5 moves.
Initial experiments indicated that the search space
was too large to complete a brute-force search in a
reasonable time. Therefore, a specialized Amazons

solver Arrow-5 was built along the lines described
above by extending and modifying the heuristic
Amazons-playing program Arrow [2]. The rules
to compute bounds were added -as a first step to
the static evalualiou fuuction. If a position can be
statically proven to be a win or a loss, it obtains a
value of oo (in practice, a large iuteger is used).
For other positions, the normal heuristic evaluation
function of Arrow is used to achieve a good move
otclering in conjunction with an iterative deepening
scarch, The scarch continues al increasing depths
untid a win or aloss s found.

Arrow-Sinplenients a pruning rule that removes
provably irrelevant. moves from the search. The
heuristic program Arow uses many wore pruning
rules, including heuristics that we think are almost
always sound. However, all these heuristic rules
are disabled in Arrow-S to ensure correctness. In
this paper we describe only the exact rule used in
Arrow-S.

In regions where upper and lower bounds coin-
cide, the local score is exactly known and it is an
integer. Most of these regions are territories, where
ouly oune player can move. But some other regions
can be recognized as having a constant value, such
as the position of value 0 shown in Figure 11 on
the right. For such regions, move generation can be
greatly restricted. It is sufficient to generate a sin-
gle move for each player globally for such regions.
In terms of combinatorial game theory, moves in a
territory have temperature -1. There are,only two
reasons to generate one such move: These may be
Lhe only moves left for a player, or other moves exist
but are even worse hecanse of a sugzwang situation

(2

4 Result: Solving 5 x 5 Ama-
zons

We have established that 5 x 5 Amazons is a first-
player win, and have found four different winning
moves. Among the winning moves, the two moves
1.B1-B3xD3 and 1.B1-D3xB3, as well as the sym-
metric 1.D1-B3xD3 and 1.D1-D3xB3, were found
to be wins with a search depth of ouly 6 ply. For
both ol these moves, a simple blocking strategy
proved Lo be sufficient to win the game. Figure 12
shows the principal variation after 1. B1-B3xD3.

For the other easy opening, our principal varia-
tion is 1. B1-D3xB3 2. A4-A3xC1 3. D1-D2xB2
4. B5-C4xB4 5. D2-C3xE5 6. E4-E3xE4 7. E2-
D2xE2. The play is similar to the 1. B1-B3xD3
opening. Black ends up with a five point area at
the bottom, which is sufficient to win against the
five empty points left at the top.

Besides these two “easy” wins and their sym-
mekric cases, two more winuing moves were found
at search depths of 8 and 10 ply, |. B1-B4xB2
and 1. DI1-D4x132. These are the starting moves
in the games fI and f2 analyzed below. We are
currently working with Thomas Lincke to analyze
other opening moves and create a complete opening
book for 5 x 5 Amazons.

Compared to our previous program Arrow, the
specialized solver Arrow-S recognizes wins and
losses several ply earlier, which leads to a huge re-
duction in the tree size. For example, variations fol-
lowing a bad move are now disproven very quickly
by creating a large territory for the opponent, and
using bounds to prove a loss.

4.1 The Effect of Improved Bounds

on Search Efficiency

As a test set, positions were taken from three real
games, two 5x 5 games, fI and f2, as well as one 6 x6
game, f3. These games were email games played
at the rate of one move per day by our heuristic
program Arrow against an expert amazons player,
Thomas Lincke. Games that ended in resignation
were finished by Arrow self play.

The tests start with easy positious uear the end
of the games, and move forward in the game as
long as the computation time is within about 10
hours. To assess the impact of our new methods,
four versions of the solver are compared:

A Full evaluation: in addition to computing local
bounds, use a global combination of possible
single local moves to improve the bounds on
the overall position.

B Use bounds on territories (see method C below)
as well as local bounds on active areas by find-
ing safe moves on adjacent empty squares.

C Bounds on moves in territories only. A player
wins if the surplus in territory is greater than

@

@

@

£)
@

= @

I)

.

Figure 12: 1.B1-B3xD3 2.B5-B4xE1 3.D1-C1xC3 4.E4-E3xD2 5.B3-C4xB3 6.A4-A3xB2 7.C4-D4xE4

the number of moves on the rest of the board,
or equal if it is the opponent’s turn to play.

D Brute force search. No bounds are calculated.
A player loses if there are no legal moves.

Tables 1 to 3 show the number of nodes, solution
time in seconds on a Macintosh G4/400 and search
depth (in the last four columns) for each position
in the test set and for each type of test. Figures
(3 to 15 plot the data for the number of nodes (on
a logarithionie scale) and scarch depth. Graphs for
solution time are omitted since they are very similar
to those for nimber ol nodes.

The results show big differences between prob-
lems, indicating the large variety of positions that
come up even on small boards in this game. Some
positions, mainly close games with little territory,
are hard for any kind of search. Games are much
easier for bounds-based methods if they are lop-
sided, or if they are easy to evaluate because both
players have large territories and/or many safe
moves in active areas. In game fI, the position
after move 2 is much easier to prove for the strong
algorithms than the position after move 3.

5 Summary and Outlook

We described some techniques that reduce the
depth and the width of the search tree for solving
Amazons on small boards. The most important
technique is the computation of upper and lower
hounds for the value of local areas on the board,
whicl makes it possible to prove overall wins and

losses early in the game. Using these techniques
we have shown that 5 x 5 Amazons is a first-player
win. A related question posed by Elwyn Berlekamp
is to try to determine the temperature of the start-
ing position. A first step would be to determine
whether the first player can win by an extra move.
We suspect that the answer is “no”.

An open problem is finding safe moves for sev-
eral amazons in the same region at once. We could
not. find a good solution, except for the brute-force
approach of doing a specialized local search. While
there is clearly room for further refinements of our
current techniques, we do not believe that they are
strong enough to solve the 6 x 6 case in a reason-
able amount of time. A conservative extrapolation
of the data for game f3 would put the effort of solv-
ing the game at over 100.000 hours of computing
time. Therefore, as future work we want to investi-
gate the use of databases of defective territories and
especially of combinatorial game values for active
areas, in order to further enhance the solver.

References

[1] E. Berlekamp. Sums of N x 2 Amazons. In In-
stitute of Mathematics Statistics Lecture Notes,
number 35 in Monograph Series, pages 1-34,
2000.

(2

—

M. Miller and T Tegos. Experiments in com-
puter Amazons. In R. Nowakowski, editor,
More Games of No Chance. Cambridge Univer-
sity Press, 2001, To appear.

Lt pos. Nodes A Nodes B Nodes C Nodes D | Sec A | See B | Sec C | Sec D A B C D
L: move 15 L 3 3 3 0.1 0.1 0.1 0.1 0 1 1 1
2 move |4 1 1 11 12 01 0.1 0.1 0.1 [i] 0 2 2
3 maove 13 3 o 27 23 01 0.1 0.1 0.1 1 1 3 3
i move 12 15 107 115 0.1 0.1 0.2 02| 2 3] 4 4
5 omaove |1 42 347 451 0.2 0.2 0.2 0.2 3 3 5 5
5 move L0 65 T67 1,184 0.2 0.2 0.2 0.3 4 4 [6
T.omowve 9 1.030 . 4,973 6,977 0.3 0.3 0.5 0.5 5 5 7 7
S e 3 F011 RRTR] 0.537 16,497 0.4 0.5 0.3 1.1 5 5 3 3
o nove 7 31,212 34,767 134,932 167,001 2.5 3.1 7.8 9.1 7 7 9 9
L) move 6 254,205 260,247 781,163 1,105,037 19.5 20.4 47.6 61 9 9 11 11
11, move 5 1,484,466 1,328,324 4,082,533 7,194,364 106 133 239 378 [10 | 10 [12 | 12
12: move 4 10,499,200 9,289,780 33,998,550 47,807,133 399 301 2454 3244 | 11 11 13 13
13: move 3 655,214,371 | 72,813,193 | 191,746,197 | 268,676,381 5596 6230 | 13350 | 19034 | 12 | 12 | 14 14
14: move 2 2,121,307 | 21,514,907 | 236,930,385 - 340 3043 | 23303 - 7 9 11 -
15: move 1 | 427,586,440 - - - | 50722 - - - 10 - - -
Table 1: Results for 5 x 5 test game fI
Nades A Nodes B Nodes C Nodes D | Sec A | Sec B | Sec C | Sec D | A | B C D
1 i 1 0.1 0.1 0.1 0.1 0 0 0 1
1 1 1 0.1 0.1 0.1 0.1 0 0 0 2
1 1 1 0.1 0.1 0.1 0.1 0 0 0 3
4: move 13 1 1 1 0.1 0.1 0.1 0.2 0 0 0 4
5. move |2 | 1 i 01 01 0.1 0.2 0 0 0 5
65 omove 1] 1 1 1 0.1 0.1 0.1 0.2 0 0 0 6
7: move 10] 1 i 0.1 0.1 0.1 0.3 0 0 0 7
3: move 9 L L 1 0.1 0.1 0.1 0.3 0 0 0 38
O nove S | 3 3 0.1 0.1 0.1 0.5 0 1 L 9
10 e 7 R 375 02 02 0.2 1.3 4 q 9 10
11 move 6 355 3.012 350,614 0.2 0.2 0.5 15.5 3 3 5 11
12 move 5 4,920 5.102 19.631 545,337 (1.8 0.3 2 25.3 4 4 [} 12
13: move 4 19,519 45,137 275,975 24,157,502 3.3 5.2 29.8 1502 5 5 7 13
10 move 33 364,733 136 5064 14.664.885 | 78,549,048 47.3 56.8 1267 5582 5 [10 14
L5, tmove 2 1,439 6514 1,484,517 248,739,140 - 257 262 26070 - 7 7 11 -
LG: move 1 54,371,395 | 55,256,136 - - 6822 6947 - - 3 8 - -
Table 2: Results for 5 x 5 test game f2
Test pos. Nodes A Nodes B Nodes C Nodes D | Sec A | Sec B | Sec C | Sec D A B] D
Lomove 19 1 | 317 358 0.1 0.1 0.1 0.2 [1] 0 4 6
2: move L8 11 11 1,772 4,881 0.1 0.1 0.3 0.5 1 1 5 7
3: move 17 4650 534 5,638 26,784 0.2 0.2 0.5 1.4 4 4 3 | 10
4: move 16 2,497 5,130 32,430 95,331 0.4 0.7 2.4 5.6 5 5 3 | 11
5: move 15 165,329 33,847 151,798 618,549 1.6 3.4 10.4 31.3 6 6 10 12
G move 14 78,647 177,482 936,268 3,638,219 7.9 17.6 64.5 220 7 7] 11 13
T move 13 1,418,839 1,939,837 5,570,508 19,857,550 132 175 520 1379 3 10] 12 | 14
3: move 12 3,167,102 4,553,832 58,760,467 | 193,326,984 333 468 5105 16303 9 9 13 | 15
9: move 11 17,310,435 | 22,782,667 | 141,756,738 - 1823 2399 [12605 - 10 10 14 -

Table 3: Results for 6 x 6 test game f3

[1000000000
m/
1000000 /‘_/%/ e 16
100000 / —aA—Serles3 :;
10000 | —3—Searissd o }—/‘ . -
1000 / s _/l';_//::/ \\V/ e Seies2
= e seums
¢ [opeSertesd |
100 /;)’. . = ¥
10 2 e
< _ et
1'2'34567'8 §1D||‘2|3'|415l B T
Figure 13: 5 x 5 game [1 nodes searched and search depth
1030202920
10050200
1000000
GG : I‘I
10000)‘XX // ——Sennsd :j /‘ _A —
1000)('(fJ . < / —a—Serles2
Series3
100 / l i // _/:/ _-:_-smg,a
10 T VAl
1.2 3 4 5 6 7 8 91011 1213141516 12 3 4 S € 7 € 91011 1213141516
Figure 14: 5 x 5 game f2 nodes searched and search depth
1000000000
X__A
10000000)//‘,/’
1000000 //‘/
o — —
I e L —
13
000
/ 5
L) / &
0 -/)
1 H 34 5 P s 9 ' ' > : 3 € ° y

Figure 15: 6 x 6 game f4 nodes

searched and search depth

— 71—

