
Automatic Feature Construction and Optimization

for General Game Player

Tomoyuki KANEKO Kazunori YAMAGUC皿

Satoru KAWAI
Graduate School of Arts and Sciences

百le University of Tokyo

3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, JAPAN
{k姐eko， yamaguch, kawai}@graco.cルtokyo.ac.jp

Abstract

h 血is pa戸r， we describe our method 白紙 automatically

construc岱 evaluationfunctions without any human analysis
ofa飽rgetgame. Such autom蹴dconstri<はionof evaluation

負mctions is crucial to develop a general game player 血at

can leam 飢d play an arbi回ry instance of a certain class
ofg釦les. Our approach is to construct features written in
logicprogr溜nsfぬmthe game definition 釦dtranslate them

hωspecialized evaluator in order to get such efficiency血at

lωn血gme血ods can 甘y 組d test so many features 白紙 it
produces accurate evaluation functions. We also 泊町'oduced
出，edecomposition of logical features ca¥led thinfeatures 泊
order to improve bo也 accuracyand e組ciency. Experimen岱

on Othello endgames show 白紙出，e accuracy and efficiency

of evaluation functions generated by our method ar官 ap

proaching to tho岨e of the pat総nb鎚ed evaluation function
which is 血e state-of・出e-art technique.

keywords: auωmatic feature construction, logical feature

1 Introduction

1.1 Game playing programs and evaluation

functions

One of the mo唱t ambitious goals of artificial in飽lligence

resear官his 血e development of a general game player 白紙

C組 le釦1 and play an arbitr釘y 恒st飢，ce of a certain class
of games. Game play泊，g programs use a min-max search
method combined with evaluation functions 白紙白血lates

血e probability to win (or preference to 血e player) of a po・

sition. Here, a position is an 加飽rmedia旬 status of a match.
In order to develop strong players, both the accuracy and efｭ
ficiency of the evaluation function ar官加，portant. Since 如

evaluation 釦nctionis specific to a 回rgetgame，出e main is司
sue of developing general g但neplay，釘's is how to construct
auωmatically evaluation functions without knowledge of

humanexp巴巾.

1.2 Learning evaluation functio凶

百e popular way to automatica¥ly cons回目制 evaluation

function is to make it some combin副on (such ぉ a linear
combination) of evaluation primitives calledfeaωres， 釦d

adj凶，tthe par町leters of the combination [2]. In most of reｭ
searches，血efeatures have been provided by human experts
ofthegame.τb巴釦lly automated generation of appropriate
features is known to be a difficult t総k.

Among few works on the automatic generation of feaｭ
tur，儲， we found Fawcett's work [3, 4] most promis加g. In
the work, feature is repre路n飽dbyHom C\a凶ein 出，e :first・

order logic. We call the clause in such use logical feaｭ
ture. His system can generate features by syntactic translaｭ
tion of logic programs using just only the definition of the
game. However, logical features prohibitively cost on posiｭ
tion evaluation, and 血us the method was not practical until
now.

Recently, Buro develo戸dapattemb鎚edmethod [2] and
generated good evaluation function used in 出e s釘ongest

programs 加 Othello. In the method, the feature is B∞lean

co吋阻，ction of atomic j切tures 白紙間 a state of a square
when it is applied to 0血，ello.τbe me血叫 is very practi・
cal because the 凶e of exclusive set of configurations called
pattern ぉ wel1鎚血，e representation itself make position
evaluation and learn加g very efficient. However, choosing
approp巾.te pa臨rns requir鶴自，e knowledge of the 加por，・

凶nt shapes in Othel1o. Such knowledge is not avai1able to
general game players.

1.3 Our approach

Weadop飽dthe approach of Fawcett because a logical feaｭ
ture a¥lows a uniform description of rules, a goal, and po・

sition of a g創ne，釦dis suitable for automatic cons回ction.

However, the problem is 出，ecost of position evaluation. We

-25-

12345678

a

b

e

d

e

f

q

h

12345678

• 1.

a

b

c

e

d

e

f

q

h

ow田(c4， x)， QW田(d4.x)
脚田(<15. x). 開国(e4.x).

ow田(e5.司

blank(al). bl皿k(02). blank(a3)...

Figure 1: Othello 泊itial position (le的組d a position after

black played c4 (right). Facts below each board det�e a
posJtton.

ow由(<I5.x).ow回(e4.x).

ow田(d4.0). ow由(e5.0).

b加11<(.1). bl町11<(02). bl.ok(a3).

solved this problem by 出巴 combination of techniques: parｭ

tial evaluation, Boolean network wi曲 counters ， and increｭ

mental propagation [8, 6]. 訂正e e仔巴ctiveness of the soluｭ

tion is demons回ted by experiments. We developed a techｭ

nique of decomposition of logical features into thinfeatures
which improves e筒ciency further. 百lese speedups enabled

the leaming method to use and test much more features to

produce more accurate evaluation functions.

百lÎs paper is organ包ed as follows. The next section

briefiy reviews the definitions of logical feat町es and Sect.
3 describes the technique for e錨cient position evaluation

with them. Sect. 4 describes a basic idea of decomposition.
Sect. 5 shows the experimental results in Othello and Sect.
6 concludes this paper.

We call the bindings of constan臼 to variables which make
出e claus巴 truesolutions of 出巴 logical feature and 由enum
ber of 出巴 bindings value of 血.e logical. feaωre. In th巴
above example, A is a variable, owns is a predicate which
means 出at 出e black player owns square 且. So，血e value of
由is feature f (A) means the number of squares currently
owned by black.

h 出e initial position shown in Figure 1 (left)，出.e soｭ
lutions of f (A) are {d5 , e4} 釦d 出e value is two. In a
position after black played c4 shown in Figure 1 (right), the
solutﾎons of f (A) are {c4 , d4 , d5 , e4} 組d 出e value is
four.

Logical Features

We uniformly describe positions, f己atures 組d the rules of
出e game in the first-order logic. Because the first-order
logic is a logically well-founded language，出巴 adoption is
qui記 natural. This representation is general 加d can be apｭ
plied to most g創nes; 百1巴 original work by Fawce江 [3] is on

Othello and a single-agent search problem, Pell used it in
symm柑ic chess like games [10] and K釦巴ko applied it to

Tsume品ogi [7]. 百lÎs section focuses on how to comput巴
the values of features defined in 白e first-order logic. See

Fawcett [3] for more details and for the way of automated
construction of featurl巴s.

2

A domain theory

A domain theory is the specification of the game, which is
described by a set of Hom Clauses that specify the rules of
the g出ne and the goal conditions. Whi1e facts representｭ

泊g a position would change according to position ch組ge，

the definition of the domain theory is invariant 血rough

matches. As 釦 exampleinO出ello， we use a domain 血eory

shown in Appendix A in 出is paper.

2.3

Definition of positions

A position, which is an intermediate status of a match, is
described by a set of facts. A fact is a clause without body.

Such facts are redefined when a position changes according
to the progress of a match.

In O出巴llo， owns and blank represent a position. For
example, the facts d巴自ned 泊出e initial position in Othello

and 出巴 position a負erblack played c4 釘'e shown in Figure 1.

Here, we use x for black, and use 0 for white. In出e 加itial
position, owns(d5 , x) , owns(e4 , x) , owns(d4 , 0) ,

owns (e5 , 0) are defin巴d for squares wi出 a disc. Also
blank is defined for each empty sq凶res.

2.1

As a position changes according to 出e progress of a
match, solutions of predicatωwhich depend on a pωi・!

tion wilJ change. In the example shown in Appendix A,
neighbor and square represent the board topology 釦d

neverchange throughout matches. Owns/2 andblank/ 1
represent the discs 泊出e squ釘.es 泊 a position. Leｭ
gal..move/2 is a predicate 白紙 (indirectly) depends on

a posltlOn.

Because a logical feature includ巴s predicates which deｭ
pend on a position, it is required to efficiently calculate their

Position evaluation 2.4

Definition of features

A feature is represented by Hom Clause in 出e first -order

logic. The following is an example of a logical feature writｭ

ten in Prolog notation.1

2.2

f(A) :ーowns (x , A). % pieces for black

l(t is writ回n as f2 (Num) : -count ([A] , (owns (x , A)) ， N山叫
in the work by [31. (n 由18 paper, we 田副me counting as 山e defau(t 時

mantics of logicn(features and omit 出ep同日dica臨“count"

-26-

solutions in order to evaluate a pωition by Iogical features.

3 Efficient Position Evaluation with
Logicai Features

τbis section describes our method 白紙 e侃ciently evaluate
positions with logical fea加res. The method improved e節
ciency more 出飢 4，000 由nes comp釘ed to naive inte中間・
阻.tion by deductive databases [13] or by Prolog.
百le outline of the method is 筒 follows. First, given feaｭ

tures are 紅白Is1a飽d 泊ω出eequivalent set of ground clauses
(i.e., clauses without variables) by p釘tial evaluation. 泊施n，

血.ey are folded into a B∞lean network where 泊cremen

阻.1 calculation on 血e network can efficiently compute 泊施
solutions of the fea組問s.

3.1 Partial evaluation

First，泊 order to 町ansform given features 泊ωthe equivｭ
alent 鎗t of ground clauses, two operations, unfolding and
pruning in P制ial evaluation of logic prograDlm泊g [1]，師

used.

3.1.1 Unfolding

Unfolding is 飢 opera討.on to replalω a clause A:・ Al'

・ ..，Aj ， 叶A. with clauses (A ・ Al'...' Aj_l' BI'…, Bh'
Aj+l・…A川jforB:・ 81'....Bh such 伽tB叫 =AjBj for
some substinition Bj・In this paper, we apply the unfolding
from the le丘 term to 出e right 飽m泊恥 depth first order.
Forex釘nple， unfolding a clau鵠

legal -move(S , P):-square(S) , bs(S , F , P) .

with a fact square (a1) wi1l produce

legal -move(a1 , P) :-bs(a1 , F , P).

for substitution [S / a 11 .

3_1.2 Pruning

芦田1泊g elim加ates a clause whose body has no ch組問 to

be true. Such type of clauses c釦 be detected by 白e fact
白紙

1. its body has an unsatisfiable term, or

legal -move(a1 , 0) :-
blank(al) , owns(x , a2) , owns(0 , a3).

legal-move(al ， o) ー

blank(al) , owns(x ,bl) , owns(o , cl).
legal-move (al , 0) ー

blank(al) , owns(x, b2) , owns(0 , c3).

Figure 2: Partial result ofunfolding legal-move

legaLmove(al, 0) = (blank(al) ^ owns(x, a2)八 ow田(0，必)) v
(blank(al) 八 owns(x， bl) 八 0間四(0， cl)) V (bl組k(al)八 owns(x，

b2) ̂ owns(o, c3)))

Figure 3: A p釘t of propositional definition of leｭ
gal-move (al , 0)

In general, it is di伍cult to know that a given clause is
unsatisfiable. In order to simplify the 凶k to prove 白紙
a clause is unsatisfiable, we 泊町吋ucein胞grity cons回ints

日2] so that we c佃 say explicitly 白紙 somecombination of
飽rmsis unsatisfiable.
Appendix B shows an example of泊飽grity cons回担鱈 of

胸 game ofO臨110. I c 1 means 伽t a square (Square)
cannot be b加1k and owned by some player at the same
也ne. I c2 means that a square (Square) cannot be owned
by both black and whi飽 players. These 創官 some of the
speci宣cations of Othello, although 出ey have not been utiｭ
lized so fi訂.

3.2 Translation 面白 propositionallogic

Our method performs unfolding and pruning repea凶lyun・

副 a目白e remaining clauses become ground so 白at they
have no variables in their head or body. A par討al result of
unfolding legal-move is shown in Figure 2. Since 曲E

truth value of ground 町mso血er 由釦 position definition
C釦 be statical1y computed, the unfolded clauses have only
position definitions in their body.
A ground term can be 回拙d as a Boolean variable. We

call a fact of position definition (such 鎚 owns(x ， al))

input variable and call a head of unfolded clauses (such
箇 legal-move (al)) outpω variable. A 町田 output
variable corresponds to a solution of a feature. Each ouト
put variable is a di里junction of co吋unctions of input variｭ
ables. Figure 3 shows a propositional definition of leｭ
gal-move (al) .

3.3 Boolean networks

Propositional definitions of the features are folded 泊ωa
2. itsbodyh鎚 a飽rmnot unifiable to any head of clauses, :::~:::.:~:~.:_:~

Boolean network.~ Each node in a network has its propωi・
or

2While we fj",t pr。卯田d恒悶田町瑚I calc叫alionon B∞1曲n 祖bles in
3. i也 bodyhas 包rms unifiable to the body of some in・[町.incremental propa唱ation 00 a multi-Iay官 Bool醐 network 国proved

tegnty cons回1Ot. eflic剛cyfu抽er[61.

-27-

b1ank (a1)
{認， a2) (o ， a3)χ， bl) (ko, cl) (x ,b2) (o,c3)

1 for each n in modified leaf node
2 push n into the priority

queue with height 0

3 whi1e the queue is not empty
4 pop the lowest node n from the queue
5 if n is a leaf node , or

vaJ' (n) ! = previo凶-vaJ' (n)

6 for each p E n's parents

Figure 4: Network of legaLmove (al , 0). We give a 7
if n becomes true

increment p's counter;
else // n becomes false

decrement p's counter;
if P is not in the queue

push p into the queue
with height h(p);

nickname a to g for each Ieaf, and write ab for a 八 b 佃d 9

a + b for a v b for brevity.

tion; a Ieaf has an input variable, and a non-Ieaf node hωa

co吋unction (we caII such a node and-node) or disjunction
(we caII such a node or-node) of 出e propositions of their

chiIdren. Figure 4 is a network of 出e proposition shown in

Figure 3.

3.3.1 Counters as Boolean values

Each non-leaf node has a counter in order to e伍ciently

compu低血e 回出 value of i岱 proposition. Let dep(x) be
the chiIdren of a node x, and cur(x) be a counter that shows

the number of the true children of x. 3

cur(x) = I{c E dep(x)lval'(c) = T}I (1)

Here, val' (x) represent a 四th value defined upon the

coun旬rofx.

(va/(x) x is a leaf

val' (x) = < cur(x) = Idep(x)I x is 佃 and-node (2)

cur(x) > 0 x is an or-node

where va/(x) 則hetruth value of the proposition of the node

x.

Property 1 For each node x, the fo//owing equation ho/ds.

10
11
12

Figure 5: Incremental propagation of Boolean values

高i
Figure 6: Edge reduction by kemel extraction

chang巴 on upper variables. Each node remembers i包 pre

vious value previous-va/p in order to detect such cancel・
lation. For example, suppose 白at a becomes T where ali
input variables a to g were F in 出巴 network shown in Figｭ

ure 4. First, a is put into the queue at line 1 and popped at
the line 4. Each parent of a, iム abc， ade and afg, is put
泊to the queue after i民 counter is inα'emented. In the next
l∞p， abc is popped. 百e valu巴 of cur(abc) (= 1) is not
equa1 to dep(abc) (= 3) , so the propagation stops here.

Property 2 The a/gorithm eventual/y terminates and
va/(x) = va/'(x) (3) va/'(p) = va/(p) after the termination.

Thanks to this propeはy， we can compute th巴町uth values
of aII the output variables by adjusting counters of nodes.4

3.3.2 Incremental calculat拘n

Figure 5 shows 出e breadth 伽st algorithm that visit nodes
組d 叫ust coun町s &0叩 l仰'erωupp町 us加g a 戸ority
queue. Breadth first processing is bet飽r 由加 depth 且，rst

one becauぉ changes 0n lower variables may canceI out 出店

JIAI is the ca曲叫ityofasetA. T andF a田 the Ime and 制民間spec
tively.

4旬le proof of 針。perty 1 is trivial [6].

3.4 Efficiency and optimization

The computational cost of the algori出rnc釦 be estimated

by the number of adjustmen凶 ofthe counters. Because the
algorithm wiIl go along at most once for each edg丸山e

worst cost is propositional to 白e number of edges. Kerｭ
nel ex町'action in logic op白n包ation [11] c組問duce edges
by network transformation. Figure 6 shows an example of
such transformation. WhiIe bo血 networks represent two

propositions abc + cd and ab + d + e, the right one has
smaIIer number of edges.

-28-

f(al)
f(al)
f(a2)

f(a3)

bl, b2.
b2, b3.
b3, b4.
bl. b4.

-令

Figure 7: Decomposition of a logical feature f (left) into

four 白血 features (ri悼の

10明。
H園。9llIß1 01 伽・SiZeoll岨nues

1回。

10唱 10"3 10"4 10唱 1 0"6 10咋10"8

Numborolle何""

Figure 8: Histogram of the number of terms of 出.e generｭ

ated features after unfolding

4 Further Enhancements:
Thin Features

Buro showed in [2] that the use of the large number of simｭ
p le features produces better 巴valuation function 血組曲at

of the small number of complicated features. As a simpl巴
application of the policy into our f凶mework， we introduce
thin j切ure 伽t is a co吋叩ction of input variables. The
value of a 由泊 feature is 0 or 1 according to iお Boolean

value. Decomposition is a syntactic operation 血at 甘組長

lates logical features into 出in features by eX'.racting bodｭ
ies of unfolded clauses. An example of decomposition is
shown in Figure 7.

Position evaluation c組 be efficiently performed by comｭ
posing Hasse diagram [5] on th巴 p訂tial order of th泊 fea

tures and by using a slightly modified propagation me出od

described in Sect. 3. In this propagation, we can use d巴p白
血rstalgorithm because thin features do not contain di吋聞か
tion.

1t is said 仕lat using features that rarely match positions
tends to caus巴 over-fi住泊g and makes evaluation functions
unstable [2]. So, we select 出加 features白紙 matchesa suf置
cient number of training po唱itions. This s巴lection 泊lproves

e伍ciency of position evaluation.

叩田0 ，

1000

j ,oo

s

H也togramoft旬a tfme req凶red for unfolding -ーー一

10唱 団吋 10"2 10"3 10"4 10"5 10唱

sec.

Figure 9: Histogram of 出巴 t卸le required for unfolding

5 Experimental Results

5.1 Evaluation Functions

w巴回ined four evaluation functions with varying features
and compared th巴 accuracy and efficiency of 出em.τne
first group consists of ones using logical features described
in Sect. 2 釦d be evaluated with 白e method described 泊
Sect.3.

A. The first one uses logical features shown in Appendix
C.l. They are slightly simplified version of 出e ones
shown in the work by Fawcett [3]. We take this 鎚 a

bas巴line of the evaluation .

B. The second one uses logical features selected among
more 出an ten thousands of automatically generated

ones. We applied feature generation rules [3] in
breadth first order to depth 自ve， and generated about
53k features. Our program unfolded about lOk of them
with about a month of computation. The histogram
ofth巴 size of generated features are shown in Figure
8. The horizontal axis shows the number of terms

in unfolded clauses in log-scale. Figure 9 shows the
histogram of 出e time required for unfolding. While
most features 釘e small and quickly unfolded. there are
some prohibitively huge features that 阻ke much time
to unfold. By eliniinating such features. the whole
computation can be finished in practical time. Then.
we chose about 8k features that have relatively small
size. Finally statistically significant 42 features are seｭ
lected by F-test. They are shown in Appendix C.2

Th巴 nextevaluation function uses thin features described in
Sect. 4.

C. The third one uses 血in features 国nslatedfrom logical
features used in A.

Th巴 last one is a pattem bas巴d evaluation function.

-29ー

I'able 1: Accuracy of evaluation functions

discs A B C D

I 0.67 0.85 0.88 0.94 60 ...:.. I
ゾ究 I 12.9 8.90 8.17 5刀
ゾV: I 14.9 9.64 8.90 6.凹

I 0.74 0.74 0.81 0.89 55 よ|
、/九 I 12.5 12.4 10.7 8.39
ゾV: I 14.6 14.0 12.5 9.25

D.τbe founh one uses configurations in the standard
eleven pattems in [2]. 百1ey contain four to ten atomic
features. We 凶ke 出is evaluation in order to measure
出e difference between our evaluation functions and
出e one produced by the state-of-the-art techniques.

5.2 Traioiog

AII evaluation functions use linear combination and their
weights 訂芭 adjusted by means of least me釦 sq凶res so
白紙 they predict the 白1al score (白edi仔'erence between the
number of black discs and 出at of white ones at the end of

the match after bo白 players did 出e best). The weights of
evaluation functions A 釦dB we陀 determined directly by
solving cov組組ce matrices 釦d 出e weights of others were
iterative!y adjusted by using a conjugate gradient me出od.
Training positions are ex官'acted 仕'omIOS records.s We se・
lected about 306k positions a白.er removing duplicate posiｭ

lions considering symme町 ofgeome町 and players. Then
we used for 町aining about 4.8M positions expanding symｭ
me町ic posi討ons.

5.3 Accuracy of Evaluatioo Fuoctioo

We tested the acc町acy of evaluation functions byωing
about 50k positions extracted from matches played between

LOGIS百LLO and KIπy. 6 We removed a加ut fifty Pか
sitions in them 出atare also in training positions.

Table 1 shows the result where r is 曲e correlation coeffiｭ
cient，組dV. is 出e vari釦ce of errors，釦dV: is the variance
of eπors measured for 町aining instances. Figure 10 shows
出e scaロer plots between prediction (horizon凶叙is) 釦d

real score (vertical axis). 百1e real scores帥 determinedby
using the fuU width se釘ch.

Comparing evaluation function A and B, we can see that
using features se!ected among large number of features

would produce more accurate evaluation function. Comｭ
paring eva!uation function A 組d C, we can see 出at 凶ー

5τ".Y are available at ftp://external.nj.nec.com/pub/
iqord/othello/ios/.

6They 田芭 available at ftp://external.nj.nec.com/pub/
iqordl 工OS/miscl

Table 2: The number of featu陀S

A B C D
18 42 3952 272032

τ'able 3: Efficiency of evaluation (k pωitions/sec.)

A B C D

3.18 0.872 86.6 104

ing thin features instead of logical features would produce
more accurate evaluation function.

5.4 Efficiency of Evaluation Function

Wega出ered about 3M positions by df-pn+ se訂ch[9]. The
search started at positions with 49 discs which 釘e extracted
仕om 23 matches in IOS records. Table 3 shows the averｭ
age speed (kilo positions/sec.) of each evaluation function.

The number of features used 泊 each evaluation function
is shown in Table 2. For the experiment, a computer with
933・MHZ CPU Pentium m rutu1ing FreeBSD is used 釦d

出e program is in1plemented in GNU C++.

Since evaluation function B uses much more complex
features than those of A as welJ as uses about twice number

of features，出e speed is worse than A. Comparing A 釦dC，

the use of thin features wilI in1prove the e値ciency fuロhe丸

山oughthe speed stilI did not reach to 出at ofD.

Buro repo目ed in [2] 白紙 his program searches about
270k nodes 加 a second on 333-MHz CPU Pentium II PC
while our implementation of his algorithm only evaluate
about l04k in a second on 933-加田zPC. 百is can be exｭ
plained that in our in1plementation we avoid rigorous opｭ
timization. The weights 凶 evaluation 白nctions 釘e repreｭ

sented as not integers but floating points. AIso we do not
share weights among symmetrical featu陀s.

6 Concluding Remarks

In this paper, a method to cons甘uct practical evaluation
functions without human analysis of 出e game are deｭ
scribed, which is crucial to constt"Uct a general game player.
We showed that the accuracy and efficiency of generated
evaluation functions 泊 OtheUoare approaching to 出oseof
出e pattem based evaluation function. 百10ugh stiU there is
a room for in1provements, the difference is diminishing.

Moreover, prelin1inary experiments of decomposing logｭ
ical features into 出回 featuresshowed in1provement on bo出
accuracy and e筒ciency. We are now develop加g methods
utilizing 山泊 features.

-30ー

/

: fil f
D C B

Figure 10: Scatter-plots of prediction by evaluation functions (about lOk positions with 60 discs)

(10] B. D. Pell. Strategy Generation and Evaluation for

Meta-Game Plの'ing. PhD thesis, University of Camｭ
bridge, 1993.

(11] R. L. Rudell. Tutorial: Design of a logic synthesis sysｭ

tem. In Design Automation Co，!如何ce， pages 191-
196, Las Vegas, NV USA, June 1996.

(12] J. D. U1lman. Prinsiples of Database and Knowledgeｭ
Base Systems , Volume 1: Classical DatabωeSystems.

Computer Science Press, M訂yland， 1988.

(1] A. Bossi, N. Cocco, and S. Dulli. A method for speｭ

cializing logic programs. ACM Trans. Prog. Lang.
Syst. , 12(2):253-302, Apr. 1990.

(2] M. Buro. From simple features to sophisticated evalｭ

uation functions. In Proceedings of the First Inｭ
ternational Conference on Computers and Games,
pages 126-145, Tsukuba, Japan, Nov. 1998. Springerｭ
Verlag.

References

(13] J. D. Ullm組. Prins伊lesofDaωbωe and Knowledgeｭ
Base Systems， 均lume II: The New Technologies.
Computer Science Press, Maryland, 1989.

A Simple Domain Theory of 4x4
Othello

A

をもも Rules
lega l..move(Square , Player)

square (Square) , bs (Square , ..F lipEnd , Player).
bsISl , S3 , P) blank(Sl) , opponent: (P ,Opp) ,

neiqhbor 151 , Dir , 52) , span (52 , 53 , Dir , Opp) ,
neighbor 153 , Oir , S4) , owns (P , 54) .

span 151 , 52 , Oir , Ownerl square (51) , square (52) ,
player (Owner) , Qwns (Qwner , 51) ,
neighbor (51 , Oir, 53) , span (53 , 52 , Oir. Owner).

span(S , 5, Oir , Qwner) ー

square (5) , player (Owner) I owns (Owner , 51 ,
direction IDirl .

ももも Oynamic E'acts defined upon a position.
% owns (Player , Squarel.
も blank(Square 1
も告も 5tatic Rules
line (E' rom , E'rom, Dirl square (E' rom l , direction (Dir) .
line (E' rom , To , Oir)

neiqhbor (From, Dir , Next) , line (Next , To , Dirl
もも% Sta乞 ic Fact5
opponent (black , white). opponent (whi乞e ， black).
d.irection (n) .direction (ne) .direction(el .direction (sel .
direction (51 .direction (sw) .direction (w> direction (nwl .

(3] T. E. Fawcett. Feature Discovery for Problem Solving
Systems. PhD thesis, Dep訂旬lent of Computer Sciｭ

enc巴， U凶V巴rsity of Massac.husetts, Amherst, 1993.

(4] T. E.Fawce~andP.E. Utgo仔'. Automatic feature genｭ

eration for problem solving systems. In D. Sleeman

and P. Edwards, editors, Proceedings of the 9th Inｭ
ternational Conference on Machine Learning, pages
144-153. Morgan Kaufmann, July 1992.

(5] D. Gries and F. B. Schneider. A Logical Approach to
Discrete Math. Springer-Verlag, New York, 1993.

(6] T. Kaneko, K. Yamaguchi，釦d S. Kawai. Compilｭ

ing logical features into specialized boolean networks

with incremental propagation. (In Japanese, sumbitｭ
ted).

square (all. square (a2). square (a3). square (a4) .

square Idl). square Id2). square Id3). square Id4) .

[7] T.Kan巴ko， K. Yamaguchi, and S. Kawai. Toward au・

tomatic construction of evaluation function 泊 tsume

shogi: An efficient evaluation method for logical feaｭ

tures. In Game Programming Workshop in Japan '95 ,
pages 137-144, Oct. 1999. (In Jap釦es巴).

[8] T. Kaneko, K. Yamaguchi， 叩d S. Kawai. Compilｭ

ing logical features into specialized state-evaluators

by partial evaluation, boolean tables and incremenｭ
凶 calculation. In PRICAI 2000 Topics in Artifiｭ
cial Intelligence , pages 72-82, Melboume, Australia,
Aug./Sept. 2000. neiqhbor (al , s, a2). ne込qhbor (a2 , n, al).

neiqhbor (a2 , 5, a3). nelqhbor (a3 , n, a21.

neiqhbor (d4 , nw , c3)
neiqhbor(c4 , ne , d31. neiqhbor(d3 , SW, c4).

-31-

(9] A. Nagai and H. Imai. Application of df-pn+ to 0出・

ello endgames. In Game Programming 日ゐrkshop in

Japan'99， pages16ー23 ， Kanagawa, Japan, Oct. 1999.

‘もも “ çoal-regression" feaζure generation rule

ももを requ主red some predicates.

span-st:ar (Begin, End, Dir, Owner)
span (Begin, End, Dlr , Owner) •

span.star (8e9in, Beqin , Dir, Owner) ー

square (Be9in) , direct:ion (Dir) , player (Owner) •
span..with..subspan (Begin, End, Dir, Owner) ー

span..star (Begin,MS, Dir, Owner) , blank (MS) ,
opponent: (Owner , Opp) , neighbor (MS, Oir,Next) ,
span (Next , Next2 , Dir, Opp) ,
neighbor (Next2 , Oir, BSend) , owns (Owner , B5end) ,
span.star (B5end, End, Dir, Owner) •

B Integrity Constraints of Othello
エ cl(5quare) blank(Square) , owns(..P layer, 5quare).
ic2 (5quare) ー owns (black, 5quare) , owns (white, 5quare) ー

C Features Used in Experiments

C.l Features generated by the Zenith system
discs_x (5) :- square (5) , owns (x, 5) .

discs_o (5) :-square (5) , owns (0 ,5).
moves_x (5) legal_move (5 , x) •
moves_o (5) :- legal_move 15 ,0).
axes_x (A, B, C) owns (x ,A) , bs (B , C, 0) , in_1ine (A , B, C) •
axes o(A, B,C) :- owns(o, A) , bs(B, C, x) , in line(A, B, C).
aaas_x (5) owns (x , 5) , corner (5) •
aaas_o (5) : -owns (0, 5>, corner (5) •
pre aaas x (5) ー corner (5) , legal_move (5 , x) •
pre_aaas_o (5) 時 corner (5) , lega1_move (5 , 0) •
老 predecessor of front1.er di.rections
pfd_x(C) ー blank (A) , neighbor (A, C, 0) , owns (0 , 0) ,

neighbor (0 , c , E) , owns (x , E) •
pfd_o (C) :-b1ank (A) , neighbor (A, C, O) , owns (x , 0) ,

neighbor (0 , C, E) , owns (0 , E) •
も simi1ar to Rosenb100m frontier
srf_x IA) b1ank (A) , neighbor (A ,C, D) , owns (0 , 0) ,

neighbor (D , C, E) •
srf_o (A) blank (A) , neighbor (A ,C, O) , owns (x, D) ,

neighbor (0 , C, E) •
も simi1ar 乞o Rosenb100m emp乞y

sre_x (E) b1ank (A) , neighbor (A, C, 0) , span (D ,E, C, 0) ,
neighbor (E , c , E') .

sre_o (E) blank (A) , neighbor (A, C,Ol , span (O, E, C, x) ,
neighbor (E , C, F) .

も simi1ar to Rosenb1oom empty

srse_x (A, Cl b1ank (A) , neighbor (A, C, 0) , owns (0 , 0) ,
neighbor(D, C, E) •

srse_o (A, Cl :-b1ank (A) , neighbor (A,C, 0) , owns (x , 0) ,
neighbor (0, C, E) •

C.2 Selected features
score..o (5) :-owns (0 , 51 . fl0 (5) :-1ega1.l盲目e(5 ， x) •
fl3(5) :-legaLmove(5 ,o). f26(5 ,_T) :-bs(5 ，..T，叫.
f35(5 , T , MI :-1ega1 ..move(5 ，叫， bs{M, T, o) , i r1-1ine(5, M, T).
f39(5 , _T) :-bs(5 , _T ,o).
f140(5 , 0 , T, U,M,Ol :-owns(o, 5) , b1ank(Ml ,

neighbor (M, 0 , 0) , span_with.subspan (0 , T , 0 , 01 ,
neighbor (T , 0 , U) , owns (x , U) , in斗印刷5 ， M ， T) •

f143(5 , 0 , T , U, M) :-owns(0 , 5) , blank(M) ,
neighbor (M, 0 , T) , owns (0 , T) , neighbor (T, 0 , Ul ,
owns(x, U) , in-1 ine(5, M,T).

fl62 (_τ) :-bs (5 , .T, x).
f265 (5 , 0 , T , U, M, O) :-owns (x , 51 , blank (M) ,

neighbor (M, 0 , 0) , span_with..subspan (0 , T, 0，叫，
neighbor (T , 0 , U) , owns (0 , U>, in_1ine (5 , M, T) •

f268 (5 , D,T ,U,M) :-owns (x , 5) , b1ank(MI ,
neighbor (M, 0 , T>, owns (x, T) , neighbor (T , 0 , U) ,
owns (0 , U) , in_1ine (5 , M,!) .

f287 (_T) :-bs(5 , _T ,O).

f421{5 ， 0 ， TI: ーowns (0 , 5) , 1ine (5 , T , 0) •
fl278 (5 , 0 , T, U, M) ・ー。wns(0 ， 5) ， neighbor(M, O, T) ,

owns (0 , T) , neighbor (T, 0 , U) , owns (x , U) , in...l.ine (5 ,H, T) •
f1316 (5 , 0 , T, U, MI : -owns (0 , 5) , b1ank 1M) , neエghbor (M, 0 , T) ,

owns (0 , T) , neighbor (T , 0 ，口)， 1n_1ine (5 , M, T) •
fl571(5 , D, T, U, M, Q) :・owns (0 , 5) , blank (M) ,

neighbor 問， 0 ， 0) ， span_with..subspan(Q, T, O,ol ,
neighbor (T , 0 , U) , legaL.move (U，叫，in..line (5 ,M, T) •

f1619(5 , 0 , T , U,M):- owns(0, 5) , b1ank(M) ,
neighbor(M, D, T) , owns{o, T) , ne1ghbor{T, 0 , U) ,
legal..move(U,x) , in..l ine(5, M,T).

f1665 (5 , 0 , T, U,M,Q) :-owns (0 , 5) , blank (M) , neighbor (H, 0 , Q) ,
owns (o ,Q) , neighbor (Q, 0 , T) , owns (o , 1') ,
neighbor (T , 0 , U) , owns (x , U) , in-1ine (5 , M, T)

f1884 (5 , 0 , Nex乞， M) :・owns (0 ,5) , bs (M, T, x) , 11ne (M, 5 , 0) ,
neighbor (5 , 0 , Nex包)， 1ine (Next , T, 0)

f2124 (5，問 :-legal.move(5 ， x) ， bS(M ， T ， o) ，日-1 ine(5 ， M ， T) •
f2798 (x , T) :-legal.rnove (5 ，叫， bs(M, T, o) , in_1ine(5, M,TI.
f2951(5 , D, T, U, M,Q) :明owns (x, 5) , blank (M) ,

neighbor (M, 0 , 0) , span_with..subspan (Q, T, 0 , x) ,
neighbor (T , 0 , U) , in斗ine (5 , M, TI .

f2952(5 , D, T, U, M) :・owns (x , 5) , b1ank (M) , neighbor (M, O, T) I

owns (x , T) , neighbor (T , D, 0) , in斗印刷5 ， M ， T) •
f3196(x , 0 , T, U,M,Q) :ーowns (x , 5) , b1ank (M) ,

neighbor (M, O, Q) , span-with-aubspan (0, T, 0，則，
nei.ghbor (T , 0 , U) , owns (0，口)，ェn_1ine(5 ， M ， T) •

f3207(5 , D, T, U,M, Q) :ーowns (x, 5) , b1ank (M) ,
neighbor(M,D,Q) , span司.with-subspan (Q, T, 0，叫，
neighbor (T, O, U) , lega1.l阻ve (U, 0) , iIl-line (5 , M, T) •

f3255{5 , D, T, U,M) :-owns(x, 5) , b1ank(M) ,
nei.ghbor (M, 0 , T) , owns (x , T) , neighbor (T , 0 , U>,
1egal..move(U, 0) , in-1 ine(5 , M, T).

f3301 (5 , 0 , T, U, M, Q) : -owns (x, 5) , b1ank (M) , neighbor (M, 0 , QI ,
owns (x , Q) , neighbor (0 , 0 , T) , owns (x , T) ,
neighbor (T , 0 ，口)， owns (0 , U) , in斗ine (5 , M, T) •

f3504 {5 , 0 , T} :-owns (x , 5) , 1ine (5 , T , O) •
f3522(5 , 0 , T,Next):-owns(x, S) , bS(M, T, o) , line(M, 5 , D) ,

neighbor (5 ,0 , Nextl , 1ine (Next , T, 0) •
f3881 (5. 0 , T, U, M) :-neighbor (M, 0 , T) , owns (0 , T) ,

neighbor(T, O, U) , owns(x, U) , in-1ine(5 ,M, T).
f4166(5 , 0 , T, U, Ml :-b1ank(M) , neighbor(M, D, T) ,

neighbor (!, 0 , U) , owns (x, 0) ，日1-1 ioe (5 , M, T) •
f4176 (5 , 0 , T, U,M) :-b1ank (M) , neighbor (M, D, T) ,

1ega1...move (T, 0) , neighbor (T , 0 ，口)， owns(x ， U) ，

in-1ine(5 , M, T) •
f4841(5 , 0 , T) :-1egal.move(5, 0) , 1ine(5, T, O).
f4939 (5 , 0 , T, M) :-owns (0 , 5) , nei.ghbor (M, O, 51 , 1ine 15, T, 0) •
f4943(0 , 0 , TI :-owns(o, 5) , 1ine(5, T, 0).
f5041 (0) : -owns (0 , 5) , 1.n斗ine (5 , H, T).
f5672(o , T) :-1egal .move(5 , 0) , bs(M, T, xl , in-1 ine(S , M,T).
f570

-32ー

