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Abstract: The radial basis function (RBF) network is a regression model that uses the sum of radial basis functions
such as Gaussian functions. It has recently been widely applied to spectral deconvolution such as X-ray photoelectron
spectroscopy data analysis, which enables us to estimate the electronic state of matter from the spectral peak positions.
For models with a hierarchy such as the RBF network, Bayesian learning provides better generalization performance
than the maximum likelihood estimation. In Bayesian learning, the learning coefficient is well-known as the coeffi-
cients of the leading terms for the asymptotic expansion of generalization error and stochastic complexity. However,
these coefficients have not been clarified in most models. We propose here a novel method for calculating the learning
coefficient by using the exchange Monte Carlo method. In addition, we calculated the learning coefficient in the RBF
networks and verified the efficiency of the proposed method by comparing theoretical and experimental values.
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1. Introduction

The radial basis function (RBF) network is an artificial neu-
ral network that is used in function approximation, time series
prediction, and system control. This network has been widely
applied recently in the field of condensed matter physics and
chemistry for spectral deconvolution such as X-ray photoelectron
spectroscopy data analysis, which makes it possible to estimate
the electronic state of matter from the positions of the spectral
peaks [1]. In the field of geoscience, it was reported that the es-
timation of the number of bases and the parameters of each basis
function were successfully estimated from the reflectance spectra
of olivine [2]. The RBF network is widely applicable in a range
of fields and can potentially be applied to constructing a general
framework for science.

For hierarchical models such as the RBF network, Bayesian
learning provides better generalization performance than maxi-
mum likelihood estimation. In Bayesian learning, two functions
are considered to be the important indicators for estimation. One
is the generalization error, which indicates the estimation accu-
racy for unknown data. The other is the stochastic complexity,
which is used for model selection and optimization of hyperpa-
rameters. The coefficients A of the leading terms for the asymp-
totic expansions of these functions are called the learning coef-
ficient [3], and these values are model specific. Algebraic ge-
ometrical methods for hierarchical learning machines have also
been established [4], and the values A have been studied in vari-
ous learning machines. However, the coefficients have not been
clarified in most models because the hierarchy of these models
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leads to difficulty in analysis.

We propose in this paper a novel method for calculating the
learning coefficient by using the exchange Monte Carlo (EMC)
method [5]. This proposal is based on the theoretical background
in which the exchange ratio, which is calculated in the EMC sim-
ulation, depends on the learning coefficient and the setting of in-
verse temperatures [6]. Moreover, we calculate the learning co-
efficients in the RBF networks and verify the efficiency of our
proposal by comparing the theoretical and experimental values.

This paper is organized into five sections. In Section 2, the
RBF network and the general framework of Bayesian estimation
are outlined. In Section 3, we propose our novel method for cal-
culating the learning coeflicient based on the EMC method. In
Section 4, the results of the numerical analysis of the learning
coefficient in the RBF networks are presented and discussed. Fi-
nally, a conclusion is given in Section 5.

2. Background

In this section, we introduce Bayesian learning in the radial
basis function network.

2.1 Radial Basis Function (RBF) Network
The RBF network is a regression model that is obtained by us-
ing the sum of basis functions as follows:

K

y=flrw) =) ad), (M

k=1
where ¢ (x) is the radial basis function, which depends only on
the distance from the center yy. In this study, we take the follow-
ing Gaussian functions ¢, (x) as the basis functions,

b
$(x) = exp (—;"(x - uk>2) : @)
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K
k=1°

spectively the strength and the precision (the inverse of variance)

The parameter set is w = {ay, t, by} where a; and by, are re-

of each basis function. The set of training samples D = {X, Y} =
{xi,y;}l_, consists of the individual pairs of input x; and output
y;. The mean squared error function is defined by the training

samples D and the fitting function f(x;; w) as follows:
Ew) = = 3 - Sy 3
2n < 1 (&} .

This definition stands for the Gaussianity of the noise that is
added to the output y;; it varies according to the process used
to generate the data.

2.2 Bayesian Estimation

The purpose of the Bayesian estimation is to evaluate the pa-
rameter set not as the determined variable but as the probabil-
ity distribution. For hierarchical learning machines such as the
RBF network, Bayesian estimation provides better generalization
performance than point estimation such as maximum likelihood
estimation and maximum a posteriori estimation.

The output y; is assumed to be the sum of the true value f(x;; w)
and the noise g; as follows:

yi = fxiw) + &, 4

where the noise ¢&; is a random variable depending on the
Gaussian distribution whose mean and variance are respectively
0 and o®. Given the input x; and the parameter set w, the output
y; is given by the following conditional probability:

- . 2
(i~ SO w) ) )

1
pli | xi,w) = s CXP( )

For the independence of data, the probability density p(Y | X, w)
of output set Y given input set X can be expressed as follows:

n
p(Y | X,w) = ﬂp(yi | xi, w)
i=1
1

n
= W exp (—?E(UJ)) . (6)

In Bayesian estimation, the parameter w is regarded as a ran-
dom variable, and the conditional probability density p(w | D) of
parameter set w given training samples D is estimated based on
the likelihood p(Y | X, w) and the density p(w). Here p(w) and
p(w | D) are respectively called the prior density and the poste-
rior density. The posterior density p(w | D) can be expressed by
using Bayes’ theorem as follows:

_ Y 1 X, wpw)

D
pw | D) S X)
1 n
= 75 P (-2 E) pw, )
2(D) = f exp (-2 E@)) pludun, ®)

where Z(D) is a normalization constant called the marginal like-
lihood or the partition function. The function F(D) is called the
stochastic complexity or the free energy and is defined as follows:
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F(D) = —log Z(D). ©

This function is used as the evaluation function for model selec-
tion and the optimization of the hyperparameters. Numerical inte-
gration by using the Markov chain Monte Carlo (MCMC) method
is a well-known way to calculate F'(D) [7]. Bayesian learning en-
ables us to estimate the true distribution ¢(y | x) from the pre-
dictive distribution p(y | x, D), which is defined as the following
function for unknown data (x, y),

(1 x.D) = f Py | % w)p(w | Dyduw. (10)

The gap between the true distribution ¢(y | x) and the predictive
distribution p(y | x, D) is defined by using the Kullback distance
as follows:

qy | x)

GD) = f q(ylx)q(X)logp dxdy QY

wlxD)y
where G(D) is called the generalization error, and ¢g(x) is the true
distribution of input x.

2.3 Learning Coefficient
The average log loss function H(w) is defined as follows:

H(w) = - f q(y | x)q(x) log p(y | x, w)dxdy. (12)

Note that the parameter wy which minimizes H(w) is not equal to
the maximum likelihood estimator for hierarchical learning ma-
chines. The stochastic complexity F(D) and the generalization
error G(D) can be expressed as the following asymptotic expan-
sion for 25 — oo [3],

F(D) = %E(wg) + Alog % +0, (log log (%) (13)
-1 -1
G(D):E(w0)+/l(0%) +op((£) ) (14)

where A is a rational number called the learning coefficient, which
is given as the absolute value of the largest pole of the following
zeta function:

(@)= f(H(w) — H(wo))* p(w)duw. 15)

The learning coefficient A represents how the true parameters ex-
ist in the parameter space and determines the speed that the pre-
dictive distribution p(y | x, D) converges towards the true distri-
bution g(y | x). Its value depends on the true distribution g(y | x),
the likelihood p(Y | X,w), and the prior density p(w). In the
field of algebraic geometry, A is called the real log canonical
threshold (RLCT), which is well-known as an important value
that represents the relative property of a pair of algebraic vari-
eties [8]. In recent studies, algebraic geometrical analyses have
been established for hierarchical learning machines. Using these
analyses makes it possible to study the values A in various learn-
ing machines, e.g., artificial neural networks [4], [9], Gaussian
mixtures [10], reduced rank regressions [11], and Boltzmann ma-
chines [12]. However, there are many models whose values have
not been clarified. The singularity of a model caused by hierar-
chy leads to difficulty in analysis. In general, a learning machine
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is called regular if a parameter set is uniquely determined for a
distribution and if its Fisher information matrix is always positive
definite. If otherwise, it is called singular. The RBF networks
with K bases are regular for the case that K < Ky, and are singular
for the case that K > Kj. The relationship A = w holds with
respect to the coefficient A in regular models, and hence, F(D) is
equal to the Bayesian Information Criterion (BIC), which is well-
known as an approximate solution of F(D)[13], except for the
random variable O, (1) depending on the training samples.

3. Proposed Method

In this section, we propose a novel method for calculating the
learning coefficient by using the EMC method.

3.1 Exchange Monte Carlo (EMC) Method

Local minima solutions often present a problem in the opti-
mization of parameters. This problem can be resolved in princi-
ple by using the Markov chain Monte Carlo (MCMC) methods,
which are a class of algorithms for sampling from target den-
sities; these methods are based on constructing Markov chains.
However, the calculation cost depends heavily on the target den-
sity or the initial state. The EMC method is a kind of MCMC
method that provides a more effective solution for the problem of
slow relaxation [5].

In the EMC simulation, parameter sampling is carried out from

the following joint density p(wy, ..., wy):
L
pwn, ... we) = [ | pws o, (16)
=1
p(wiB) = % exp (- ELEGn) ptun), (17
6 = [ exp (=L Bwn) ptwna, (18)

where p(wy; ;) and z(B;) respectively represent the posterior den-
sity and the marginal likelihood in each replica defined by dif-
ferent inverse temperatures {8;;/ = 1,..., L}. Sampling from the
joint density p(wy,...,wy) is equivalent to sampling from each
replica in parallel. In practice, we set inverse temperatures as
0=p81 <B <+ <P =1, s0that p(ws; 1) and p(wr; L) are
respectively equal to the prior p(w) and the posterior p(w | D).
The algorithm is constructed with the following update rules
with which the joint density p(w, ...,w;) is invariant.
1. Update state in each replica
Sample from each posterior density p(wy; ;) by using the
Metropolis algorithm, one of the conventional MCMC meth-
ods, in parallel.
2. State exchange between two adjacent replicas
Exchange the states w; and w;,; at every step according to

the following probability u:

w(wy, wir 1 Br, Pre1) = min(L, v(wy, wir1; B, Bre1))s (19)

. _ pwrs Bpwr; Brer)
v s B B = B pwrm B

= exp (_n2 Brer = BIEWpi1) — E(wl)))-
o
(20)
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3.2 Asymptotic Behavior of Average Exchange Ratio

The exchange ratio, which is calculated in the EMC simulation,
represents sampling efficiency. Its value depends on the number
of data n, the noise variance o2, the error function E(w), and the
setting of inverse temperatures {f;}. The average exchange ratio
Jo is defined as follows, and it converges in the low temperature

limit, that is, as "2 — 0 [6]:

Jo = ffu(wl, Wi 1 B B D PWi; B pWie 15 Bre ) dwydwyy g

2T
I()? f (r+S)2* @D

/3/+|

where r = = If the temperature ratio r is fixed, Jy is the single-
valued functlon as a function of A. By setting the inverse tem-
peratures as a geometric progression, every temperature ratio r
between each replica becomes equal. Therefore, it is guaranteed
that every exchange ratio in the low temperature region will con-
verge to the same constant. Figure 1 plots the theoretical value
of the average exchange ratio Jy for the value A. The horizontal
axis and the vertical axis respectively represent the learning coef-
ficient A and the average exchange ratio Jy. The temperature ratio
r varies with the line style; i.e., the solid line indicates an r value
of 1.5, the dashed line indicates r of 3.0, and the dash-dotted line
indicates r of 6.0. The average exchange ratio Jy is monoton-
ically decreasing for the learning coefficient A regardless of the
temperature ratio r. This suggests that the value A is determined
from the exchange ratio J as the inverse function for sufficiently
large %

3.3 Numerical Analysis of Learning Coefficient

We propose a novel method for calculating the learning coef-
ficient. This method is based on the theoretical background in
which the exchange ratio, which is calculated in the EMC simu-
lation, depends on the learning coefficient and the setting of in-
verse temperatures. The learning coefficient is calculated using
the following procedure.

Fig. 1 Theoretical value of the average exchange ratio Jy for the value A.
The horizontal and vertical axes respectively represent the learning
coefficient A and the average exchange ratio Jo. The varied line styles
indicate different values for temperature ratio r; for the solid line,
r = 1.5, for the dashed line, r = 3.0, and for the dash-dotted line,
r=06.0.
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1. Setting of inverse temperatures
Set the sequence of inverse temperatures as the following
geometric progression:

0 if =1
L @)

L (otherwise),
where r is an arbitrary constant that satisfies » > 1. Note that
0<B <lforall=1,...,L.
2. Calculation of the exchange ratio
Simulate the learning by the EMC method and calculate the
exchange ratio J as follows:

J= N’ (23)
where N is the iteration for the EMC algorithm except the
burn-in period, and « is the acceptance frequency between
the replicas defined by the inverse temperatures 8, and 8, ;.

3. Numerical resolution of the learning coefficient
Substitute the temperature ratio r and the exchange ratio J
for Eq. (21), and calculate back to the learning coefficient A
by using the bisection method.

4. Simulation and Discussion

In this section, we calculate the learning coefficients in the RBF
networks and discuss the accuracy and effectiveness of the pro-
posed method by comparing the experimental values and the the-
oretical upper bounds.

4.1 Settings

Input x was taken from the range [150, 175] in steps of 0.1 for
every training sample, and the total number n was 251. The noise
variance was set as o> = 1. The training samples were generated
from the following true function:

K
0 b*
gl w') = ; a;exp (—Ek(x - u,f) , 4)

where K, represents the true number of bases, and w* =
{ag, 1 b;}fjl represents the true parameters.
We defined the prior density p(w) as follows:

K

p@) = | | etae@e®o, 25)
k=1

elax) = Gamma(ag; 1, 0a)

Ga’]“ ak'h'_1 exp(_eaak)s (26)

" T
() = N vo. &)

& &o
= 52 exp (- e - w7, @7

@(by) = Gamma(by; 175, 6p), (28)

where the hyperparameters were n, = 5, 6, = 0.25, vy = 162.5,
& = 2,1, = 4, and 0, = 1. The candidate model size for the
estimation was set as the range from K = 1 to K = 6.

The number of inverse temperatures was L = 32, and their ra-
tios were all » = 1.5. The initial state of each parameter w; and the
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state update of w, for every step were determined according to the
density p(w). The iteration was set as 50,000 steps for the burn-in
period, and 50,000 steps for the calculation of the exchange ratio.

4.2 Calculation and Accuracy Evaluation

We calculated the learning coefficients A in variance-fixed RBF
networks by using the proposed method to compare their clarified
theoretical and experimental values. Here the variance-fixed RBF
network was an RBF network whose variance of each basis func-
tion all had an equal value, by = b; = 5.67. For K < K, this
model is regular, so that the exact solution of the learning coeffi-
cient is given as follows:

_ dim(w) _

A
2

K (K < Ko). (29)

For K > Kj, on the other hand, the model is singular, and the up-
per bound of the learning coefficient is considered to be the same
as the analytical solution for Gaussian mixtures as follows [10]:

_dim@w)  K-Ky _K+Ko
-2 2 2

(K > Ko). (30)

In practice, the values A are assumed to have dispersion caused
by the state exchange in the EMC method, the noise added to the
training samples, and the setting of the true parameters. On the
basis of this viewpoint, we individually changed the above condi-
tions and evaluated the accuracy of the learning coefficients. The
training samples were generated from the true parameters w* ac-
cording to the prior density p(w).

The theoretical and experimental values of the learning coef-
ficient are shown in Fig.2. The left, middle, and right figures in
each row respectively show the simulation results for the training
samples whose true number of bases was Ky = 1, Ky = 2, and
Ky = 3. The upper graphs in each column show the average and
the dispersion over the EMC simulation 5 times. The middle and
lower ones respectively show the average over the data noise and
over the true parameter. In each graph, the horizontal axis and
the vertical axis respectively represent the number of bases K and
the learning coefficient 4. The dashed line shows the theoretical
values, which indicate the exact solutions for K < K; and the
upper bounds for K > Kj. The solid line shows the average and
the dispersion of the experimental values of the learning coeffi-
cient using the proposed method. The error bars in these graphs
represent twice the standard deviation.

For K < Kj, the experimental values approach the exact so-
lutions, and their dispersions are significantly small. This shows
that the proposed method provides an accurate learning coeffi-
cient. For K > Kj, on the other hand, every average value is
below the upper bound, and the dispersion tends to be larger de-
pending on the increase in K. This shows that the larger dimen-
sion of the parameter space constructs a more complex singular
structure. We cannot analytically derive the coefficient A from
its definition without knowing the true distribution and its model
size. In contrast, the proposed method does not require such in-
formation, on the contrary, we can inversely estimate the model
size from the behavior of the expectation value of the values A
over all sets of training samples.
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The theoretical and experimental values of the learning coefficient. The left, middle, and right

graphs in each row respectively show the results of simulation for the training samples whose true
number of bases was Ky = 1, Ky = 2, and K, = 3. The upper graphs in each column show the aver-
age and the dispersion over the EMC simulation 5 times. The middle and lower ones respectively
show the average over the data noise and over the true parameter. In each graph, the horizon-
tal and vertical axes respectively represent the number of bases K and the learning coefficient A.
The dashed line in each graph shows the theoretical values, which indicate the exact solutions for
K < K and the upper bounds for K > K. The solid line shows the average and the dispersion of
the experimental values of the learning coefficient by using the proposed method. The error bars
in these figures represent twice the standard deviation.

4.3 Application to Model Selection

We applied the proposed method to model selection by using
the asymptotic expansion of the stochastic complexity and then
evaluated how effective our method was. The training samples
were generated from the following true parameters:

a; 56920 \ ( 1 160.2421
a |=] 170239 [,| w5 |=| 1628885 |,
a 16.1475 ) \ 1 161.2859
b 47914

b, |=| 19104

b, 17696

The left side of Fig. 3 plots the generated training samples, and
the right side shows the results of model selection by using the
stochastic complexity, its asymptotic expansion (Eq.(13)), and
BIC. The horizontal and vertical axes respectively represent the
number of bases K and the values of the evaluation functions. The
dash-dotted line, solid line, and dashed line respectively show the
stochastic complexity, its asymptotic expansion (Eq.(13)), and
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BIC. In practice, the value E(wy) was calculated as the minimum
error; we cannot know the true distribution. The stochastic com-
plexity F (D) were calculated in the EMC simulation. BIC takes
the minimum value at K = 2; in other words, the wrong model
size was selected. This is because the learning coeflicient in the
dimw

S5, so the penalty term is estimated as be-

ing higher than the true value. This result shows the risk that BIC

singular model is A <

may estimate a smaller number K than the true number K,. On
the contrary, the stochastic complexity and its asymptotic expan-
sion Eq. (13) take the minimum value at K = 3; that is, the true
model size was selected. Furthermore, the values of the stochas-
tic complexity and its asymptotic expansion are considered to be
equal, except for the random variable O, (log log ﬁ) depending
on the training samples. This reveals that both criteria provide the
same model selection result thanks to the exact estimation of the
learning coefficient A.

In addition, we checked the estimated parameter to verify the
validity of above discussion. The result of maximum likelihood
estimation is shown in Fig.4. The left and right graphs respec-
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Fig. 3 Results of model selection. The left and right graphs respectively show the training samples and
the values of criteria. (Left) The horizontal and vertical axes respectively represent the input x
and the output y. The true number of bases is Ky = 3. The black dots represent the data. The
solid and dotted lines respectively indicate the true function g(x) and each basis function. (Right)
The horizontal and vertical axes respectively represent the number of bases K and the values of
the evaluation functions. The dash-dotted line, solid line, and dashed line respectively show the
stochastic complexity, its asymptotic expansion (Eq. (13)), and BIC. The stochastic complexity
and its asymptotic expansion take the minimum value at K = 3, while BIC does so at K = 2.
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Fig. 4 Results of maximum likelihood estimation. The left and right graphs respectively show the fitting
curves and the bases by using the RBF networks whose number of basis are K = 2 and K = 3.

tively show the fitting curves and the bases by using the RBF
networks whose number of basis are K = 2 and K = 3. The re-
sult for K = 3 expresses the character of each basis of the true
function better than the result for K = 2.

5. Conclusion

We proposed a novel method for calculating a learning coeffi-
cient by using the exchange Monte Carlo method and discussed
the method’s accuracy in a simulation for an RBF network. The
accuracy of the learning coefficient calculated by using our pro-
posed method in a variance-fixed RBF network was shown to be
valid by comparing the results with the theoretical values. More-
over, we applied the proposed method to model selection by using
the asymptotic expansion of the stochastic complexity and veri-
fied that our method was effective.
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