
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.3 100–105 (Dec. 2013)

Regular Paper

Theoretical Analysis of Learning Speed in Gradient
Descent Algorithm Replacing Derivative with Constant

Kazuyuki Hara1,a) Kentaro Katahira2,3,b)

Received: November 6, 2012, Revised: December 28, 2012,
Accepted: April 30, 2013

Abstract: In on-line gradient descent learning, the local property of the derivative term of the output function can
slowly converge. Improving the derivative term, such as by using the natural gradient, has been proposed for speeding
up the convergence. Beside this sophisticated method, we propose an algorithm that replaces the derivative term with
a constant and show that this greatly increases convergence speed when the learning step size is less than 2.7, which
is near the optimal learning step size. The proposed algorithm is inspired by linear perceptron learning and can avoid
locality of the derivative term. We derived the closed deterministic differential equations by using a statistical mechan-
ics method and show the validity of theoretical results by comparing them with computer simulation solutions. In real
problems, the optimum learning step size is not given in advance. Therefore, the learning step size must be small. The
proposed method is useful in this case.

Keywords: learning speed, derivative, gradient descent algorithm, simple perceptron, statistical mechanics

1. Introduction

Learning in neural networks can be formulated as optimization
of an objective function that quantifies the system’s performance.
An important property of feed-forward network is their ability to
learn a rule from examples. Statistical mechanics has been suc-
cessfully used to study this property, mainly for the so-called sim-
ple perceptron [1], [2], [3]. A compact description of the learn-
ing dynamics can be obtained by using the statistical mechanics,
which uses a large input dimension N and provides an accurate
model of mean behavior for realistic N [2], [3], [4].

In the learning using feed-forward network, on-line learning
and off-line learning (batch learning) are used. The correspond-
ing objective function measures the performance of the learning
network (the student) on a given set of examples. This is called
off-line learning. It stores entire examples, so it would be ex-
pected to be efficient in terms of the number of examples needed
for good generalization. However, it is costly. On-line learning
is a common method for learning multi-layer feed-forward neural
networks, especially for large systems and for problems requiring
rapid and adaptive data processing. Only the latest in a sequence
of examples determines the update of student weights in an iter-
ative learning process. No explicit storage of an example set is
required and the student’s performance on earlier examples is not
taken into account. (For comparison between batch learning and
on-line learning, see Murata [5].)

1 College of Industrial Technology, Nihon University, Narashino, Chiba
275–8575, Japan

2 Center for Evolutionary Cognitive Sciences, The University of Tokyo,
Meguro, Tokyo 113–8654, Japan

3 Brain Science Institute, RIKEN, Wako, Saitama 351–0198, Japan
a) hara.kazuyuki@nihon-u.ac.jp
b) katahira@ecs.c.u-tokyo.ac.jp

There are some works that correspond to the acceleration of
learning processes [6], [7], [8]. The main problem in slow learn-
ing is plateau, which occurs in learning processes using the gradi-
ent descent algorithm. Other works have considered local prop-
erty of a derivative of the output function. In gradient descent
learning, the parameters are updated in the direction of the steep-
est descent of the objective function. To calculate the direction, a
derivative of the output function is used. When the output func-
tion is linear, the derivative is 1 and is not a function of the inner
potential of output unit. However, when the output function is a
sigmoid-like function, the derivative becomes a Gaussian func-
tion and is a localized function of inner potential of the output
unit. The Gaussian function is non-zero for the mean and damps
exponentially. Therefore, update of the parameter becomes small
for large absolute value of inner potential, causing slow conver-
gence. We scope accelerating the learning process on modify-
ing derivative of the output function while conventional methods
scope the optimization of the learning step size [9], [10].

In this paper, we propose the gradient descent algorithm replac-
ing the derivative of the output function with a constant value, and
then we analyze the learning dynamics of the proposed method
by using the statistical mechanics methods. The rest of this paper
is as follows. We formulate the networks, the input, the output
function, and the gradient descent algorithm in Section 2. We
employ teacher-student formulation that is also introduced in this
section. In Section 3, we introduce some theoretical results of a
conventional gradient descent method [2]. Then we propose an
acceleration method and derive closed differential equations that
depict dynamical behavior of the system in Section 4. In Sec-
tion 5, we compare the numerical calculation of theoretical results
of the proposed method with those of computer simulations, and
in Section 6, we compare the generalization error of the proposed

c© 2013 Information Processing Society of Japan 100

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.3 100–105 (Dec. 2013)

method with that of conventional method [2]. We summarize the
results and conclude in Section 7.

2. Formulations

In this section, we formulate the teacher and student networks,
and the gradient descent algorithm employing a teacher-student
formulation. We assume the teacher and student networks re-
ceive N-dimensional input ξm = (ξm1 , . . . , ξ

m
N) at the mth learning

iteration as shown in Fig. 1. Here, we assume the existence of
a teacher weight vector B that produces desired outputs, so the
teacher output τ(ξ) is a target of the student output σ(J , ξ). This
is called teacher-student formulation.

The teacher network shown in Fig. 1 has N inputs and an output
and is the same structure as the perceptron [11]. The learning iter-
ation m is ignored in the figure. The student network has the same
architecture as the teacher network. B denotes the weight vector
of a teacher network with N elements. Jm denotes the weight
vector of a student network with N elements at mth the learning
iteration. We also assume that the elements ξmi of independently
drawn input ξm are uncorrelated random variables with zero mean
and unit variance; that is, the ith element of input is drawn from
a probability distribution P(ξi). In this paper, the thermodynamic
limit of N → ∞ is assumed. In the thermodynamic limit, the law
of large numbers and the central limit theorem can apply. We can
then depict the system behavior by using a small number of pa-
rameters. Statistics of the inputs at the thermodynamic limit are
as follows.

〈
ξmi

〉
= 0,

〈(
ξmi

)2
〉
= 1, ||ξm|| = √N, (1)

where 〈· · · 〉 denotes average and || · || denotes the norm of a vector.
A perceptron is used as the teacher network and is not subject

to training. Thus, the weight vector B is fixed in the learning
process. The output of the teacher τ(ξm) for N-dimensional input
ξm at the mth learning iteration is

τ(ξm) = g (ym) = g

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

Biξ
m
i

⎞⎟⎟⎟⎟⎟⎠ , (2)

g(ym) = erf

(
ym√

2

)
=

1√
2π

∫ ym

−ym

dt exp

(
− t2

2

)
(3)

where teacher weight vector B = (B1, . . . , BN) is N-dimensional
vector, and each element Bi, i = 1 ∼ N of teacher weight vec-
tor B, is drawn from a probability distribution of zero mean and
1/N variance. ym = B · ξm is internal potential of the teacher. g
is the sigmoid function commonly used in non-linear perceptron.
Assuming the thermodynamic limit of N → ∞, statistics of the
teacher weight vector are

〈Bi〉 = 0,
〈
(Bi)

2
〉
=

1
N
, ||B || = 1. (4)

Fig. 1 Network architecture of teacher (left) and student (right) networks,
both with the same network structure.

The distribution of the inner potential of the teacher network fol-
lows a Gaussian distribution of zero mean and unit variance in the
thermodynamic limit.

The perceptron is used as a student network, which has the
same architecture as the teacher network. For the sake of analy-
sis, we assume that each element of J0

i , which is the initial value
of the student weight vector Jm, is drawn from a probability dis-
tribution of zero mean and 1/N variance. The norm of the initial
student weight vector ||J 0|| is 1 in the thermodynamic limit of
N → ∞. Statistics of the student weight vector are

〈
J 0

i

〉
= 0,

〈(
J0

i

)2
〉
=

1
N
. (5)

The student output σ(J , ξm) for the N-dimensional input ξm at
the mth learning iteration is

σ(J , ξm) = g(xm) = g

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

Jm
i ξ

m
i

⎞⎟⎟⎟⎟⎟⎠ , (6)

where xm = Jm · ξm is the internal potential of the student. The
distribution of the inner potential of the student network follows
a Gaussian distribution of zero mean and variance Q2 in the ther-
modynamic limit. Here, Q2 = J · J is the squared norm of the
student weight vector.

Next, we formulate the gradient descent algorithm. We follow
Biehl and Schwarze’s formulations of the learning [2]. For the
possible inputs {ξ}, we want to train the student network to pro-
duce desired outputs τ(ξm) = σ(J , ξm). We employ the squared
error as an error function. The squared error is defined by

ε(J , ξ) =
1
2

[σ(J , ξ) − τ(ξ)]2 (7)

At each learning step m, a new uncorrelated input ξm is presented.
The current student weight vector Jm is updated in the direction
of the greatest decrease of ε(J , ξ).

Jm+1 = Jm − η
N

[
σ (Jm, ξm) − τ (ξm)

]∇Jσ(Jm, ξm)

= Jm +
η

N
[
g(ym) − g(xm)

]
g′(xm)ξm. (8)

Here, η is the so-called learning step size and g′(x) is derivative
of the output function g(x). g′(x) =

√
2/π exp(−x2/2).

The generalization error of student J is defined as

εg = 〈ε(J , ξ)〉 . (9)

3. Theoretical Results for Conventional
Method

In this section, we introduce some theoretical results given by
Biehl and Schwarze [2]. Formulations the same as those in the
previous section are used. The generalization error of true gradi-
ent descent is given by

εg =
1
π

sin−1

(
1
2

)
+

1
π

sin−1

(
Q2

1 + Q2

)
− 2
π

sin−1

⎛⎜⎜⎜⎜⎜⎝ R√
2(1 + Q2)

⎞⎟⎟⎟⎟⎟⎠ .
(10)

Here, R = B · J is the overlap of the teacher weight vector B

c© 2013 Information Processing Society of Japan 101

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.3 100–105 (Dec. 2013)

Fig. 2 Generalization error of the perceptron using true gradient for differ-
ent learning rates. The analytical results are used. All curves are for
initial conditions R(0) = 0 and Q(0) = 1. η = 0.1, 0.5, 2.7, 3.0 or 5.0
is used.

and student weight vector J . εg is a function of continuous time
t = m/N in the thermodynamic limit of N → ∞. These param-
eters are so-called order parameters that depict dynamics of the
learning system. The order parameters obey the following differ-
ential equations:

dR
dt
=

2
π

η

1 + Q2

⎡⎢⎢⎢⎢⎢⎣ 1 + Q2 − R2√
2(1 + Q2) − R2

− R√
1 + 2Q2

⎤⎥⎥⎥⎥⎥⎦ , (11)

dQ2

dt
=

4
π

η

1 + Q2

⎡⎢⎢⎢⎢⎢⎣ R√
2(1 + Q2) − R2

− Q2√
1 + 2Q2

⎤⎥⎥⎥⎥⎥⎦
+

4
π2

η2√
1 + 2Q2

[
sin−1

(
Q2

1 + 3Q2

)
+sin−1

(
1+2(Q2 − R2)

2(1+2Q2 − R2)

)

− 2 sin−1

⎛⎜⎜⎜⎜⎜⎝ R√
2(1 + 2Q2 − R2)

√
1 + 3Q2

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ . (12)

Figure 2 shows the generalization error εg. In the figure, hor-
izontal axis is time t and the vertical axis is the generalization
error εg. This figure is obtained by solving Eqs. (11) and (12) at
each time step, and substituting them into Eq. (10). Initial val-
ues are R(0) = 0 and Q(0) = 1. Learning step size is set to
0.1, 0.5, 2.7, 3.0 or 5.0. From the figure, the generalization error
approaches zero as t increases for small learning step size. Biehl
and Schwarze show that if large η is selected, the learning pro-
cess slows down until a critical learning step size ηc ≈ 4.06 is
reached [2]. For η > ηc, the generalization error no longer decays
to zero but approaches a value εg > 0. They also show that there
is the optimum learning step size ηopt ≈ 2.704. Therefore, the
fastest asymptotic decay of εg is achieved for ηopt.

4. Proposed Method and Theory

In this section, we introduce derivative of the output function
and show why local property of derivative of the output func-
tion causes slow convergence. Then, we propose an acceleration
method.

We first investigate the effect of local property of derivative of
output function. The variance of inner potential P(x) at the ini-
tial is 1, so most of the inner potential is less than 3. Keeping
this in mind, we expand g′(x) =

√
2/π exp(−x2/2) ∼ √2/π(1 −

x2/2+x4/8 · · ·), and used (1) the first term, (2) the first and second

Fig. 3 Comparison of convergence speed using different localities.

terms for −√2 ≤ x ≤ √2 and 0 otherwise, (3) the first term for
−1 ≤ x ≤ 1 and 0 otherwise, (4) the first term for −√2 ≤ x ≤ √2
and 0 otherwise, (5) the first term for −2 ≤ x ≤ 2 and 0 other-
wise, or (6) the first term for −3 ≤ x ≤ 3 and 0 otherwise, instead
of g′(x). We also used (7) g′(x) =

√
2/π exp(−x2/2). Results are

shown in Fig. 3. Computer simulation results of setting N = 1000
and the learning step size η = 0.1 are used.
In the figure, the top line shows result of (2), and the following
lines show results of (3), (7), (4), (5), (6) and (1), respectively.
From the results, the generalization error decay slows when (2)
or (3) are used. When we reduce locality by expand the region of
x as from (4) to (6), the decay speeds are increased. The fastest
decay can be achieved by (1) and (6). Therefore, we replace√

2/π exp(−x2/2) with the constant
√

2/π.
A better approach might be to use a constant value, “a”, instead

of “
√

2/π” (the first term). We thus modify the learning equation
to include a constant term:

Jm+1 = Jm +
ηa
N

(
erf

(
ym√

2

)
− erf

(
xm√

2

))
ξm

= Jm +
ηa
N
δmξm. (13)

δm = erf

(
ym√

2

)
− erf

(
xm√

2

)
(14)

The squared error is defined by Eq. (7) and the generalization
error is obtained by average over possible inputs {ξ}. The gener-
alization error is the same as Eq. (10).

The differential equations that depict behavior of order param-
eters are given by the next equations. (For derivations, see ap-
pendix.) We replace ηa with η′ for simplicity.

dR
dt
=
η′√
π

⎛⎜⎜⎜⎜⎜⎝1 − 2R√
2(1 + Q2)

⎞⎟⎟⎟⎟⎟⎠ (15)

dQ2

dt
=

2η′√
π

⎛⎜⎜⎜⎜⎜⎝R − 2Q2√
2(1 + Q2)

⎞⎟⎟⎟⎟⎟⎠
+

2η′2

π

⎡⎢⎢⎢⎢⎢⎣sin−1

(
1
2

)
+sin−1

(
Q2

1+Q2

)
−2 sin−1

⎛⎜⎜⎜⎜⎜⎝ R√
2(1+Q2)

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦

=
2η′√
π

⎛⎜⎜⎜⎜⎜⎝R − 2Q2√
2(1 + Q2)

⎞⎟⎟⎟⎟⎟⎠ + 2η′2εg (16)

From Eq. (16), the second term of r.h.s. is equal to the generaliza-
tion error. Thus, this term is zero when the generalization error

c© 2013 Information Processing Society of Japan 102

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.3 100–105 (Dec. 2013)

Fig. 4 Comparison of numerical calculation of theoretical results and com-
puter simulations. η′ = 0.1, 0.5, 2.7, 3.0 or 5.0 is used.

converges into zero. These equations form the closed differential
equations.

5. Numerical Calculation of Theoretical Re-
sults

In the previous section, we derived closed differential equa-
tions of the order parameters of the proposed method. In this
section, we compare the numerical calculation of theoretical re-
sults of the proposed method with those of computer simula-
tions. Figure 4 shows the results. The learning step size η′ is
0.1, 0.5, 2.7, 3.0, or 5.0. In computer simulations, N = 1000,
Bi ∼ N(0, 1/N), J0

i ∼ N(0, 1/N), and xi ∼ N(0, 1). Lines show
numerical calculation of theoretical results. Symbols show com-
puter simulations: “+” is for η′ = 0.1, “×” is for η′ = 0.5, “∗” is
for η′ = 2.7, “ ” is for η′ = 3.0, and “©” is for η′ = 5.0. As
shown, numerical calculation of theoretical results and computer
simulations agreed, validating the theoretical results.

6. Comparison of True Gradient Descent and
Proposed Method

In this section, we compare true gradient descent and the pro-
posed method. We used numerical calculation of theoretical re-
sults for this purpose. As we introduced in Section 3, the critical
learning step size is ηc ≈ 4.06 and the optimum learning step size
is ηopt ≈ 2.7. Keeping this in mind, we compared the generaliza-
tion errors for the learning step size η′ = 0.1, 0.5, 3.0, and 5.0. In
the following sentences, η is rewritten by η′. Figure 5 shows the
results. In this figure, “(P)” represents the proposed method and
“(T)” true gradient descent.

From these figures, in the cases of η′ = 0.1 and 0.5, the gen-
eralization error of the proposed method decays faster than that
of true gradient descent. The generalization error of true gradient
descent decays faster than that of the proposed method when the
learning step size is η′ = 3.0. In this case, the generalization error
decreases to zero for large t. When η′ = 5.0, the residual error of
the proposed method is larger than that of true gradient descent
method.

Figure 6 shows the results for η′ = η′opt = 2.7. Numerical cal-
culation of theoretical results and computer simulations are used.
In the figure, “(T)” means the results obtained by true gradient

Fig. 5 Comparison of generalization error between true gradient descent
and the proposed method. Learning step size η′ is 0.1(top), 0.5 (the
second), 3.0 (the third), or 5.0 (bottom). “(P)” is for the proposed
method, and “(T)” is for true gradient descent. Solid lines represent
the proposed method, and broken lines true gradient descent. Nu-
merical calculation of theoretical results are used.

descent, and “(P)” shows the results obtained by the proposed
method. Lines show numerical calculation of theoretical results.
Symbols show computer simulations: “×” shows results obtained
by using true gradient descent. “ ” shows the results obtained
by using the proposed method. From the figure, numerical cal-
culation of theoretical results agreed with solutions of computer
simulations. The generalization errors of both methods decay at
the same speed when η′opt is used.

Consequently, the generalization error of proposed method de-
cay faster than true gradient descent when the learning step size
is relatively small.

c© 2013 Information Processing Society of Japan 103

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.3 100–105 (Dec. 2013)

Fig. 6 Comparison of generalization error between proposed method and
true gradient descent when η′ = 2.7. Numerical calculation of the-
oretical results and computer simulation results are used. N = 1000
for computer simulations.

7. Conclusions

In this paper, we have proposed a gradient descent algorithm
replacing derivative with constant. The idea of replacing g′(x)
with the constant value “a” has been inspired by learning equa-
tion of the linear perceptron of which the derivative of linear out-
put function g(x) = x is g′(x) = 1. We have derived closed order
parameter differential equations that depict dynamic behavior of
the learning system and solved the generalization error by using
numerical calculation of theoretical results. Numerical calcula-
tion of theoretical results have been confirmed by computer sim-
ulations. From the results, the proposed method can decay faster
than the true gradient descent method [2] when learning step size
holds η′ ≤ η′opt. For the case η′ > η′opt, in both methods, the
generalization error decays slow and residual value of the gener-
alization error remains large. Therefore, when the learning rate
η′ is smaller than the optimum value, the proposed method can
lessen the effect of the estrangement from the optimum value by
such a simple substitution. In real problems, the optimum learn-
ing step size is not given in advance. Thus, the learning step size
must be small. The proposed method is useful in this case.

Acknowledgments We would like to thank Masato Okada
and Hayaru Shouno for fruitful discussions.

References

[1] Krogh, A., Hertz, J. and Palmer, R.G.: Introduction to the Theory of
Neural Computation. Addison-Wesley, Redwook City, CA (1991).

[2] Biehl, M. and Schwarze, H.: Learning by on-line gradient descent,
Journal of Physics A: Mathematical and General, Vol.28, pp.643–656
(1995).

[3] Saad, D. and Solla, S.A.: On-line learning in soft-committee ma-
chines, Physical Review E, Vol.52, pp.4225–4243 (1995).

[4] Hara, K., Katahira, K., Okanoya, K. and Okada, M.: Statistical Me-
chanics of On-Line Node-perturbation Learning, Information Process-
ing Society of Japan, Transactions on Mathematical Modeling and Its
Applications, Vol.4, No.1, pp.72–81 (2011).

[5] Murata, N.: Statistical Study of On-line learning, On-line Learning
in neural networks, Saad, D. (Ed.), pp.63–92, Cambridge University
Press, Cambridge UK (1998).

[6] Fukumizu, K.: A Regularity Condition of the Information Matrix
of a Multilayer Perceptron Network, Neural Networks, Vol.9, No.5,
pp.871–879 (1996).

[7] Rattray, M. and Saad, D.: Incorporating Curvature Information into
On-line learning, On-line Learning in neural networks, Saad, D. (Ed.),
pp.183–207, Cambridge University Press, Cambridge U.K. (1998).

[8] Amari, S.: Natural gradient works efficiently in learning, Neural Com-
putation, Vol.10, pp.251–276 (1998).

[9] Kinouchi, O. and Caticha, N.: Optimal generalization in perceptions,
Journal of Physics A: Mathematical and General, Vol.25, No.23,
p.6243 (1992).

[10] Lecun, Y., Simard, P.Y. and Pearlmutler, B.: Automatic Learning
Rate Maximization by On-Line Estimation of the Hessian’s Eigenvec-
tors, Advances in Neural Information Processing Systems, pp.156–163
(1992).

[11] Minsky, M.L. and Papert, S.A.: Perceptrons, MIT Press, Cambridge,
U.K. (1969).

[12] Williams, C.K.I.: Computation with Infinite Neural Networks, Neural
Computation, Vol.10, pp.1203–1216 (1998).

Appendix

A.1 Derivation of Differential Equations

The learning equation of the proposed method is

Jm+1 = Jm +
η

N
[
g(ym) − g(xm)

]
ξm (A.1)

δm = g(ym) − g(xm). (A.2)

Here, Jm denotes student weight vector, ym denotes teacher inner
potential, and xm denotes student inner potential at mth interation.
By using these equations, the differential equations of the order
parameters Q2 = J · J and R = J ·B are given by Ref. [2]

dQ2

dt
= 2η 〈δx〉 + η2

〈
δ2
〉
, (A.3)

dR
dt
= η 〈δy〉 . (A.4)

Then three averages appearing in above equations are

〈δx〉 =
〈
erf

(
y√
2

)
x

〉
−
〈
erf

(
x√
2

)
x

〉
, (A.5)

〈δy〉 =
〈
erf

(
y√
2

)
y

〉
−
〈
erf

(
x√
2

)
y

〉
, (A.6)

〈
δ2
〉
=

〈
erf

(
y√
2

)2〉
+

〈
erf

(
x√
2

)2〉

+2

〈
erf

(
y√
2

)
erf

(
x√
2

)〉
. (A.7)

Next, we calculate these averages. We use Williams’ re-
sults [12] for the above calculations.

1

(2π)
d+1

2 |Σ| 12
∫

erf(uT z̃)erf(uT z̃′) exp

(
−1

2
uTΣ−1u

)
du

=
2
π

sin−1

⎛⎜⎜⎜⎜⎜⎝ 2z̃TΣz̃′√
(1 + 2z̃TΣz̃)

√
(1 + 2z̃′TΣz̃′)

⎞⎟⎟⎟⎟⎟⎠ (A.8)

In calculation of
〈
erf

(
y√
2

)
erf

(
x√
2

)〉
, we put u = (x, y)T ,

z̃ =
(
0, 1√

2

)
, z̃′ =

(
1√
2
, 0

)
, and Σ =

⎛⎜⎜⎜⎜⎝ Q2 R

R 1

⎞⎟⎟⎟⎟⎠. Then we ob-

tain〈
erf

(
y√
2

)
erf

(
x√
2

)〉
=

2
π

sin−1

⎛⎜⎜⎜⎜⎜⎝ R√
2(1 + Q2)

⎞⎟⎟⎟⎟⎟⎠ . (A.9)

In the same way, we obtain
〈
erf

(
y√
2

)2〉
=

2
π

sin−1

(
1
2

)
, (A.10)

〈
erf

(
x√
2

)2〉
=

2
π

sin−1

(
Q2

1 + Q2

)
. (A.11)

c© 2013 Information Processing Society of Japan 104

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.3 100–105 (Dec. 2013)

〈δx〉 can be calculated by using

〈
erf(uT z̃)uT z̃′

〉
=

2√
π

z̃TΣz̃′√
1 + 2z̃TΣz̃

(A.12)

From Eq. (A.5), to calculate
〈
erf

(
y√
2

)
x
〉
, we put u = (x, y)T ,

z̃ =
(
0, 1√

2

)
, z̃′ = (1, 0), and Σ =

⎛⎜⎜⎜⎜⎝ Q2 R

R 1

⎞⎟⎟⎟⎟⎠. Then

〈
erf

(
y√
2

)
x

〉
=

R√
π
. (A.13)

To calculate
〈
erf

(
x√
2

)
x
〉
, we put the same as the calculation of〈

erf
(
y√
2

)
x
〉

except for z̃ =
(

1√
2
, 0

)
. Then

〈
erf

(
x√
2

)
x

〉
=

2√
π

Q2√
2(1 + Q2)

. (A.14)

Then, 〈δx〉 is calculated as

〈δx〉 = 1√
π

⎛⎜⎜⎜⎜⎜⎝R − 2Q2√
2(1 + Q2)

⎞⎟⎟⎟⎟⎟⎠ . (A.15)

〈δy〉 can calculate the same way as 〈δx〉. Then we obtain Eqs. (15)
and (16).

Kazuyuki Hara received a B.Eng. and
an M.Eng. degrees from Nihon Univer-
sity in 1979 and 1981 respectively and a
Ph.D. degree from Kanazawa University
in 1997. He was involved in NEC Home
Electronics Corporation from 1981 until
1987. He joined to Toyama Polytechnic
College in 1987 where he was a lecturer.

He joined Tokyo Metropolitan College of Technology in 1998
where he was an associate professor and became a professor in
2005. He became a professor at Nihon University in 2010. His
current research interests include statistical mechanics of on-line
learning.

Kentaro Katahira received his B.S. de-
gree from Chiba University in 2002 and
M.S. and Ph.D. degrees from The Univer-
sity of Tokyo in 2004, 2009, respectively.
Currently, he is an associate professor of
the Department of Psychology at Nagoya
University. His research interests include
psychology of learning, decision making

and computational neuroscience.

c© 2013 Information Processing Society of Japan 105

