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Scalability model for multi-GPU computation of stencil
applications using regular structured meshes with explicit

time integration

Takashi Shimokawabe1,a) Takayuki Aoki1 Naoyuki Onodera1

Abstract: A multiple-GPU scalability model is presented for large-scale stencil applications with explicit time inte-
gration running on regular structured meshes. The cost to exchange the boundary data of the decomposed domain is
the major factor to degrade the scalability. The presented model predicts this prior to application development. In this
model, GPU computation time and both GPU-CPU and inter-node communication times are considered as the compo-
nents of elapsed times in applications. This computation time is evaluated by the number of floating-point operations
and the amount of memory access in an application. The communication times are evaluated as a function of trans-
ferred data size. For the evaluation of this model, a diffusion equation and a lattice Boltzmann method are performed
on the TSUBAME2.0 supercomputer and a Cray XK6m system at Tokyo Institute of Technology. This model can
sufficiently predict the results of measured performance in these applications.

1. Introduction
In the fields of parallel computing and high-performance com-

puting, mesh-based physical simulations are one of the impor-
tant applications running on supercomputers and large-scale PC
clusters. Because of extremely memory-bottlenecked computa-
tion, these simulations are difficult problems on conventional su-
percomputers. A graphics processing unit (GPU) has been ex-
ploited as a high-performance computing device to accelerate a
wide variety of applications and becomes an active research area
in parallel computing in the last several years. Although GPU
had been originally designed solely for graphics purpose, since
Compute Unified Device Architecture (CUDA) [7] was released
by NVIDIA as a general-purpose computing framework for GPU
in 2006, programming GPUs for scientific computing has been
made possible without using graphics-oriented APIs. It is well
known that exploiting GPU that provides both large computa-
tion power and wide memory bandwidth can successfully ac-
celerate scientific simulations dozens time faster than a conven-
tional central processing unit (CPU) [1], [6], [10], [11], [12], [13].
Thanks to GPUs’ large computation power and wide memory
bandwidth at relatively-low power consumption peta-scale super-
computers such as TSUBAME 2.0 at Tokyo Institute of Tech-
nology, Japan [3], [4] and Titan at the Oak Ridge National Lab-
oratory are equipped with more than a thousand GPUs, which
provide most part of their computing performance, along with
conventional CPUs.

To fully exploit the benefits of GPUs, the whole application
should be executed on GPUs with minimizing the interaction
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with its host CPU and memory; all computational modules run
on a GPU accessing the variables allocated on its video memory.
This approach allows us to fully exploit the high performance and
the wide bandwidth of GPUs. This implementation also virtu-
ally eliminates all host-GPU memory transfers during simulation
runs, resulting in much larger performance improvements. To
achieve the optimal performance with this approach, it is essen-
tial to rewrite the CPU code, which is often written in the Fortran
language in the field of the scientific numerical simulations, to
the GPU code from scratch in CUDA although the implementa-
tion cost is relatively high.

Using multiple GPUs is necessary when simulating large
meshes beyond the size that is possible with a single GPU.
In multi-GPU computation, we decompose the whole computa-
tional domain in directions and allocate each subdomain to a sin-
gle GPU. Since the inter-node communication bandwidth is un-
likely to be able to catching up the performance increase of mas-
sively parallel vector-oriented GPUs, increasing the performance
with peta and post-peta scale heterogeneous machines is becom-
ing more and more difficult primarily. Good parallel efficiency
when using distributed-memory machines often requires care-
ful programming techniques for hiding communication overhead
by overlapping communication with computation, especially for
strong-scaling cases. In our previous works [11], [12], we in-
troduced the overlapping techniques and observed performance
improvements.

Multi-GPU computation of mesh-based applications has the
potential to achieve high performance. Introducing optimizations
such as the overlapping techniques allow us to achieve optimal
performance. The cost of implementation of these techniques,
however, is higher than that of the naive implementation. In ad-
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dition, the performance of multi-GPU computing depends on not
only its implementation but also on its runtime configuration such
as computational domain size and decomposition configuration.
For these reasons, it is useful to predict the reachable performance
by an application employing the overlapping techniques and the
performance increase from the performance obtained by using the
naive implementation prior to application development. Scalabil-
ity model are useful for this purpose.

In this paper, we present a scalability model specialized for
multi-GPU computation of stencil applications with explicit time
integration running on regular structured meshes. Thanks to this
specialization, the proposed model can be simple and easily ap-
plied to intended mesh-based applications. In this model, an over-
lapping technique to hide communication cost with computation
is taken into account since this technique is one of the major op-
timizations to improve the performance of the multi-GPU com-
putation. In order to verify the scalability model, we compare
the predicted performance evaluated by this model with the ac-
tual measured performance results of the following three sten-
cil applications: a diffusion equation and a lattice Boltzmann
method (LBM). For the evaluation of this scalability model, the
TSUBAME 2.0 supercomputer at Tokyo Institute of Technology
is mainly used. To evaluate this scalability model on other dis-
tributed GPU systems, in the case of the diffusion computation,
a Cray XK6m system equipped with NVIDIA Tesla K20X GPUs
is also used for our evaluation. As a result, the proposed scalabil-
ity model for both non-overlapping and overlapping methods can
sufficiently predict the results of measured performance in these
mesh-based applications running on multi-GPU systems.

2. GPU supercomputers used for our evalua-
tion

The scalability model presented in this paper targets GPU clus-
ters and GPU-rich supercomputers. This section describes the
multi-GPU systems used for our evaluation; the TSUBAME 2.0
supercomputers and the Cray XK6m system with NVIDIA Tesla
K20X GPUs are described.

2.1 TSUBAME 2.0 supercomputer
We describe the GPU-rich supercomputer TSUBAME 2.0 with

4,224 GPUs at Tokyo Institute of Technology, which is mainly
used for our evaluation of this scalability model. The main
part of TSUBAME 2.0 supercomputer consists of 1,408 Hewlett-
Packard Proliant SL390s nodes. Each node is equipped with three
Tesla M2050 GPUs, thus the system has 4,224 GPUs in total. The
nodes are designed to be bandwidth rich; each GPU is attached
to distinct PCI Express bus 2.0 ×16 (8GB/s). Also each node
has two sockets of Intel CPU Xeon X5670 (Westmere-EP) 2.93
GHz 6-core, 54GB DDR3 main memory, and two QDR Infini-
Band HCAs (8GB/s in total). All the nodes are connected to the
fat-tree interconnection with 200 Tbps bi-section bandwidth. In
order to achieve multi-GPU computing on TSUBAME 2.0, we
use OpenMPI version 1.4.2 for inter-node communication, and
CUDA version 4.1 for GPU computation.

2.2 Cray XK6m system equipped with NVIDIA Tesla K20X
GPUs

We provide the detail of the Cray XK6m system equipped with
NVIDIA Tesla K20X GPUs, which is used for our evaluation of
the proposed scalability model for the diffusion computation. Al-
though NVIDIA Tesla X2090 GPUs are installed on the Cray
XK6m system by default, all of the Tesla X2090 GPUs are re-
placed with NVIDIA Tesla K20X ones on the system we use.

The Cray system we use consists of 40 computational nodes.
Each node has a NVIDIA Tesla K20X GPU; thus 40 GPUs are
installed on the system. Also each node has a 16-core AMD
Opteron 6272 processor (Interlagos) with 16 GB DDR3 main
memory. A Tesla K20X GPU is connected to a node via PCI
Express bus 2.0 ×16. All nodes are connected with the Cray’s
Gemini interconnect, the theoretical bandwidth of which reaches
9.3 GB/s. In order to perform multi-GPU computing on the Cray
system, MPICH-2 optimized for the Cray XK6m system is used
for inter-node communication, and CUDA version 5.0 is used for
GPU computing.

3. Target of the scalability model: multi-GPU
computing of mesh-based applications

This section provides the detail of multi-GPU computation for
mesh-based applications for which the proposed model is in-
tended. These mesh-based applications are performed with ex-
plicit time integration on regular structured meshes. First we de-
scribe a basic design of mash-based applications running on a
single GPU. Next we describe the detail of large-scale computa-
tion over distributed GPUs.

3.1 Single GPU implementation
In order to fully exploit the benefits of GPUs, the entire part of

an application should be executed on GPUs with minimizing the
communication between host and device; we call this approach
full GPU computation. Typically, the time integration of phys-
ical equations is performed as follows. In the beginning of the
execution, the host CPU reads the initial data from the input files
onto the host memory and executes initialization functions for
these data. After that, the CPU transfers them to the video mem-
ory on a GPU board. The GPU carries out all the computational
modules inside the time-step loop. When the results are obtained
by GPU calculation, the minimal data are transferred to the host
CPU memory, which reduces the communication between CPU
and GPU. This approach makes us to fully use the computational
performance of GPU.

3.2 Multi-GPU implementation
We describe a common strategy of multi-GPU computation

in our applications. We exploit the distributed GPUs over
InfiniBand-connected nodes using an MPI library. Similar to
conventional multi-CPU computation on regular grids, the multi-
GPU computation exploits domain decomposition, where the
whole computational domain is decomposed to several pieces of
subdomains and each subdomain is assigned to one GPU. As de-
scribed in Section 3.1, GPUs carry out all the computational mod-
ules inside the time-step loop. Similar to conventional multi-CPU
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Fig. 1 Domain decomposition and the boundary data exchange between dis-
tributed GPUs for multi-GPU computation. Because a GPU cannot
directly access to the global memory of other GPUs, host CPUs are
used as bridges for data exchange.

implementations with MPI, our multi-GPU implementations re-
quire boundary data exchanges between subdomains. Because a
GPU on a node cannot directly access the global memory of other
GPUs on other nodes, host CPUs are used as bridges for data
exchange. For inter-node cases, this boundary data exchange is
composed of the following three steps: (1) data transfer from the
GPU to the CPU by using CUDA APIs such as cudaMemcpy, (2)
data exchange between nodes with MPI APIs such as MPI Isend
and MPI Irecv, (3) data transfer back from the CPU to the GPU
by using CUDA APIs. Figure 1 shows that two-dimensional (2D)
domain decomposition and the boundary data exchange between
distributed GPUs by using above three steps. In our implementa-
tion, we usually allocate halo regions (gray elements in the figure)
to be utilized to store data sent from neighbor GPUs, which data
are depicted as blue elements. Although halo regions are depicted
as just one element thick in this figure, the thickness depends on
numerical schemes.

In naive multi-GPU implementation, each GPU computes
specified subdomain and then the boundary regions of the sub-
domains are exchanged between GPUs by using above three-step
communication. We call this implementation non-overlapping
method. However, this basic method suffers from costs of three-
step data transfer described above. Their impact gets larger when
we use more GPUs.

3.3 Overlapping method for multi-GPU computation
Since GPU computation is often dozens time faster than con-

ventional CPU computation in mesh-based applications, hiding
communication by computation is necessary to reach optimal per-
formance especially in multi-GPU computation. Since each el-
ement of a variable can be computed independently with each
other in a time step, we can compute the boundary regions of sub-
domains separately from the rest parts. In an overlapping method,
by dividing each subdomain into several boundaries and an inside

Non-overlapping method Overlapping method (Kernel division overlapping)
Single kernel Three divided kernels

x boundary y boundary Inside regionWhole subdomain

y boundary

x boundary

Inside region

Communication
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Fig. 2 Non-overlapping method and overlapping method by the kernel di-
vision. Figure adapted from Shimokawabe et al [12].

region, we can overlap communication for the boundary data ex-
change with the computation of the inside region. Our previous
work [11], [12] reported overlapping methods contribute to im-
proving overall application performance.

In this paper, we exploit an overlapping method described as
follows. A single GPU kernel is divided into several kernels for
the boundaries and the inside region. GPU computation for the
inside region is performed in parallel with the boundary data ex-
change, resulting in hiding communication costs. All calculations
for a subdomain are executed on a GPU. Figure 2 shows the basic
concept of the kernel division overlapping in 2D decomposition
where a whole computational domain is decomposed in both x-
and y-directions. This overlapping method is introduced in our
previous work [11], [12].

4. Improved Roofline model: a performance
prediction model for single-GPU computa-
tion

Our final goal is to present a scalability model for mesh-based
applications running over distributed GPUs. First, however, we
shall describe a performance model for single-GPU computation.
In our previous paper [11], we proposed and used a performance
model for single-GPU computation named Improved Roofline
model. Since prediction of reachable performance for multi-GPU
computation by the proposed scalability model is based on per-
formance of single-GPU computation, we can use the attainable
performance evaluated by this model as the value of single-GPU
performance instead of an actual measured value of single-GPU
performance. In this section, we review the Improved Roofline
model.

The Improved Roofline model is a model that predict attain-
able performance of an application executed on a device. In this
model, this attainable performance P is evaluated as a following
equation:

P =
F

F/Fpeak + B/Bpeak + α
=

F/B
F/B + Fpeak/Bpeak + αFpeak/B

Fpeak,(1)

where F is the number of floating-point operations in the appli-
cation, B is the amount of memory access in bytes in the ap-
plication, Fpeak is the peak performance of floating-point oper-
ation of the device and Bpeak is the peak memory bandwidth of
the device. Fpeak and Bpeak are device-dependent constant val-
ues. Here, F/Fpeak, B/Bpeak and α represent the times taken by
floating-point operations, memory access operations, and other
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Fig. 3 Improved Roofline model for a NVIDIA Tesla M2050 and a NVIDIA
Tesla K20X.

operations except both floating-point and memory access oper-
ations, respectively. The term F/B is called arithmetic intensity,
which is the ratio of floating-point operations per byte of memory
accessed. Hereafter α is zero because of simplification. Figure 3
shows the Improved Roofline model for a NVIDIA Tesla M2050
and a NVIDIA Tesla K20X in single precision. The former has a
theoretical floating-ponit performance of 1030 GFlops and a the-
oretical memory bandwidth of 148 GB/s. The latter has a theoret-
ical floating-ponit performance of 3950 GFlops and a theoretical
memory bandwidth of 250 GB/s. These theoretical values are
used as Fpeak and Bpeak.

Since this model does not depend on the characteristics of GPU
architecture, it can also be applied to conventional CPU compu-
tation as well as GPU one. Although this model is similar to the
Roofline model [8], [14], it can evaluate the estimated attainable
performance slightly accurately in comparison with the Roofline
model since the equation we used is based on the times taken by
computation and memory operation.

5. Scalability model for multi-GPU computa-
tion of mesh-based applications

This section describes the scalability model proposed in this
paper. This model can be applied to the mesh-based applications
described as follows.
• The mesh-based applications must be performed with ex-

plicit time integration. This model assumes that computation
and communication take specific and same amounts of times
each timestep. The scalability of applications using implicit
time integration, utilizing, e.g., Poisson’s equation, cannot
be predicted by this model since the amount of computation
change every timestep.

• The applications must run on regular structured meshes. The
model cannot predict the scalability of the multi-GPU appli-
cations running on unstructured meshes since the estimation
of the communication costs depends on shapes of the un-
structured meshes.

• The applications must be run over distributed GPUs and each
GPU computes the same size of subdomain; the computation
is load-balanced over GPUs. This model also assumes that

each subdomain transfers the same amount of data.
• The applications can utilize the overlapping technique to

hide communication cost with computation as an opti-
mization. Introducing the overlapping technique to mesh-
based applications contributes to improving performance
and reaching the optimal performance.

First, the scalability model for mesh-based applications using
the naive implementation, i.e., the non-overlapping version, is de-
scribed. Based on this, the model for the overlapping version is
described.

5.1 Non-overlapping method
In multi-GPU computation, the elapsed time in an application

is mainly consist of GPU computation time and communication
times including the GPU-CPU communication time and the inter-
node communication time. The proposed model evaluates the at-
tainable performance by using these components of the elapsed
time and the amount of computation. In the non-overlapping
method, the performance of the multi-GPU computation is eval-
uated as the following expression:

Pm =
VR

V/P +
∑

j
∑

m s j/Bm(s j)
, (2)

where V is the number of floating-point operations required for
updating a time step on all grid points within a subdomain and
P is the performance achieved by the single-GPU computation
of the application. As a single-GPU performance P, we can
use either an estimated value or an actual measured value. The
estimated value of performance can be calculated easily from
the arithmetic intensity of the application by using the Improved
Roofline model. When single-GPU code is already developed
and able to run on a single GPU, using an actual measured value
of performance of the application allows us to predict the perfor-
mance of multi-GPU computation more accurately than using the
estimated value. The first term in the denominator, i.e., V/P, rep-
resents the time taken by computation. Here, R is the number of
subdomains, which is equal to the number of GPUs. The term
VR represents the number of floating-point operations required
for updating a time step within the whole computational domain.
Bm is bandwidth of any path m between two neighbor GPUs and
s j is the amount of transferred data between these GPUs in byte
for the data j. Since effective bandwidth usually depends on the
amount of transferred data, Bm is function of s j. We determine
Bm by using a bandwidth model described later in this section.
We estimate the communication time elapsed in the application
using the sum of s j/Bm(s j) over j and m.

In this paper, since we use distributed GPU systems for the
evaluation of this scalability model, the second term in the de-
nominator can reduce to a following equation:∑

j

∑
m

s j/Bm(s j) =
∑

j

s j

[
2g/BIB(s j) + 2/BPCIe(s j)

]
, (3)

where BIB is bandwidth between two neighbor nodes (i.e., the
InfiniBand bandwidth in the case of TSUBAME 2.0), BPCIe is
bandwidth between GPU and CPU (i.e., the bandwidth of the PCI
Express bus) and g is the number of GPU on each node. Since
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bidirectional communication by g GPUs on each node share In-
finiBand path, BIB/2g is used as the actual bandwidth of inter-
node communication. Since three-step communication described
above includes both GPU to CPU communication and CPU to
GPU communication, GPU-CPU communication through PCI
Express bus takes 2/BPCIe for one time step instead of 1/BPCIe.

5.2 Overlapping method
By using the overlapping method described in Section 3.3,

the communication costs such as GPU-CPU communication and
inter-node communication are hidden by the GPU computation.
In order to hide the communication for boundary data transfer,
the GPU computation for boundary regions must be performed
first. This means that this computation can not be executed in
parallel with the communication. However, since the thickness
of the boundary regions is usually much thinner than that of the
inside region, the computational time of the boundary regions is
sufficiently shorter than that of the inside region. Thus we ig-
nore this computational time and assume all computation may be
performed in parallel with the communication for simplicity. By
using the overlapping method, the longest of computational time
and communication time is observed as an actual elapsed time for
computing one time step. The scalability model for the overlap-
ping method is described as follows:

Pm =
VR

max
(
V/P,

∑
j
∑

m s j/Bm(s j)
) . (4)

Assuming a strong scaling case, while V is in inverse propor-
tion to R, s j is typically in inverse proportion to R1/d, where d
is the dimension of decomposition. Thus, when a small number
of GPU are used, V/P >

∑
j
∑

m s j/Bm(s j) is satisfied; we obtain
Pm = RP. When the number of GPUs used is larger, we obtain
Pm = VR/(

∑
j
∑

m s j/Bm(s j)), which is typically in inverse pro-
portion to R1/d and becomes smaller.

5.3 Inter-node and GPU-CPU bandwidth
We evaluate the inter-node communication bandwidth BIB and

the GPU-CPU communication bandwidth BPCIe used in Equation
(3) as follows. Generally, latency can have a negative effect on ac-
tual measured communication speed. For simplicity, we assume
that the time taken by communication is composed of the actual
elapsed time for data transfer and latency. Based on this, band-
width B(s) that is a function of an amount of transferred data is
written as follows:

B(s) =
s

s/B0 + t0
=

s
s + B0t0

B0, (5)

where B0 is device-specific peak bandwidth and t0 is device-
specific latency.

For each device, we measure its bandwidth varying the amount
of transferred data. Then, by fitting these measured values of
the bandwidth with Equation (5), we determine B0 and t0 for a
specific device. The transfer speed of the inter-node communi-
cation with InfiniBand is often improved by using page-aligned
memory for its buffer, which is allocated by valloc instead of
malloc. Thus we evaluate the bandwidth of the InfiniBand inter-
node connection using aligned memory and non-aligned memory

Table 1 Parameters used for bandwidth models on TSUBAME 2.0.

InfiniBand (non-aligned memory) B0 3.67 GByte/sec
t0 6.07 µsec

InfiniBand (aligned memory) B0 5.80 GByte/sec
t0 7.47 µsec

PCI Express bus B0 4.29 GByte/sec
t0 16.9 µsec
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Fig. 4 Bandwidth models for the inter-node communication and the GPU-
CPU communication on TSUBAME 2.0. We evaluate the bandwidth
of the InfiniBand inter-node connection using aligned memory and
non-aligned memory.

Table 2 Parameters used for bandwidth models on the Cray XK6m system
equipped with NVIDIA Tesla K20X GPUs.

InfiniBand B0 9.87 GByte/sec
t0 3.75 µsec

PCI Express bus B0 6.34 GByte/sec
t0 41.5 µsec

respectively. Table 1 shows B0 and t0 used for our evaluation on
TSUBAME 2.0. Figure 4 shows the bandwidth models evaluated
by Equation (5) for the GPU-CPU communication and the Infini-
Band communication with aligned memory and with non-aligned
memory on TSUBAME 2.0. Table 2 shows B0 and t0 used for
our evaluation on the Cray XK6m system equipped with NVIDIA
Tesla K20X GPUs and Figure 5 shows the bandwidth models for
this system evaluated by Equation (5). Note that since InfiniBand
communication without explicit use of aligned memory on the
Cray XK6m system has achieved almost the same performance
as that with the aligned memory, the aligned memory is not used
explicitly for the InfiniBand communication for computing on the
Cray system.

6. Evaluation of scalability model and Discus-
sion

In this section, we present the evaluations of the scalability
model for a diffusion equation and a LBM.

First, by using the proposed scalability model, we evaluate
three-dimensional diffusion equation running on two different
multi-GPU systems; the TSUBAME 2.0 supercomputer and the
Cray XK6m system equipped with NVIDIA Tesla K20X GPUs
are used for this evaluation. The proposed scalability model re-
quires a single-GPU performance P, which can be estimated by
using the Improved Roofline model. We have chosen 2D decom-
position for these applications since 3D decomposition, which
looks better to reduce communication amount, tends to degrade
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Fig. 5 Bandwidth models for the inter-node communication and the GPU-
CPU communication on the Cray XK6m system equipped with
NVIDIA Tesla K20X GPUs.
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Fig. 6 Spatial access pattern of neighbor points for the diffusion equation.

GPU performance due to complicated memory access patterns for
data exchanges between GPU and CPU.

For evaluation of the proposed scalability model for a real
mesh-based application, we use three-dimensional LBM running
on multiple GPUs of TSUBAME 2.0. Similar to the diffusion
computation, 2D decomposition is chosen for this application.

6.1 Diffusion equation
6.1.1 Governing equation and implementation

The diffusion equation is one of the important partial differen-
tial equations, which provides the foundation for solving several
physical equations such as the Navier-Stokes equations. Solving
this equation on a mesh is a typical stencil computation.

The three-dimensional diffusion equation is described as fol-
lows:
∂ f (r, t)
∂t

= κ∇2 f (r, t), (6)

where f (r, t) is a physical quantity at location r and time t and
κ is the diffusion coefficient for the physical quantity f . The
time integration of f given by Equation (6) is carried out by
the second-order finite-difference scheme for space and the first-
order forward Euler-type finite-difference method for time on a
three-dimensional regular computational grid. In the discretized
equation we use, 13 floating-point operations are needed to up-
date each point of f ; F in Equation (1) is 13 for this computation.
Figure 6 shows that the spatial patterns of the neighbor points of
f that are required to solve the discretized governing equations
for the center point of the grid.
6.1.2 Evaluation of scalability model on the TSUBAME 2.0

supercomputer
In order to evaluate the scalability model for diffusion equation,

we perform simulations in single precision on TSUBAME 2.0 for

three different mesh sizes: 5123, 10243, and 20483 varying the
number of GPUs used for the calculations; these are strong scal-
ing measurements. Since diffusion equation requires three stencil
access in each direction, a one element thick mesh is transferred
for all directions. Since 2D decomposition is chosen for this com-
putation, the size of data that each subdomain transfers to others
is 4 N2

√
R

byte for a given computational domain N3. We use three
GPUs per each TSUBAME node for these calculations, i.e., g = 3
in above equations. In this application, we use aligned memory
for the buffer of the InfiniBand inter-node connection.

In order to evaluate the diffusion computation by using the
proposed scalability model, the single-GPU performance is esti-
mated by using the Improved Roofline model. Since an arithmetic
intensity F/B of this computation is 0.41, we obtain an estimated
performance of 56.8 GFlops by using Equation (1) for a Tesla
M2050. Figure 7 shows the predicted scalability obtained by the
proposed scalability model with using the above estimated perfor-
mance and the measured performance of diffusion computation
over distributed GPUs. We shows both results of the overlap-
ping method and the non-overlapping method. The overlapping
method successfully improves the application performance com-
pared with the non-overlapping method since the communication
cost is hidden. As shown in this figure, the proposed scalabil-
ity model for both methods can sufficiently predict the results of
measured performance.

The computational time for a subdomain on a GPU is in pro-
portion to the volume of this subdomain, while the communica-
tion time is approximately in proportion to that of the boundary
region of this subdomain. When the number of GPUs in use is
larger, the volume that each GPU handles becomes smaller, re-
sulting in an increase of the percentage of the boundary region
in the whole computational domain. Thus, when a larger num-
ber of GPUs is exploited, the communication time is relatively
longer than the computation time and eventually the communi-
cation cost can not be hidden perfectly by the computation. In
that case, the communication time characterizes the elapsed time,
which slows down the performance increasing. When the num-
ber of GPUs used is relatively small, the communication is over-
lapped with the computation, which allows us to achieve optimal
performance resulting in the good scaling. As shown in this fig-
ure, the scalability model for the overlapping method represents
these characteristics.

We find the apparent slower performance of both overlapping
and non-overlapping methods on the mesh size of 20483 than the
estimated scalability by the proposed model when we use more
than 300 GPUs. We consider the major reason comes from slow
MPI communication because we observe the fluctuations in MPI
communication speed occur in our application running on TSUB-
AME 2.0. This slow MPI communication was also observed in
our previous simulations reported in [12].

6.1.3 Evaluation of scalability model on the Cray system
In order to evaluate the proposed scalability model on other

distributed GPU systems, we perform the diffusion computations
on a Cray XK6m system equipped with NVIDIA Tesla K20X
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Fig. 7 Measured performance and predicted performance of diffusion com-
putation over multiple GPUs. As the performance of the single-GPU
computation, the estimated value by the Improved Roofline model is
used. The solid and dashed lines shows predicted performance with
the overlapping and non-overlapping methods, respectively. The re-
sults of actual measured performance with the overlapping and non-
overlapping methods are depicted as triangle and circle points, re-
spectively. Three different colors represent the different mesh sizes,
i.e., 5123 (blue), 10243 (red) and 20483 (black).

GPUs and compare these performance results with the scalability
evaluated by the proposed model. We use the same code as that
used for TSUBAME 2.0. Due to the limitation in the number of
GPUs on the Cray system, we perform simulations in single pre-
cision for two different mesh sizes: 5123 and 10243. Unlike the
computations on TSUBAME 2.0, we use one GPU per each Cray
node for these calculations.

Figure 8 shows the predicted scalability of the diffusion com-
putation on the Cray system obtained by the proposed scalabil-
ity model with using the estimated single-GPU performance by
the Improved Roofline model. Due to an arithmetic intensity
F/B = 0.41, we obtain an estimated performance of 99.0 GFlops
by using Equation (1) for a Tesla K20X. The measured perfor-
mance data of diffusion computation over the distributed GPUs
of the Cray system are also depicted. We shows both results of
the overlapping method and the non-overlapping method. Similar
to the case of TSUBAME 2.0, the scalability model can success-
fully predict performance and represent the characteristics of the
scalability of both overlapping and non-overlapping methods.

6.2 Lattice Boltzmann method
6.2.1 Governing equation and implementation

The lattice Boltzmann method (LBM) [2], [5], [9] is based
on the Boltzmann equation and an alternative method to Navier-
Stokes based methods for computation fluid dynamics. LBM
is exploited in many areas of fluid dynamics. We choose this
method for the evaluation as an example of real applications,
which have more complicated computations than diffusion com-
putation. Figure 9 shows a snapshot of computational results of
large-scale wind simulations in widespread urban area performed
by multi-GPU computation of LBM.

In order to evaluate the proposed scalability model for LBM,
we develop GPU implementation of LBM based on the litera-
ture [15]. We provide a brief explanation of LBM we use. A
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Fig. 8 The same as Fig. 7, but obtained on the Cray system instead of
TSUBAME 2.0. The estimated performance is used as a single-GPU
performance.

Fig. 9 A snapshot of computational results of large-scale wind simulations
in widespread urban area performed by multi-GPU computation of
LBM.

discrete-velocity Boltzmann equation is described as follows:

fi(x+ci∆t, t+∆t) = fi(x, t)− 1
τ

( fi(x, t)− f eq
i (x, t))+Fi(x, t),(7)

where fi is the density distribution function with discrete velocity
ci along the i direction. Here, f eq is the equilibrium distribution
function and τ is relaxation time due to fluid particle collisions.
The standard D3Q19 LBM, which model exploits 19 discrete ve-
locities in three dimensions, is used for our computation; c0 to c18

are defined in this model. Figure 10 shows that the distribution
of these discrete velocities for each point. The equilibrium distri-
bution function for incompressible flow are written as follows:

f eq
i = wiρ

(
1 +

3ci · u
c2 +

9(ci · u)2

2c4 − 3u2

2c2

)
, (8)

where ρ is density, wi is weighting factor, u = 1
ρ

∑
i ci fi is veloc-

ity, and c = ∆x/∆t = 1 in lattice units (i.e., ∆t = ∆x = 1). In
our implementation, computation of above equation is performed
on a three-dimensional regular computational grid and needs 476
floating-point operations to update each point of the grid in every
time step.
6.2.2 Evaluation of scalability model

In order to evaluate the scalability model for LBM, we perform
simulations in single precision for three different mesh sizes:
192 × 512 × 512, 192 × 2048 × 2048, and 192 × 4096 × 4096
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Fig. 10 Discrete velocities used in the D3Q19 LBM.

varying the number of GPUs used for the calculations; these are
strong scaling measurements. Unlike the diffusion computation,
the x dimension is relatively small since we perform large-scale
wind simulations in widespread urban area by using LBM. We
use TSUBAME 2.0 for this evaluation. In our LBM implementa-
tion, 13 single-precision floating-point variables are transferred at
each point of the boundary region of subdomains in one timestep.
We use three GPUs per each TSUBAME node for these calcula-
tions. Unlike the diffusion calculation, we use non-aligned mem-
ory for the buffer of the InfiniBand inter-node connection in this
application.

We predict the scalability of LBM computation over multiple
GPUs by using an estimated performance as single-GPU perfor-
mance P. We use the Improved Roofline model to obtain the
estimated performance. Since an arithmetic intensity F/B of
this computation is 1.83, we obtain an estimated performance
of 214.5 GFlops by using Equation (1) for a Tesla M2050; this
performance is used for evaluating the scalability. Note that our
implementation of LBM computation has achieved 198.0 GFlops
on a Tesla M2050, which corresponds to 450.6 MLUPS since 476
floating-point operations are needed for updating each point of
the grid in every time step. The implementation of LBM com-
putation is more complicated than that of diffusion computation.
The complexity of LBM computation is likely to suppress the ef-
fect of cache more than that of diffusion computation. Thus the
estimation in the Improved Roofline model fits the LBM compu-
tation and the attainable performance of this computation is eval-
uated more accurately compared with the case of the diffusion
computation.

Figure 11 shows the scalability obtained by the proposed scal-
ability model with the estimated performance of the single-GPU
computation of LBM. We show both results of the overlapping
method and the non-overlapping method. As shown in this fig-
ure, the proposed scalability model successfully predicts the scal-
ability of multi-GPU computation and its characteristics. The
proposed scalability model predicts that the overlapping method
can improve the application performance compared with the non-
overlapping method, which improvement is actually observed in
measured data depicted in this figure. Especially in the result of
192 × 512 × 512, the scalability model can clearly represent the
characteristics of the slowing down of the performance improve-
ments in the overlapping method.

7. Conclusion
In this paper, we have presented a scalability model for mesh-

based applications running on distributed GPUs systems. Multi-
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Fig. 11 Measured performance and predicted performance of LBM compu-
tation over multiple GPUs. As the performance of the single-GPU
computation, the estimated value by the Improved Roofline model
is used. The solid and dashed lines shows predicted performance
with the overlapping and non-overlapping methods, respectively.
The results of actual measured performance with the overlapping
and non-overlapping methods are depicted as triangle and circle
points, respectively. Three different colors represent the different
mesh sizes, i.e., 192 × 512 × 512 (blue), 192 × 2048 × 2048 (red)
and 192 × 4096 × 4096 (black).

GPU computation is often more affected by communication than
multi-CPU computation. In order to reduce performance degra-
dation by communication, multi-GPU computation employs the
overlapping techniques to hide communication cost as optimiza-
tion. Since the cost of implementation of these overlapping tech-
niques is often higher than the naive implementation, it is useful
to predict the scalabilities of applications and their characteristics
prior to application development.

The proposed scalability model is intended to multi-GPU com-
putations of stencil applications with explicit time integration
running on regular structured meshes. This model takes into ac-
count GPU computation time and the communication time as the
main components of the elapsed time in applications. Since the
overlapping method is often used as optimization in multi-GPU
computation, we present the overlapping version of the model as
well as the non-overlapping version. In order to predict perfor-
mance accurately, the bandwidth values used in the scalability
model are evaluated as a function of an amount of the transferred
data. The proposed scalability model for multi-GPU computation
is evaluated based on the estimated performance of the single-
GPU computation. The Improved Roofline model is used for this
estimation in this paper.

As evaluation of the scalability model, we compare the pre-
dicted scalability with measured performance in diffusion com-
putation and LBM. The diffusion computation is a fundamental
stencil-computation and is performed on two different multi-GPU
systems: the TSUBAME 2.0 supercomputer and the Cray XK6m
system equipped with NVIDIA Tesla K20X GPUs. As a real
mesh-based application, LBM is performed on TSUBAME 2.0
and this result is used for the evaluation of the proposed scala-
bility model. As results, the proposed scalability model for both
overlapping and non-overlapping methods can sufficiently pre-
dict the results of measured performance and represent the char-
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acteristics of scalabilities in two applications on several different
systems using multiple GPUs. It shows our model is helpful in
selecting suitable methods and optimization in terms of reachable
performance and implementation cost.
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