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Abstract: Managing SNS data is expensive because SNS data have an explosive growth and are highly intercon-
nected. Yet, because of the high interconnectivity of the data, every Read/Write activity of a user is associated with all
of his/her friends. The response time for accessing the SNS data generally increases if the data of users and their many
connections (friends/followers) are widely located over the network. Most SNS providers are commercial companies
and hence need a cost-effective solution to SNS data management. In this paper, we propose a heuristic data partition-
ing mechanism to store all related data of pairs of users in the same place if they have frequent interaction. Moreover,
our mechanism uses activity-based replication. For instance, more replicas are created for active users than inactive
users. In performance evaluation against the MySQL random partitioning using real Facebook and Twitter datasets,
the proposed heuristic data partitioning and replication mechanism is able to reduce the average response time of the
read and write accesses by 53% and by 50%, respectively.

1. Introduction
Social Networking Service (SNS) is an online platform that

allows users to create public profiles, share highly personalized
contents and interact with other users. Unlike traditional online
platforms, SNS has a high rate of data accesses. The SNS data
size drastically increases with the number of registered users and
their user contents. Furthermore, those users’ data are strongly
related to each other. Considering the data size, it is inevitable
to divide these data into some partitions. However, the data are
strongly related, and some data might be always accessed along
with other data. If those related data are split into different par-
titions, frequent accesses to multiple partitions via a network in-
creases the response time of the SNS system. Consequently, a
data partitioning method is crucial to keep the quality of SNS
against the growth of SNS data.

Any activity in SNS is strongly related to user’s friends and/or
followers that can go beyond tens of millions at the extreme [4].
For instance, a notification is sent to all of his/her friends when-
ever a Facebook user posts something or SNS user’s homepage
shows the latest activities of user’s and his/her friends. The more
connections(friends/followers) SNS users have, the higher the
probability of splitting the related data into many different parti-
tions is. Since there are many partitions being accessed, it takes a
longer time to complete query execution, which leads to a longer
response time. It becomes an even worse problem when random
partitioning is implemented.
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Fig. 1 (a). random partitioning without replication (b). SPAR with replicas
represented as hyphenated circles

A longer response time might be translated into a bad user ex-
perience. SNS providers attempt to shorten the response time,
however, creating a lot of replicas and/or adding more distributed
cache clusters are proven as an expensive solution. Since most
SNS providers are started by cash-strapped startup companies,
they might not afford the expensive data management solution.

SPAR [1], a Social Partitioning And Replication middleware
for SNS, creates an illusion of data locality by putting all related
data in one place as shown in Fig. 1. The circle and the dashed
line circle in figure indicate the master data and replica, respec-
tively. In Fig. 1, data replicas of Users 2 and 6 are created in the
right side partition in order to maintain data locality. Because of
the data locality, every query is a local query that ensures a shorter
query execution time. SPAR claims a faster data accesses perfor-
mance than the standard MySQL random partitioning. This is be-
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cause the standard MySQL random partitioning splits data across
many database servers, which are then queried with multiget re-
quests to fetch data of users’ friends [1]. Depending on which de-
cision would result in the minimum overall replica creation, the
SPAR algorithm decides either to move data or to create a replica.
However, SPAR still creates many unused replicas because of two
main reasons:
( 1 ) Most of frequently executed queries such as notification are

time-dependent [2]. In just a couple of hours or even min-
utes, the query result might be different;

( 2 ) It assumes that all users must be treated equally. More repli-
cas for active users are effective to improve read accesses
performance. However, treating inactive users similarly to
active users is wasteful mainly because of the first reason.
Inactive users will miss a lot of old notifications.

SPAR might not work well in recent SNS because power users
who have a hundred thousand to millions of followers in Twit-
ter or fans in Facebook are no longer rare. In Facebook, users
can have no more than 5000 friends, but there is no limitation for
fans. It is possible that other SNS would follow Facebook’s and
Twitter’s route to allow unlimited connections because creating a
wider network is one of the main purposes of SNS. Hence, stor-
ing all related data in the same place becomes nearly impossible.
SNS providers need a more practical solution.

To efficiently partition the SNS data, it is important to measure
the strength of connection between two users based on their inter-
action. The friendship or interconnection between pairs of users
in the SNS is not equal. SNS users might have more than 100 of
friends, but they can only keep in touch with a handful of friends.
Even after some periods, the number is still limited because it is
rare for SNS users to interact with all of their followers or friends.
Therefore, this work proposes a mechanism that stores all related
data of two users with frequent interaction in the same place. The
related data of pairs of users without frequent interaction may or
may not be stored together.

In this work, we also propose a mechanism that classifies
users based on their past activities to predict their future activi-
ties. There are active users, moderate users and inactive users.
A cost-effective data partitioning and replication mechanism for
SNS must consider these different types of users. Most of SNS
providers’ revenues come from online advertisers. The online ad-
vertisers are interested more in active users because they have a
higher probability of clicking their advertisements than inactive
ones. Thus, in data partitioning and replication, a higher priority
should be given to the data of active users.

As a whole, this work proposes a heuristic data partitioning and
replication mechanism that uses SNS data characteristics to infer
future daily activities of each user and user’s future interactions
for a better SNS data partitioning. Starting from this point, this
work will refer to SNS data characteristics as SNS data features.
The proposed method also decreases the number of replications
without increasing the average Read/Write access response time,
while a higher priority is given to data replication of more active
users.

The remainder of this paper is organized as follows. Section 2
presents an analysis of several strong features of SNS data using

the Facebook and Twitter datasets. Section 3 proposes a heuristic
data partitioning and replication mechanism using SNS data fea-
tures. Section 4 discusses the performance evaluation results of
the proposed mechanism. Finally, Section 5 gives conclusions of
this work.

2. Features of SNS Data
For better data partitioning, it is important to predict the future

activities and interactions of each user. In this section, we discuss
the following four important features of the SNS data that can be
used for the prediction.
• Daily activity
• The number of followers and friends
• Inactive period
• Reply activity
Based on these features, the interactions between two users are

measured, and SNS users are classified into three categories; ac-
tive users, moderate users, and inactive users. By optimizing the
data partitioning and replication for active users, we can expect
an improvement of the cost efficiency of SNS systems.

2.1 Dataset
We collected Twitter dataset that consists of 3,196,611,392 fol-

lowership links of 109,563,426 users, the information and pro-
files of those 109,563,426 users, and up to 3,200 most recent
tweets from one and half million users. We crawled the follower-
ship links instead of the friendship links because the followership
graph is much denser. There are two major reasons why we de-
cided to crawl the Twitter data. First, more than 99% of activities
on Twitter is to send out a tweet. In addition, most of those tweets
are open to the public, and hence we can easily gather the data by
using a crawling agent robot. In other SNSs such as Facebook,
user activities are more diverse and often are inaccessible to pub-
lic viewing due to the privacy reasons. Second, the Twitter com-
munity is one of the most dense SNS graphs, and keeps growing.
For example, top power users, @justinbieber and @ArabicBest,
have 46 million of followers and 2 million of friends, respectively.

The other dataset used in this work is the publicly available
Facebook New Orleans Network 2009 [3]. The Facebook dataset
consists of 90,269 users and 3,646,662 friendship links among
those users, 838,092 wall posts timestamp data that spans from
September 26th, 2006 to January 22nd, 2009. We used both
datasets for the data analysis and peformance evaluation.

2.2 Daily Activity
With this feature, SNS users can be classified into three cate-

gories, active users, moderate users, and inactive users. In this
work, active users are defined as the users who frequently create
SNS data. Users who just frequently read the data are not classi-
fied to active users because of the following two reasons. One is
that SNS providers have to optimize the write access performance
rather than the read access performance because a write access is
more expensive than a read access, which is shown in [1]. The
other reason is that SNS providers can employ distributed cache
clusters to improve the read access performance, and hence it is
more important to focus on how to improve the write access per-
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Fig. 2 Proportion of active users, moderate users and inactive users [12]

Table 1 Comparison between active, moderate, and inactive user’s daily
activities

User Facebook Twitter
Type % of data avg. ā/user % of data avg. ā/user
active 27.78% 0.46 posts/day 19.44% 82.14 tweets/day

moderate 30.99% 0.15 posts/day 38.05% 13.39 tweets/day
inactive 41.23% 0.043 posts/day 42.51% 1.57 tweets/day

formance.
According to the observation in [12], the top 5% of Twitter

users create almost 75% of tweets. They are active users. On the
other hand, 85% of users do not post any tweets at all. Although
there is no equivalent observation on Facebook users, this work
assumes that the same tendency exists in Facebook. Therefore,
in this paper, the populations of active users, moderate users, and
inactive users are assumed as in Fig. 2.

We define SNS activities as the number of new SNS data, such
as tweets in Twitter and the number of wall posts in Facebook.
Then, the SNS daily activity is defined by the average daily activ-
ity in latest D days:

ā =

D∑
d=1

Ad

D
, (1)

where Ad denotes the number of activities that happened in the
d-th day.

Daily activities of Facebook should include various activities
such as wall posting, messaging, chatting, and so on. On the
other hand, daily activities of Twitter would consider only tweets
and direct messages. The definition of activities can be different
for each SNS.

Table 1 shows the daily activities of three types of users. In
our Twitter dataset obtained by crawling the 3,200 latest tweets
of 1.5 million users, the active users only contribute to 19.44%
of total tweets, not 75% as reported in [12]. This is because the
Twitter dataset consists of only 3,200 most recent tweets instead
of lifetime tweets. Active users are able to generate 3,200 tweets
in just a couple days or weeks. Their lifetime tweets might be
tens or hundreds times larger, considering that Twitter has been
around for seven years. On the contrary, some of the moderate
users and inactive users do not even have 3,200 lifetime tweets.
Consequently, it is highly probable that active users might pro-
duce more than 19.44% of total data in Twitter.

In Facebook’s case, the active users do not generate 75% of to-
tal new SNS data too. While the Facebook dataset consists of
lifetime wall posts during 2006-2009, the wall post activity is
just one of many kinds of activities on Facebook. Active users
in Facebook could contribute to more than 27.78% of total data if
every activity in Facebook is considered.

From the observation, we found that some of active users on

both SNSs are service programs and/or bots. At the extreme,
automated bots can generate up to 4,675 tweets per day, and a
cumulative of 37,337,696 tweets [4]. Then, we detected at least
49,098 users without any activities at all in our Twitter dataset.
There are also 19,302 users without any activities for more than
one year. This work assumed that all these 68,400 users are con-
sidered dead accounts. After some manual checking to a random
subset of dead accounts, it turns out that some users have moved
to another account or been banned. There is no need for the SNS
system to do anything with these dead accounts until they become
active again.

2.3 The Number of Followers and Friends
According to our analysis of the SNS data, there is a strong cor-

relation between users’ daily activities and the number of follow-
ers or friends. An exhaustive study of Twitter shows that 87.4%
of Twitter’s registered users have less than or equal to 100 fol-
lowers [13]. According to the same study, users with at least 200
followers covered less than approximately 5% of Twitter’s regis-
tered users. Following the study in [13], this work assumed that
users with more than or equal to 200 followers as users with a
lot of followers. On the other hand, users who follow or become
friends with at least 300 users are considered as users with a lot
of friends. These users represent 5-6% of Twitter’s registered
users [13]. Users with less than or equal to 100 followers and
100 friends are users with a few of followers and users with a few
friends, respectively. Users with a few friends cover as much as
82.2% of Twitter’s registered users [13]. In the Facebook case,
this work cannot make such generalization because the Facebook
dataset covers only one group in Facebook that is New Orleans
Network. Hence, to make it similar to the Twitter dataset, we sort
the friendship table in descending order and decide that the top
5% and the bottom 87.5% are users with a lot of friends and users
with a few of friends, respectively.

Users who have a lot of followers tend to be active users.
Around 86.3% of active users are also users with a lot of fol-
lowers. On the other hand, the percentage of inactive users who
also have a few followers is 70.04%.

The number of friends influences users’ activities, but not as
dominant as the number of followers. Around 81.99% of active
users are also users with a lot of friends, but only 26.71% of in-
active users are users with a few friends at the same time. In
the Facebook dataset, only 42.22% of active users have a lot of
friends. However, 99.95% of inactive users have a few of friends.
Presumably, users with more followers tend to be active writers,
while users with more friends tend to be active readers. Users
follow many other users by becoming their friends because they
want to read their tweets. Active writers are considered active
users in this work.

There are at least 30% of private accounts in the Facebook
dataset and up to 9 million of private accounts in the Twitter
dataset. These accounts can be accessed only by owners and their
connections, and thus the data of these users are unavailable for
public crawling. This work also has not finished crawling the lat-
est 3,200 tweets from 109 million users. Because of that, this
work needs another way to classify users into one of the three
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Table 2 Medium for accesing SNS [5], [9], [10]

SNS desktop mobile phone
Facebook 28.79% 71.21%
Twitter 25% 75%
LinkedIn 62% 38%

Fig. 3 Post and tweet percentage in a day

categories. The number of friends or followers feature is used as
the alternative way.

2.4 Inactive Period
Predicting SNS user activities was easier before the advent of

mobile applications. During 2004-2008, it was unlikely for stu-
dents or workers to be active in SNS during school hours or work-
ing hours. SNS users needed to be in front of a computer to do
so. Consequently, with some degree of accuracy, predicting their
next SNS access time might be possible. However, recent re-
ports [5], [9], [10], [11] have shown that more users access SNS
from mobile phones as shown in Table 2. More SNS accesses
from mobile phones make SNS users’ access time become ran-
dom and unpredictable. Any user might be active in SNS even
during school hours or working hours.

Although it has become difficult to predict the active periods of
SNS users by the advent of mobile phones, it is easier to predict
their inactive periods based on their past inactive periods because
they usually need to sleep unless they are automated bots. It has
been reported that the percentage of smartphone use becomes the
lowest starting a while before the bed time [11].

Fig. 3 shows that the SNS activities of Facebook and Twitter
become the lowest during 1:00 AM to 7:00 AM in each user’s
time zone. Only 7.68% of posts in Facebook and 13.90% of
tweets in Twitter are sent by users during this period. Presumably,
this is because the period is a resting time for most of the users. In
the Facebook dataset, we converted the unix timestamp of posts
from UTC to New Orleans time zone (Central Time Zone). Al-
though there is no user’s time zone information in the Facebook
dataset, this time zone is used because every user is a member
of the New Orleans Network on Facebook. While there exists
the possibility of members from different time zones, these users
should be a minority. In the Twitter dataset, we converted the
tweets’ created timestamps from UTC to each user’s time zone.
Our Twitter dataset spans at least 150 different time zones. Since
33% of users did not specify time zones for their accounts, their
time zone information is unavailable. Fig. 3 only shows the tweet
activities of 67% Twitter’s users that have the time zone informa-
tion.

Fig. 4 Comparison of the activity network with the SNS graph

According to [16], approximately 24% of tweets are created
by automated bots. Although the percentage might be different on
other SNSs, not a few activities are created by the bots. Most SNS
allow to use automated bots mainly for headlines news and news
feeding. However, we should preferably improve the response
time for human users rather than bots. Hence, SNS providers
may need to distinguish bots from human users. As the bots do
not have inactive periods, we might be able to distinguish them
from human users using the inactive period patterns. SNS users’
inactive period information might also helpful for a caching sys-
tem to eliminate the data candidate to be filled in cache.

2.5 Reply Activity
Facebook users on average have 130 friends [15], while Twitter

users on average following 102 users [13]. Facebook allows 5000
friends at the maximum, while in Twitter there is no limitation on
how many followers a user can have. Regardless of those limi-
tations, SNS users are virtually able to keep in touch with only a
small number of friends. The strength of users’ connections are
different, which is why these connections must be treated differ-
ently too. It has been demonstrated in [14] that the strength of
connections varies widely, ranging from pairs of users who are
best friends to pairs of users who wish they never establish rela-
tionship.

In this work, the strength of a link between two users is defined
by how frequently they interact. Users connected with a strong
link will interact with each other more frequently than users con-
nected with a weak link. Accordingly, the SNS data partitioning
and replication need to be considered based on the analysis of
SNS users with strong links using a special SNS graph called an
activity network. Fig. 4 shows the difference between the SNS
graph and the activity network. In the activity network, each
edge has a weight corresponding to the link strength between two
users.

Pairs of users with strong links are the first-class citizen dur-
ing the graph partitioning and must be stored at the same place.
A larger weight is given to a stronger link. This can ensure fast
query execution while reducing the number of replications. Pairs
of users without any communication are obviously connected
with weak links. In this work, these edges or links are represented
by setting their weights to zero. There are at least two methods to
determine the strength between a pair of users. One is the reply
frequency between a pair of users. The other is the period length
between the first and latest interactions of a pair of users. These
two methods are strongly related. Pairs of users spent a couple of
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weeks or more to achieve high reply frequencies. Nevertheless,
in order to accomodate the new registered users, this work uses
the former method.

3. Heuristic Data Partitioning and Replication
Using SNS Features

This section first defines the link strength between two users
by using the activities of unidirectional and bidirectional replies.
By using the link strength, we can find the strong links among hu-
man users rather than automated bots. Then, this section proposes
a heuristic data partitioning and replication mechanism using the
SNS data features discussed in Section 2.

3.1 Unidirectional and Bidirectional Reply Activity
This work uses the reply frequency between two users to mea-

sure the strength of the link between them. If an automated bot
generates a lot of reply activities in a short period, it may hide the
strong links among human users. Hence, this work focuses on the
fact that the reply activities of an automated bot are always unidi-
rectional. The receivers will not reply back because they usually
know that the sender are not human users.

This is not the first work that employs reply activities between
a pair of users to infer their links strength. However, the previ-
ous work [2] does not distinguish the bidirectional and the unidi-
rectional reply activities. Yet, this work realizes the importance
to differentiate bidirectional and unidirectional reply activities as
the former indicates frequent interaction, while the latter proba-
bly not. In this work, bidirectional reply activities might become
unidirectional reply activities when the timestamp difference be-
tween the closest bidirectional reply activities is too long, e.g., 24
hours. Presumably, those users are starting a new conversation.
We still consider unidirectional reply activities because it is better
than no activities at all.

To detect the strong links among human users, we define the
weight Wi, j of every link in latest D days by

Wi, j =

D∑
d=1

C · Rd
i, j↔ + Rd

i, j, (2)

where C is a scaling constant, Ri, j↔ is the frequency of bidirec-
tional reply activities and Ri, j is the frequency of unidirectional
reply activities that happened between Users i and j in the d-
th day. In the next subsection, we will use this metric to detect
strong links among human users, and then propose a data parti-
tioning and replication mechanism based on the metric.

3.2 Heuristic Data Partitioning
A partitioning method for SNS should store all strongly related

data together. It is more feasible to store just strongly related data
than all related data in the same place. Pairs of users with high
interaction have strongly related data. Their data are frequently
accessed together. On the other hand, pairs of users with low or
no interactions are rarely accessed together. The data of these
users may or may not be stored together.

We propose data partitioning mechanism that uses the reply
activity feature to find the weight of each link that is calculated
from Eq.(2). Instead of the SNS graph, the proposal partitions the

Fig. 5 Maintaining data locality for a pair of active users with a weak link

activity network because the network represents the interactions
among users. In addition, the activity network has less edges, and
hence it requires less computation to find appropriate partition-
ing. Since there is nothing to do with dead or fake accounts, the
activity network becomes even less dense. The proposed heuris-
tic data partitioning produces an activity network that consists of
links between a pair of users and its weight. This input is supplied
to the METIS library for partitioning. The output of this partition-
ing is the list of users that must be together in certain partition.
For example, Users A and B are listed in the Partition Number 1.
The proposal checks whether data of Users A and B are already
stored in the Partition Number 1. If it is not, then move them.
The implementation of the proposed heuristic mechanism using
METIS library will be discussed in Section 4.1.

This partitioning mechanism is not executed every time the
SNS graph changes. This work generates an activity network pe-
riodically for periodic SNS data partitioning. Periodic execution
still makes sense because while a lot of users join SNS every day,
only the friendship/follower graph that changes frequently, but
not the activity network graph. A strong link between two users
is constructed over the time. While the weight of links might
change, most of the time, strong links remain as strong links and
weak links remain as weak links. This is because SNS users only
keep in touch with a small number of followers and/or friends.
In other words, most of SNS users’ frequent interactions happen
between the same pair of users. There are also cases where an
usually close pair of users suddenly stop their interactions and a
new pair of users has frequent interaction. It is also assumed that
inactive users might not suddenly become active users and con-
versely active users might not suddenly become inactive users.
After some time, SNS users’ daily activities will become stable
for most of the time. Therefore, a weekly or a monthly data par-
titioning execution still makes sense.

3.3 Heuristic Data Replication
Active users have the most frequently accessed data. Neverthe-

less, two active users with a weak link might be stored in different
partitions because of their low interaction. For example in Fig. 5,
Users 6 and 7 are active users and connected, but they never in-
teract with each other. Their weak link causes the situation that
data of Users 6 and 7 stored in different partition. In such a case,
replication to maintain data locality must be created at the parti-
tion of user with the bigger data of two (Fig. 5). It is assumed that
User 6 has more data, and thus data copy of User 7 are created at
the other side. The circle and the dashed line circles in Fig. 5 in-
dicate the master data and replica, respectively. No data locality
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is maintained for any other combination because the use of the
heuristic partitioning mechanism already allows all related data
kept close in the minimum number of partitions. Another reason
to give more priority to the active users is to reduce the number
of request queues. Completing query execution where the data
reside in several partitions takes longer time than local query ex-
ecution. The possibility of a long waiting queue is high if there is
no local query execution for accessing data of active users.

We propose heuristic data replication called activity-based
replication here. It maintains data locality for a pair of active
users with weak links. The activity-based replication also sets the
maximum partitions limit number for all related data of moderate
and inactive users. For instance, all of related data to moderate
users must not reside in more than four different partitions. In
inactive users case, it must not more than eight different parti-
tions. Whenever all related data to moderate or inactive users are
split into more than maximum partitions limit number, a replica
is created. While this work does not decide the limit number, in
general moderate users have low limit number because they also
deserve good Quality of Services (QoS). Active users have the
best QoS. SNS providers can freely set these limit according to
their needs. SNS with very high QoS would use a smaller number
of the maximum partitions limit than others.

The average Read/Write access response time for moderate
users and inactive users will still be acceptable by the use of
distributed cache which is a mandatory for SNS. Furthermore,
the data of inactive users are rarely accessed compared to active
users. Consequently, the average Read/Write access performance
of SNS system is less affected.

While it is better to provide an equal QoS for every user, SNS
providers do not have to do so. SNS providers get their revenue
from online advertisers and online advertisers value active users
more than other kinds of users. Thus, as a cash-limited compa-
nies, SNS providers should give more priority for active users by
creating more replicas for fast data access.

4. Performance Evaluation
The purpose of the following performance evaluation is to

demonstrate that the proposal has better Read/Write accesses per-
formance and cost efficiency than the standard MySQL random
partitioning. The performance of Read/Write accesses perfor-
mance is measured by their response time. On the other hand, the
cost efficiency is measured by the number of notifications written
into database and the average number of created replica.

4.1 Implementation
This work uses the METIS library for partitioning the activ-

ity network. METIS is a set of serial programs for partition-
ing graphs, partitioning finite element meshes, and producing fill
reducing orderings for sparse matrices. The algorithms imple-
mented in METIS are based on the multilevel recursive-bisection,
multilevel k-way, and multi-constraint partitioning schemes. This
work arrange the SNS users’ data according to the partitioning
result. These data are stored into MySQL clusters too, but we
disabled its partitioning and replication features. The modified
version of the partitioning result from METIS library is also used

Table 3 Environment Setup

node processor memory role
1 Intel(R) Atom(TM) @ 1.60GHz 2GB management node
2 Intel(R) Atom(TM) @ 1.60GHz 2GB data node
3 Intel(R) Atom(TM) @ 1.60GHz 2GB data node
4 Dual-Core AMD Opteron @ 2.2Ghz 6GB data node
5 Dual-Core AMD Opteron @ 2.2Ghz 6GB data node
6 Dual-Core AMD Opteron @ 2.2Ghz 6GB data node
7 Dual-Core AMD Opteron @ 2.2Ghz 6GB data node

as a hash table for accessing data in MySQL.
The SQL data scheme and the SNS system business logic used

in this work are taken from Statusnet 1.1.1. It is an open source
implementation of SNS. The average daily activities of Facebook
or Twitter users can be obtained by eq.(1). In this performance
evaluation, we considered only tweets in Twitter and wall posts
in Facebook as activities.

4.2 Environment Setup
As shown in Table 3, the environment for the performance

evaluation consists of seven machines connected to the same lo-
cal area network. We set up a MySQL-5.6.11-ndb-7.3.2-cluster
with six partitions on six machines with one machine that is used
as a management node. We use the same Facebook and Twitter
datasets with the datasets used on SNS data features analysis.

The proposed method is compared to MySQL cluster key par-
titioning. It is a hash-based random partitioning. Key partition-
ing is similar to partitioning by hash, except that only one or more
columns to be evaluated are supplied, and the MySQL server pro-
vides its own hashing function. We supplied primary key and/or
unique keys of each table to the MySQL cluster. In MySQL clus-
ter setting, we allow to create only one replica of the SNS data
of each user. In our proposal, replicas for moderate users and in-
active users are created if their related data stored in more than
four and five different partitions, respectively. In a pair of active
users with a weak link case, data locality is created by creating
replicas. These are the setting for the activity-based replication
of proposal in this performance evaluation.

The read and write accesses in this performance evalution em-
ulates how Statusnet deals with user posting activity and user
retrieving 20 latest activities from their homepage. In Status-
net, writing a post involves at least three table; table notice,
subscription, and inbox. Every time user X sends a post, the post
is stored into table notice then a notification(notice id) is sent to
the inboxes of user X and X’s friends. The list user X’s friends
information is retrieved from table subscription. On the other
hand, the read access in SNS involves at least two tables that is
table notice and table inbox. SNS homepage shows the latest ac-
tivities of users and their friends by joining table notice and table
inbox.

We selected 5,000 users randomly from the datasets, in which
20% of users are active, 38% are moderate, 42% are inactive.
For each selected user, we sort his/her posts or tweets by their
timestamps and then divide them into two. Using the first half
of the tweets/posts, initial data partitions are organized by the
proposed mechanism and MySQL. Using the second half of the
tweets/posts, we simulate new tweets or posts continuously sent
to the SNS system. For sending them to the SNS system, we
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Table 4 The response time of MySQL random partitioning and the proposal

User Facebook Twitter
Type Read perf. Write perf. Read perf. Write perf.

MySQL random 4.54ms 3.3s 6.01ms 41.69s
partitioning

The proposal 1.94ms 1.42s 2.83ms 20.99s

run six automated bots running on a computer in the same net-
work. These six automated bots emulated six concurrent users
using SNS system at the same time. Then, for each selected user,
an access to each user’s SNS homepage is performed.

4.3 Experiment on Write Access Performance
The response time of the write access performance is shown

in Table 4. In the Facebook dataset case, the proposed method
has 57% less response time than MySQL random partitioning. In
the Twitter’s case, the proposed method reduces MySQL random
partitioning response time by 50.3%.

The proposed method shows better write access performance
because of two main reasons. The first one is that the proposed
method did absolutely nothing to dead accounts. Among the
5,000 randomly selected users’ friends , approximate 8.4% of
friends in the Facebook case and and 0.073% of friends in the
Twitter case are dead accounts. These dead accounts also appear
several times as friends of different users from those 5,000 users.
Dead or fake accounts exist when users only establish the rela-
tionship in SNS with little to no activity at all for a long time.
This is a growing problem in SNS and can go as extreme as 20
millions of fake users [9]. In order to minimize this number, SNS
providers allow other people to take these accounts. Unlike the
proposed method, the MySQL partitioning algorithm is unable
to distinguish dead accounts from the others, and thus treats all
users alike.

The second reason is that MySQL random partitioning cre-
ates one replica copy for all SNS users’ data, while the proposed
method uses a variable rate number of replicas based on users’
daily activities called activity-based replication. The proposal
maintains data locality for a pair of active users. On the other
hand, the replication is created for moderate users and inactive
users only if their related data are split into more than four and
five partitions, respectively. On the average, the proposal only
creates just portion (57.6%) of replicas created by MySQL ran-
dom partitioning.

The selected 5,000 users in the Facebook dataset have an aver-
age of 42 friends. On the other hand, the selected 5,000 users in
the Twitter dataset have an average of 531 followers. In the Twit-
ter case, more notifications are sent because of more connections.
This can be considered as the reason the write access performance
of Facebook has shorter response time than Twitter.

4.4 Experiment on Read Access Performance
As shown in Table 4, the average response time of a read access

of the proposal is just 42.73% of the MySQL random partitiong
response time in the case of Facebook dataset. In the Twitter
dataset, the proposal needs just 47% of response time needed by
MySQL random patitioning.

The proposed method shows better read access performance

because some of the read accesses are executed locally. Non-
local query execution is not too slow because all related data are
stored in the minimum number of partitions by the proposed par-
titioning. The proposed activity-based replication also plays an
important role by creating effective replicas.

5. Conclusions
In this paper, we have proposed a heuristic data partitioning

and replication mechanism that exploits SNS data features in or-
der to predict the user’s daily activities and interactions. We have
demonstrated that the response time of read and write accesses
in our mechanism is at least 53% and 50% less than the MySQL
random partitioning. This is because the proposed mechanism
exploits the data locality by finding a pair of strongly connected
users, and also the use of the activity-based replication. The pro-
posed mechanism is also cost effective because it can reduce the
data replica by 42.4% and stores no notification for the dead ac-
counts. Thus, it can save the storage cost without increasing the
average response time.
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