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Prediction of Heterodimeric Protein Complexes from
Weighted Protein-Protein Interaction Networks Using

Novel Features and Kernel Functions

Peiying Ruan1,a) Morihiro Hayashida1,b) OsamuMaruyama2,c) Tatsuya Akutsu1,d)

Abstract: Identification of protein complexes is very useful because many proteins express their functional activity
by interacting with other proteins and forming protein complexes. For that purpose, many prediction methods for
protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW,
and NWE. These methods have dealt with only complexes with size of more than three because the methods often are
based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins
occupy a large part according to several comprehensive databases of known complexes.
In this technical report, we propose several feature space mappings from protein-protein interaction data, in which
each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains
to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features.
We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel con-
siderably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric
protein complexes.

1. Introduction
In various biological processes, protein complexes play impor-

tant roles such as ribosomes for protein biosynthesis, molecular
transmission and evolution of interactions between proteins. In
fact, many proteins come to be functional only after they interact
with their specific partners and are assembled into protein com-
plexes. Hence, much effort has been made for predicting pro-
tein complexes from protein-protein interaction (PPI) networks
[1], [2], [3], [4], [5], [6] in bioinformatics. The Markov Clus-
ter (MCL) algorithm [7] iteratively generates a matrix, called
Markov matrix, in which each row (each column) corresponds
to a protein and each element represents the relationship be-
tween two proteins. Then, MCL extracts clusters from the matrix.
This algorithm is efficient also for large-scale networks because
Markov matrices are calculated by matrix multiplication and ex-
ponentiation of its individual elements. The Molecular Complex
Detection (MCODE) algorithm [8] gives a weight to each ver-
tex by using a modified clustering coefficient, which is defined as
edge density in a subset of neighboring vertices and the originat-
ing vertex. Then, it finds densely connected regions of molecular
interaction networks based on the weighted vertices. The Re-
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stricted Neighborhood Search Clustering (RNSC) algorithm [9]
separates the set of vertices into clusters by searching locally in
a randomized fashion based on a cost function. After that, the
clusters will be filtered according to the cluster size, density and
functional homogeneity. The Protein Complex Prediction (PCP)
algorithm [10] finds maximal cliques within PPI networks modi-
fied by using the functional similarity weight (FS-Weight) based
on indirect interactions, and merges their cliques. These meth-
ods are intended for detecting dense subgraphs in a PPI network.
Hence, they cannot find a protein complex with size two because
the density is always 1.0 and the subgraph (i.e., an edge) itself
is a clique even if two proteins that interact with each other do
not form a complex. In addition, it is considered that any overlap
rate of a predicted protein complex to a small known complex is
more likely to be by chance than the same overlap rate to a larger
known complex as pointed out in [11]. Most prediction methods
have been evaluated for protein complexes with larger size than
three excluding complexes with small sizes.

The majority, however, of known protein complexes are het-
erodimeric protein complexes. CYC2008 [12], which is a com-
prehensive catalogue of 408 manually curated yeast protein com-
plexes reliably supported by small-scale experiments, includes
172 (42%) heterodimeric protein complexes. Besides, MIPS
protein complex catalog [13], which provides detailed infor-
mation involved protein sequences on whole-genome analysis
[14], [15], [16], contains 64 (29%) heterodimeric protein com-
plexes excluding complexes obtained from high-throughput ex-
periments. Hence, it is necessary to develop another method for
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predicting smaller complexes. Qi et al. proposed a method using
a supervised Bayesian classifier [17] that has good performance
for predicting protein complexes of middle sizes. The method
still does not work well for heterodimeric protein complexes be-
cause they used several features based on graph density and de-
gree statistics. There are some approaches based on random
walks on PPI networks. The Repeated Random Walks (RRW)
method [18] repeatedly expands a focused cluster of proteins de-
pending on the steady state probability of random walks with
restarts from the cluster whose proteins are equally weighted.
The Node-Weighted Expansion (NWE) method [19] is an exten-
sion of RRW. NWE restarts from the cluster whose proteins are
weighted by the sum of the edge weights of the physical inter-
actions with neighboring proteins, where the edge weights are
obtained from the WI-PHI database [1]. Then, Maruyama [11]
proposed an approach based on a naive Bayes classifier using
heterogeneous genomic data for predicting heterodimeric protein
complexes with features involved with protein-protein interaction
data, gene expression data, and gene ontology annotations. This
method outperforms other existing prediction methods, MCL,
MCODE, RRW, and NWE, in F-measure for heterodimers [11]
although these methods are not supervised.

To further improve the prediction accuracy for heterodimeric
protein complexes, we propose a method using C-Support Vector
Classification (C-SVC) with several features based on protein-
protein interaction weights that are considered as reliability of
interactions between proteins [20]. The idea behind the design
of feature space mappings is, for example, that the neighboring
weights of a heterodimeric complex tend to be smaller than the
weight inside of the complex. In addition to features based on
weights, we propose feature space mappings based on the num-
bers of protein domains because those are considered to be func-
tional and structural units in proteins. Furthermore, we propose
a domain composition kernel based on the idea that two proteins
having the same composition of domains as a heterodimeric pro-
tein complex would also form a heterodimer. We perform ten-
fold cross validation, and calculate the average F-measures. The
results suggest that our proposed kernel considerably outperforms
the naive Bayes-based method, which is the best existing method.

2. Methods
The problem we address in this study is stated as follows:

Given a network of protein-protein interactions, where interac-
tions are weighted, determine whether or not two interacting dis-
tinct proteins form a protein complex with size exactly two. A
network of protein-protein interactions can be considered as a
graph, where vertices represent proteins and edges represent pro-
tein interactions. Let G(V, E) be an undirected graph with a set
V of vertices and a set E of edges, where the weight of each
edge (i, j) ∈ E is denoted by wi j and represents reliability and
strength of the interaction related with the edge. Actually, we
use the WI-PHI database [1] as edge weights, which is derived
from heterogeneous data sources, and was used in previous stud-
ies [11], [18], [19]. In this section, we propose several features
for predicting heterodimeric protein complexes, a novel kernel
matrix based on protein domain composition, and the combina-

Pi Pj

Pk

wij

wik wjk

Fig. 1 Example of a subgraph with an interacting protein pair and their
neighboring proteins.

tion kernel.

2.1 Feature Space Mapping Based on Interaction Weights
We propose the following simple feature space mappings based

on weights of interactions that are regarded to be reliabilities and
strengths for protein-protein interactions.

(F1) wi j

(F2) max
{

max
{k|(i,k)∈E,k, j}

wik, max
{k|( j,k)∈E,k,i}

w jk

}
(F3) min

{
min

{k|(i,k)∈E,k, j}
wik, min

{k|( j,k)∈E,k,i}
w jk

}
(F4) max

{k|(i,k)∈E,( j,k)∈E}
min{wik, w jk}

(F5) max
{k1 ,k2 |(i,k1)∈E,k1, j,( j,k2)∈E,k2,i}

|wik1 − w jk2 |

(F6) max{# domains of Pi, # domains of P j}
(F7) min{# domains of Pi, # domains of P j}

The basic idea for designing features is as follows. The reliability
of the interaction in a heterodimeric complex should be high. In
addition, the reliability of the interaction between a protein con-
tained in a complex and a protein not contained in the complex
should be low. These features are not only applied to C-SVC
through linear kernels but are transformed to other kernel matri-
ces using extended diffusion and label sequence kernels.

Consider two interacting proteins Pi and P j corresponding to
an input. Figure 1 shows an example of a subgraph with Pi, P j,
and their neighboring proteins Pk such that (k, i) ∈ E or (k, j) ∈ E,
where interactions between these proteins are shown as edges.
One feature is the weight wi j between proteins Pi and P j, denoted
by (F1), because the proteins in a heterodimeric protein complex
should interact with each other and the weight wi j should be large.

However, even if wi j is large, the proteins could be included
in a complex with size larger than two. Hence, we consider the
weights of interactions with the neighboring proteins Pk. Since
the neighboring weights of a heterodimeric complex tend to be
smaller than the weight inside of the complex, we introduce the
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maximum of the neighboring weights denoted by (F2) as a fea-
ture.

In contrast, if the neighboring weights are larger than the
weight wi j, we can estimate that the proteins Pi and P j would
not form a complex but neighboring proteins and either Pi or P j

would form some complex. Thus, we introduce the minimum of
the neighboring weights denoted by (F3).

Even if the maximum of the neighboring weights (F2) is large
enough, the proteins Pi and P j as well as Pi and Pk or P j and
Pk may form a heterodimeric complex. Consider the case that a
protein Pk interacts with both of Pi and P j. If two weights wik

and w jk are large, these proteins Pi, P j and Pk are likely to form
a complex. Besides, if wi j is smaller than wik and w jk, Pi, Pk and
P j, Pk independently can form a heterodimeric complex. For this
reason, we introduce the maximum of smaller weights denoted
by (F4).

In the discussion so far, we dealt only with the value of weights.
Differences between weights, however, are also important for dis-
criminating heterodimeric complexes. Hence, we introduce the
maximum of differences between the neighboring weights de-
noted by (F5).

For prediction of complexes, biological knowledge for proteins
is helpful. We use protein domains that are parts of proteins
known as structural and functional units. Ozawa et al. introduced
the domain structural constraint that one domain interacts with at
most one other domain for verifying protein complexes [21]. The
constraint excludes extra proteins from a set of proteins that is
a candidate complex by validating possible interactions between
domains. This means that extra domains cause interactions with
other proteins and the actual number of proteins contained in the
complex may be greater than that in the candidate set of proteins.
Since two proteins with small numbers of domains tend to form a
heterodimeric complex, we introduce the maximum of the num-
bers of domains contained in Pi and P j denoted by (F6). In con-
trast, we introduce the minimum of the numbers of domains con-
tained in Pi and P j denoted by (F7) because proteins with large
numbers of domains tend to form complexes with large sizes.

2.2 Domain Composition Kernel
In the previous section, we introduced several feature space

mappings from an example, that is, a pair of proteins. Kernel
functions can incorporate prior knowledge. If a set of proteins
has the same composition of domains as a known complex, it
is highly expected that the set forms a complex. On the basis
of this idea, we propose domain composition kernel for candi-
date complexes Ci and C j with size n (n = 2 in this report), in
which Ci and C j are regarded as sets of proteins, {Pi1 , · · · , Pin }
and {P j1 , · · · , P jn }, respectively. Then, we define equivalence =d

between two proteins Pik and P jl as Pik consists of the same do-
mains of P jl , where the number of each domain must also be the
same between the proteins. Furthermore, we define equivalence
=c between two sets of proteins Ci and C j using =d by

Ci =c C j ⇔ ∃σ ∈ Sn∀k(Pik =d P jσ(k) ), (1)

where Sn denotes the symmetric group of degree n on the set
{1, · · · , n} (σ is a permutation of (1, · · · , n)). For example, in the

case of Ci = {Pi1 , Pi2 } and C j = {P j1 , P j2 }, Ci =c C j if Pi1 =d P j1

and Pi2 =d P j2 or Pi1 =d P j2 and Pi2 =d P j1 , whereas it is not
necessary that Pi1 =d Pi2 =d P j1 =d P j2 .

Then, we propose domain composition kernel Kc by

Kc(Ci,C j) = δ(Ci =c C j), (2)

where δ(T ) = 1 if T holds, otherwise 0. Here, in fact,
Kc(·, ·) is proved to be a positive semidefinite kernel [20]. It
should be noted that our kernel is different from pairwise ker-
nels for protein pairs proposed in [22]. Their kernel is de-
fined as Kp({Pi1 , Pi2 }, {P j1 , P j2 }) = K′p(Pi1 , P j1 )K′p(Pi2 , P j2 ) +
K′p(Pi1 , P j2 )K′p(Pi2 , P j1 ) for predicting protein-protein interac-
tions, where K′p(·, ·) is called ‘genomic kernel’ and operates on
individual genes or proteins. In the case of Ci =c C j, that is,
Kc = 1, Kp = 2 if Pi1 =d Pi2 =d P j1 =d P j2 , otherwise Kp = 1,
where K′p(Pi, P j) = δ(Pi =d P j). In addition, their pairwise ker-
nels allow extra domains in a candidate complex because the do-
mains do not prevent two proteins to interact with each other.

In addition, for the purpose of predicting whether or not two
interacting proteins form a heterodimeric complex, we combine
some feature space mapping ϕ with the domain composition ker-
nel by

K(ϕ(Ci), ϕ(C j)) + αKc(Ci,C j), (3)

where K(·, ·) is any kernel for real-valued vectors, and α is a pos-
itive constant. In this report, we use the linear kernel for K, that
is, K(ϕ(Ci), ϕ(C j)) = ⟨ϕ(Ci), ϕ(C j)⟩.

3. Computational Experiments
3.1 Data and Implementation

To perform computational experiments, we needed protein-
protein interaction data with weights and protein complex data.
We used the WI-PHI database [1] including 49607 protein pairs
except self interactions as weighted protein-protein interaction
data.

To compare our method with the naive Bayes-based method
proposed by Maruyama[11], we prepared the same dataset as in
the paper [11] from CYC2008 protein complex database [12]. In
the dataset, a positive example was restricted to a pair of pro-
teins that is included as a PPI in WI-PHI and is not a proper sub-
set of any other complex in CYC2008. Thus, we used 152 het-
erodimeric protein complexes contained in CYC2008 as positive
examples, and selected 5345 negative examples from interacting
protein pairs in the CYC2008 complexes with size more than two,
where positive examples were excluded. Figure 2 shows an exam-
ple of complexes C1 and C2 consisting of four proteins P1, · · · , P4

and two proteins P1 and P4, respectively. According to this fig-
ure, four sets of two proteins, {P1, P2}, {P2, P3}, {P2, P4}, and
{P3, P4} are selected as negative examples, where each interaction
between two proteins is confirmed to be included in WI-PHI. The
set of two proteins {P1, P4} is removed from the dataset. Since
negative examples selected in this way are more difficult to be
correctly predicted than randomly selected ones, this dataset is
considered to be useful for the evaluation.
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Fig. 2 Illustration of the selection of negative examples from complexes
with size more than two.

3.1.1 C-Support Vector Classification (C-SVC) for Unbal-
anced Data

Since the numbers of positive and negative examples of the
dataset used in this report were very unbalanced, we used the ex-
tension of C-Support Vector Classification (C-SVC) described in
[23], [24]. The extended C-SVC solves the following optimiza-
tion problem given input feature vectors xi and the corresponding
classes yi ∈ {+1,−1}.

min
1
2
||w||2 +C+

∑
yi=+1

ξi +C−
∑
yi=−1

ξi,

subject to ∀i yi(wT · xi + b) ≥ 1 − ξi,
∀i ξi ≥ 0,

where C+ and C− are regularization parameters for positive and
negative classes, respectively, and in the usual C-SVC, C+ = C−.

We used ‘libsvm’ (version 3.11) [25] as an implementation of
C-SVC for unbalanced data.
3.1.2 Performance Measure

To evaluate the performance of our method, we used precision,
recall and F-measure, which are defined by

precision =
T P

T P + FP
, (4)

recall =
T P

T P + FN
, (5)

F-measure =
2 · precision · recall
precision + recall

, (6)

where T P, FP, and FN denote the numbers of true positive,
false positive, and false negative examples, respectively. Preci-
sion means the rate of correctly predicted positive examples to
examples predicted as positive, and recall means the rate of cor-
rectly predicted positive examples to all positive examples. For
evaluation of binary predictors, it is not sufficient to calculate only
either the precision or the recall, and thus we used F-measure of
their harmonic mean.

3.2 Results
To evaluate our method, we used several sets of our pro-

posed features, (F1-5), (F1-6), (F1-5,7), and (F1-7). For ex-
ample, (F1-5) means that we use a feature vector consisting of
five values calculated by (F1), (F2), · · ·, (F5). Then, we calcu-
lated the combination kernel with the domain composition ker-
nel as shown in Eq.(3), and employed C-SVC with varying mix-
ing parameter α = 0.0, 0.1, · · · , 2.0 and regularization parame-
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Fig. 3 Result on the average F-measures using four sets of features and the
domain composition kernel with α = 0.0, 0.1 · · · , 2.0.

ters C− = 0.1, 0.2, · · · , 2.0, C+/C− = 3.0, 3.5, · · · , 6.0. For each
case, we performed 10-fold cross-validation using our combi-
nation kernel, and took the average of precision, recall, and F-
measure in the same way as in [11].

Figure 3 shows the results on the average F-measures using
four sets of features, (F1-5), (F1-6), (F1-5,7), (F1-7), and the do-
main composition kernel for the cases of α = 0.0, 0.1 · · · , 2.0,
C− = 0.5, 1.0, C+/C− = 3.5, 4.0. We can see from these figures
that the average F-measures during 0.5 ≤ α ≤ 1.0 were about 0.5
to 0.6 and were better than that of α = 0.0 in each case. It means
that the domain composition kernel enhanced the prediction accu-
racy comparing with only features. Furthermore, features (F1-7)
tended to have better average F-measures than other sets of fea-
tures.

Table 1 shows the results on the average precision, recall, and
F-measure using our features and domain composition kernel in
the best average F-measures case for each set of features. It also
shows the results by the naive Bayes-based method [11], which
is the best existing method for heterodimeric complex predic-
tion, MCL [7], MCODE [8], RRW [18], and NWE [19]. (B1),
(B2:CC), . . . , (B6) indicate the features used in the naive Bayes-
based method [20]. These existing methods were executed us-
ing default parameters except the option of the minimum size of
predicted complexes, which was set to be two if possible. For
sets of features (F1-5), (F1-6), (F1-5,7), and (F1-7), the aver-
age F-measures in the cases of (α,C−,C+/C−) = (0.6, 0.7, 4.0),
(0.7, 0.8, 3.5), (0.6, 0.7, 4.0), and (0.5, 1.0, 4.0) were best, respec-
tively. In particular, the average F-measure for (F1-7) using
(α,C−,C+/C−) = (0.5, 1.0, 4.0) was best among all the cases, and
was much better than that by the naive Bayes-based method. We
investigated which feature most contributed to the prediction ac-
curacy. The discriminant function for SVM with linear kernel
can be represented as f (x) = wT · x + b. Here we suppose that
elements w1, · · · , w7 of w are the coefficients of the correspond-
ing features (F1),. . . ,(F7), respectively. If each element of x is
normalized, it can be considered that features with the largest
absolute value of wi are effective for the discrimination in the
seven features. We calculated the coefficients and averages of
the feature values using (C−,C+/C−) = (1.0, 4.0) and the dataset
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Table 1 Result on the average precision, recall, and F-measure using our features and domain composi-
tion kernel in the best average F-measure case for each set of features.

method features α C− C+/C− precision recall F-measure

Our combination kernel

F1-5 0.6 0.7 4.0 0.586 0.659 0.620
F1-6 0.7 0.8 3.5 0.566 0.677 0.616

F1-5,7 0.6 0.7 4.0 0.592 0.667 0.627
F1-7 0.5 1.0 4.0 0.618 0.644 0.631

naive Bayes [11] B1, B2:CC - 0.24 0.44 0.31
B1-6 - 0.17 0.65 0.27

MCL [7] - 0.017 0.023 0.020
MCODE [8] - 0 0 -
RRW [18] - 0.030 0.32 0.055
NWE [19] - 0.035 0.33 0.063

with 152 positive and 5345 negative examples. Thus, we had the
coefficients w = (0.049, 0.0052, 0.18, −0.063, −0.017, −0.066,
0.32)T , b = −2.40, and the averages x̄ = (27.4, 56.5, 6.7, 33.2,
31.1, 1.8, 1.1)T . Then, (wi · x̄i) = (1.35, 0.29, 1.18, −2.09, −0.54,
−0.12, 0.35)T , and it was (F4),(F1),(F3),(F5),(F7),(F2),(F6) in
descending order of |wi · x̄i|. We can see that (F4) was most effec-
tive, and worked on the discrimination negatively, whereas (F6)
was least effective, in fact, the decrease of the average F-measure
by removal of (F6) from (F1-7) was small as shown in Table 1. It
should be noted that this result does not necessarily mean that su-
pervised methods such as the naive Bayes-based method and our
proposed method are always better than unsupervised methods
such as MCL and MCODE because unsupervised methods were
evaluated using the whole PPI data whereas supervised methods
were trained and evaluated via cross validation using a part of PPI
data. Therefore, unsupervised methods may work better in other
situations.

In addition, we performed another experiment to validate our
method for the rest PPIs, that is, we used 152 positive and 5345
negative examples as training data, and used the rest, 44110 ex-
amples as test data. Then, we obtained the prediction accuracy of
98.7% (43554/44110) using the combination kernel with (F1-7)
and (α,C−,C+/C−) = (0.5, 1.0, 4.0). These results suggest that
our proposed kernel successfully predicted heterodimeric protein
complexes and outperforms the naive Bayes-based method.

3.3 Conclusion
We proposed several feature space mappings using weights of

protein-protein interactions for predicting heterodimeric protein
complexes. In addition, we proposed the domain composition
kernel based on the idea that two proteins having the same com-
position of domains as a heterodimeric protein complex would
also form a heterodimer. To validate our proposed method, we
performed ten-fold cross-validation computational experiments
for the combination kernel of the domain composition kernel with
the linear kernel using several sets of features. The results sug-
gest that our proposed kernel considerably outperforms the naive
Bayes-based method, which is the best existing method, even in
the case using only feature space mappings (F1-5) from weights
of protein-protein interactions, that is, (F6,7) was not used and the
mixing parameter α is 0 although our proposed method is limited
to prediction of heterodimeric protein complexes.

An important contribution in this technical report is that we
have shown that heterodimeric protein complexes are able to

be successfully predicted using only information on weights of
protein-protein interactions. Furthermore, we indicated that the
use of protein domain information enhances the prediction accu-
racy.

There is some possibility to further improve the prediction ac-
curacy. For instance, we can develop some kernels on protein do-
mains using protein amino acid sequences and multiple sequence
alignments. In addition, we can add new features based on other
biological knowledge.

We used the C-SVC classifier, which is a variant of support
vector machines, because the numbers of positive and negative
examples were not balanced. It is interesting future work to de-
velop more robust methods against unbalanced data for classify-
ing heterodimeric protein complexes.

Acknowledgments
This work was partially supported by Grants-in-Aid

#22240009 and #24500361 from MEXT, Japan.

References
[1] Kiemer, L., Costa, S., Ueffing, M. and Cesareni, G.: WI-PHI: A

weighted yeast interactome enriched for direct physical interactions,
Proteomics, Vol. 7, pp. 932–943 (2007).

[2] Stark, C., Breitkreutz, B. J., Reguly, T., Boucher, L., Breitkreutz, A.
and Tyers, M.: BioGRID: a general repository for interaction datasets,
Nucleic Acids Research, Vol. 34, pp. D535–D539 (2006).

[3] Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G.,
Helmer-Citterich, M. and Cesareni, G.: MINT: a Molecular INTer-
action database, FEBS Letters, Vol. 513, pp. 135–140 (2002).

[4] Alfarano, C., Andrade, C. E., Anthony, K., Bahroos, N., Bajec, M. and
et al.: The Biomolecular Interaction Network Database and related
tools 2005 update, Nucleic Acids Research, Vol. 33, pp. D418–D424
(2005).

[5] Sapkota, A., Liu, X., Zhao, X.-M., Cao, Y., Liu, J., Liu, Z.-P. and
Chen, L.: DIPOS: database of interacting proteins in Oryza sativa,
Molecular BioSystems, Vol. 7, pp. 2615–2621 (2011).

[6] Zhao, X.-M., Zhang, X.-W., Tang, W.-H. and Chen, L.: FPPI: Fusar-
ium graminearum protein-protein interaction database, J. Proteome
Res., Vol. 8, No. 10, pp. 4714–4721 (2009).

[7] Enright, A., Dongen, S. V. and Ouzounis, C.: An efficient algorithm
for large-scale detection of protein families, Nucleic Acids Research,
Vol. 30, pp. 1575–1584 (2002).

[8] Bader, G. D. and Hogue, C. W.: An automated method for find-
ing molecular complexes in large protein interaction networks, BMC
Bioinformatics, Vol. 4, p. 2 (2003).

[9] King, A., Prulj, N. and Jurisica, I.: Protein complex prediction via
cost-based clustering, Bioinformatics, Vol. 20, pp. 3013–3020 (2004).

[10] Chua, H., Ning, K., Sung, W. K., Leong, H. and Wong, L.: Using indi-
rect protein-protein interactions for protein complex prediction, Jour-
nal of Bioinformatics and Computational Biology, Vol. 6, pp. 435–466
(2008).

[11] Maruyama, O.: Heterodimeric protein complex identification,
ACM Conference on Bioinformatics, Computational Biology and
Biomedicine 2011, pp. 499–501 (2011).

[12] Pu, S., Wong, J., Turner, B., Cho, E. and Wodak, S.: Up-to-date cat-

c⃝ 2013 Information Processing Society of Japan 5

Vol.2013-MPS-96 No.1
Vol.2013-BIO-36 No.1

2013/12/11



IPSJ SIG Technical Report

alogues of yeast protein complexes, Nucleic Acids Research, Vol. 37,
pp. 825–831 (2009).

[13] Mewes, H. W., Amid, C., Arnold, R., Frishman, D., Guldener, U.,
Mannhaupt, G., Munsterkotter, M., Pagel, P., Stumpflen, N. S. V.,
Warfsmann, J. and Ruepp, A.: MIPS: analysis and annotation of pro-
teins from whole genomes, Nucleic Acids Research, Vol. 32, pp. D41–
D44 (2004).

[14] Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams,
S. L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolt-
ing, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Tag-
gart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin,
Z., Michalickova, K., Willems, A. R., Sassi, H., Nielsen, P. A., Ras-
mussen, K. J., Andersen, J. R., Johansen, L. E., Hansen, L. H., Jes-
persen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V.,
Sorensen, B. D., Matthiesen, J., Hendrickson, R. C., Gleeson, F., Paw-
son, T., Moran, M. F., Durocher, D., Mann, M., Hogue, C. W., Figeys,
D. and Tyers, M.: Systematic identification of protein complexes in
saccharomyces cerevisiae by mass spectrometry, Nature, Vol. 415, pp.
180–183 (2002).

[15] Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch,
M., Rau, C., Jensen, L. J., Bastuck, S., Dümpelfeld, B., Edelmann, A.,
Heurtier, M.-A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Mi-
chon, A.-M., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper,
S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G.,
Rick, J. M., Kuster, B., Bork, P., Russell, R. B. and Superti-Furga,
G.: Proteome survey reveals modularity of the yeast cell machinery,
Nature, Vol. 440, pp. 631–636 (2006).

[16] Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko,
A., Li, J., Pu, S., Datta, N., Tikuisis, A. P., Punna, T., PeregrÃn Al-
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