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Personal Style Learning in Sumi-e Stroke-based Rendering
by Inverse Reinforcement Learning

Ning Xie1,a) Tingting Zhao1,b) Masashi Sugiyama1,c)

Abstract: We consider the problem of automatically generating sumi-e style drawings using machine learning tech-
niques. In our previous work, we regarded a brush as a computer agent and trained the brush to generate smooth
strokes to fill given boundaries under a pre-designed cost function. In this paper, we extend this approach and propose
to also learn the cost function from a user’s real brush stroke data by inverse reinforcement learning. This extension
allows the brush agent to imitate the personal drawing style of a user. The effectiveness of our method is demonstrated
through experiments.

1. Introduction

Computer graphics has become a popular medium for various
purposes such as scientific data visualization, industrial manu-
facturing, art, and communication. While traditional computer
graphics techniques were dedicated to photorealistic rendering,
non-photorealistic rendering such as painterly rendering has gath-
ered a great deal of attention because of its artistic and scientific
values. In painterly rendering, stroke placement is a common
challenge and significant effort has been made to investigate how
to draw a stroke with realistic brush texture in a desired shape and
how to organize multiple strokes [3].

In this paper, we consider the problem of automatically gener-
ating sumi-e style drawings. In our previous work [7], we have
developed a highly practical framework for generating expressive
appearance of brush strokes using the machine learning technique
called reinforcement learning [6]. In this framework, a brush
is regarded as a computer agent and it is trained to generate s-
mooth strokes to fill given boundaries under a pre-designed cost
function. Our system was demonstrated to produce high-quality
paintings, given that the cost function is properly designed. How-
ever, we have often experienced difficulty to appropriately control
tuning parameters included in the cost function.

Recently, there has been an increase interest in personal artistic
stylization to synthesize unique strokes or paintings [5], [9]. Most
of the studies use a stylus digital pen as an input device, and pro-
duce line drawings in the style of a particular artist. However,
because the tip of the stylus digital pen is tiny, these methods are
not suited to produce sumi-e brush strokes which use a hairy thick
tuft brush.

In this paper, we extend our machine learning approach, and
propose to also learn the cost function automatically from a us-
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er’s real brush stroke data. This allows the brush agent to imitate a
user’s style without manually tweaking control parameters. More
specifically, we first gather real brush stroke data from users by
using a simply device shown in Fig. 1. This device measures
the brush configuration during stroke drawing motions such as
the motion attitude, the pose, and locomotion of the brush. We
then learn the cost function from the brush stroke data by the ma-
chine learning method calledinverse reinforcement learning [1].
Once the cost function is determined, the optimal control policy
of the brush agent is learned by the state-of-the-art reinforcement
learning algorithm, IW-PGPE (importance-weighted policy gra-
dients with parameter-based exploration) [8]. IW-PGPE allows
us to accurately learn the policy function by efficiently reusing
previously corrected data, which is a preferable property in our
sumi-e application because collecting data is highly costly. Ex-
perimental results show the effectiveness of the proposed method
in producing stroke placement with a personalized style.

Our virtual stroke generation system also allows us to synthe-
size new drawings from photographs in the style of an individual
artist. We also demonstrate through experiments the usefulness
of our system for converting photographs to computer-generated
sumi-e drawings in a given style and abstraction level.

2. Training Data Collection and Processing

In this section, we explain how training data is collected and
how it is processed.

2.1 Device for Capturing User’s Real Strokes
To learn the stroke drawing style of a particular user, we first

collect real stroke data from a user’s brush motion and resulting
drawings on the paper. In each data-gathering session, we display
a reference list of eight basic stroke patterns shown in Fig. 2. A
user is instructed to draw several strokes for each pattern on the
glass panel of our stroke capturing device using an inked sumi-e
soft hairy tuft brush, as shown in Fig. 1. In our experiment, seven
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Fig. 2 Real data collected from two users for eight basic patterns. Each raw corresponds to each user,
where difference in their drawing styles can be observed.

(a) (b) (c) (d)

Fig. 3 Footprint capturing process. (a) Captured footprint. (b) Footprint extraction. (c) The bounding
box of the footprint and the principle axis. (d) A matched template of the footprint.

Fig. 1 Illustration of our footprint capturing device.

participants are invited for data gathering.
We constructed a device to measure the dynamics of drawing

strokes by recording the brush motion, as shown in Fig. 1. A
digital single-lens reflex (DSLR) camera is mounted at the bot-
tom of the frame of the device under ordinary in-door lighting
without any automatic camera calibration in real-time. In this ex-
periment, we use a traditional Japanese calligraphy paper placed
on the transparent glass panel on the top of the device. To capture
the real brush motion, the participants dipped the brush into the

traditional calligraphy ink before drawing strokes.

2.2 Data Processing
We split the recorded video of the stroke drawing into frames

to analyze the movement of stroke drawing (Fig. 3 (a)). To each
frame, we apply the model-based tracking technique [2] and de-
tect the configuration of the brush footprint such as the brush
movement information (the velocity, heading direction, and pose)
and the relative location information to the target desired shape
over time (Fig. 3 (b)). We then apply principal component analy-
sis (PCA) [4] and extract the principal axis of the footprint which
decides the direction of the footprint, as shown in Fig. 3 (c). Fi-
nally, as shown in Fig. 3 (d), the configuration of the footprint
is determined by matching the template of the footprint which
consists of a tipQ and a circle with centerC and radiusr.

Each strokeL consists of a sequence of footprintsF with re-
spect to the time stept:

L = {F1, F2, . . . , Ft}.

3. Brush Agent Training by Reinforcement
Learning

In this section, we explain how the problem of automatic stroke
drawing can be handled by reinforcement learning [6].

A control rule of the brush agent is called a policy in reinforce-
ment learning, which is a mapping from a current states of the
agent to an actiona to be taken. The goal of reinforcement learn-
ing is to obtain the best policy that minimizes a cost function. In
reinforcement learning, the negative cost function is called the re-
ward function and the reward function is maximized equivalently.

We define the state features based on the current surrounding
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Fig. 4 Illustration of the design of states: (a) Brush agent and its path. The brush agent consists of a tip
Q and a circle with centerC and radiusr. (b) The ratiod of the offset distanceδ over the radius
r. Footprint ft−1 is inside the drawing area. The circle with centerCt−1 and the tipQt−1 touch the
boundary on each side. In this case,δt−1 ≤ rt−1 anddt−1 ∈ [0,1]. On the other hand,ft goes over
the boundary, andδt > rt anddt > 1. In our implementation, we restrictd to be in [−2,2]. P is the
nearest point on medial axisM to C.

Action 1

Action 3

FootprintStroke

Fig. 5 A stroke is generated by moving the brush with three actions: Action 1 is regulating the direction
of the brush movement, Action 2 is pushing down/lifting up the brush, and Action 3 is rotating the
brush handle. (b) Captured footprint.

shape and the upcoming shape as

s = (ω, φ, d, κ1, κ2, l)
⊤,

where each feature element is defined as follows:
• ω ∈ (−π, π]: The angle of the velocity vector of the brush

agent relative to the medial axis of the stroke (see Fig. 4(a)).
• φ ∈ (−π, π]: The heading direction of the brush agent relative

to the medial axis (see Fig. 4(a)).
• d ∈ [−2,2]: The ratio of offset distanceδ (see Fig. 4(b)) from

the centerC of the brush agent to the nearest pointP on the
medial axisM over the radiusr of the brush agent (|d| = δ/r).
d takes positive/negative values when the center of the brush
agent is on the left-/right-hand side of the medial axis:

– d takes the value 0 when the center of the brush agent is on
the medial axis.

– d takes a value in [−1,1] when the brush agent is inside the
boundaries (for example,dt−1 in Fig. 4(b)).

– The value ofd is in [−2,−1) or in (1,2] when the brush a-
gent goes over the boundary of one side (for example,dt in
Fig. 4(b)).

In our system, the center of the agent is restricted within the
shape. Therefore, the extreme value ofd is ±2 when the
center of the agent is on the boundary.

• κ1, κ2 ∈ [0,1): κ1 provides the current surrounding infor-
mation on the pointPt, whereasκ2 provides the upcoming
shape information on pointPt+1, as illustrated in Fig. 4(b).
The values are calculated as

|κi | =
2
π
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where α is the parameter to control the sensitivity to the
curvature andr′i is the radius of the curve. More specifi-
cally, the value takes 0/negative/positive when the shape is
straight/left-curved/right-curved, and the larger the value is,
the tighter the curve is. Throughout this paper, we use a fixed
valueα = 0.05.

• l ∈ {0, 1}: A binary label that indicates whether the agent
moves to a region covered by the previous footprints or not.
l = 0 means that the agent moves to a region covered by the
previous footprint. Otherwise,l = 1 means that it moves to
an uncovered region.

On the other hand, the actiona is defined as a 3-dimensional
vector as follows (see Fig. 5):
• Action 1: Movement of the brush on the canvas paper.
• Action 2: Scaling up/down of the footprint.
• Action 3: Rotation of the heading direction of the brush.
The cost function is learned by the maximum-margin inverse

reinforce learning method [1] from a user’s drawing data. Then,
we apply the IW-PGPE (importance-weighted policy gradients
with parameter-based exploration [8]) reinforcement learning
method to obtain the optimal policies under the learned cost func-
tion. The agent collectsN = 300 episodic samples with trajectory
lengthT = 32. The discount factor is set atγ = 0.99, and the
learning rateε is set at 0.1/||∇ρJρ ||.
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Fig. 6 Return averaged over 16 runs for proposed method and the upper lim-
it of the return value. The error bars denote the standard deviation
over 16 runs.

4. Experiments

In this section, we report experimental results. We investigate
the return by running the trained agent averaged over 16 runs as
the functions of the policy-update iterations. The return at each
trial is computed over 300 training episode samples.

Fig. 6 illustrates the performance of policies learned by the pro-
posed method. The graph shows that the average return increases
in an early stage and then it converges at around 20th iterations.

Fig. 7 compares the brush trajectories obtained by the method
proposed in the current paper (i.e., the reward function is learned
from a user’s data) and the method used in the previous work [7]
(i.e., the reward function is manually designed by the authors).
This shows that the proposed method keeps the attitude of the
brush more stably than the existing method.

Fig. 8 compares the stroke-drawing processes by a real user,
the agent trained with the learned reward function, and the agent
trained with the manually designed reward function. This shows
that the proposed method imitates the real user’s stroke drawing
better than the existing method.

Finally, we apply our proposed method to automatic conver-
sion of photos into a sumi-e style. We manually sketched bound-
aries of desired strokes and let the brush agent fill the shapes with
smooth strokes. The results are shown in Fig 9, demonstrating
that the proposed method is promising.

5. Conclusion and Future Work

In this paper, we considered the problem of automatically gen-
erating sumi-e style drawings based on reinforcement learning.
Our contributions in this papers were as follows: (a) we con-
structed a device for capturing a user’s real brush strokes, (b)
we developed a method to measure the brush configuration dur-
ing stroke drawing motions such as motion attitude, the footprint
pose, and the locomotion of the brush, (c) we proposed to learn
the reward function using brush stroke data captured from real
users by inverse reinforcement learning, and (d) we demonstrated
the usefulness of our proposed system in experiments.
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(b) Trained with manually designed reward function.

Fig. 7 Comparison of brush trajectories.
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(a) Real user

(b) Agent trained with learned reward function

(c) Agent trained with manually designed reward function

Fig. 8 Comparison of stroke-drawing processes.
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Fig. 9 Results of photo conversion into Sumi-e Style.
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