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A Benchmark Tool for Network I/O Management Architectures

Eiji Kawai†1 and Suguru Yamaguchi†1

The performance of a network server is directly influenced by its network I/O manage-
ment architecture, i.e., its network I/O multiplexing mechanism. Existing benchmark tools
focus on the evaluation of high-level service performance of network servers that implement
specific application-layer protocols or the evaluation of low-level communication performance
of network paths. However, such tools are not suitable for performance evaluation of server
architectures. In this study, we developed a benchmark tool for network I/O management
architectures. We implemented five representative network I/O management mechanisms as
modules: multi-process, multi-thread, select, poll, and epoll. This modularised implemen-
tation enabled quantitative and fair comparisons among them. Our experimental results on
Linux 2.6 revealed that the select-based and poll-based servers had no performance advantage
over the others and the multi-process and multi-thread servers achieved a high performance
almost equal to that of the epoll-based server.

1. Introduction

Performance requirements for network servers
have been widely diversified. Server perfor-
mance metrics include network bandwidth, ser-
vice throughput, service time (service latency),
scalability and so on. The server performance
requirements largely depend on the services
they serve, which have been also diversified.
Today, a wide variety of network services are
emerging, such as multimedia streaming ser-
vices, VoIP services, large-scale scientific com-
puting services, and global sensor network ser-
vices as well as traditional e-mail and web ser-
vices.

Because a network server processes multiple
requests concurrently, the implementation of
I/O multiplexing mechanisms, which manage
I/O events to avoid I/O blockings, is funda-
mentally important to achieve a high perfor-
mance. In this paper, we call the I/O multi-
plexing mechanisms network I/O management
architectures or simply server architectures.

Several network I/O management architec-
tures have been developed so far. Typical
ones commonly available on Unix platforms in-
clude the multi-process/multi-thread, the I/O
polling, and the event-driven architectures.
However, many server developers are not well
informed about the performance characteristics
of each architecture and therefore they often
choose an architecture relying on their intu-
ition. This problem is caused by the difficulty
in quantitative server performance evaluations
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from the viewpoint of server architectures and
service requirements. That is, there is no simple
means to evaluate and compare quantitatively
the performance of the network I/O manage-
ment architectures under various communica-
tion conditions.

When we evaluate the network service perfor-
mance, benchmark tools are ordinarily utilized.
The existing benchmark tools are categorized
into two kinds: high-level benchmark tools that
evaluate the server performance especially from
the viewpoint of application-layer protocols and
low-level ones that test the socket-level commu-
nication performance of network paths.

A high-level benchmark tool is generally de-
veloped for a specific application-layer proto-
col. For example, as HTTP benchmark tool,
SPECweb2005 1), Apache Benchmark (ab) 2),
httperf 3), and http load 4) are popular. How-
ever, the high-level benchmark tools are not
suitable to evaluate the server architectures un-
der conditions where the communication char-
acteristics change because their workloads are
fully dependent on the application-layer proto-
cols for which they were designed. In addition,
we have to modify existing server implemen-
tations to support other server architectures,
which involves a high development cost.

Low-level benchmark tools such as ttcp 5)

and netperf 6) belong to another kind of per-
formance evaluation tool for network services.
They simply measure the data transfer perfor-
mance on a single TCP/UDP socket and there-
fore they are not for the server performance
evaluation.

The goal of this study is to develop a bench-
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mark tool that can evaluate the network I/O
management architectures. Our approaches are
described as follows.
• Modularised and switchable server architec-

tures: We modularised the network I/O
management mechanisms in our bench-
mark tool. This enabled a quantitative and
fair evaluation of the server architectures.

• Abstract microbenchmark: The target of
our benchmark tool is not an implementa-
tion of a specific application-layer protocol.
The communication model in our tool was
highly abstracted and several typical com-
munication characteristics were parameter-
ized. This enabled server developers to ex-
amine the server architectures even for a
new service whose communication protocol
had not been well-defined yet.

The rest of this paper is organized as follows.
Section 2 briefly surveys the network I/O man-
agement architectures. In Section 3, we dis-
cuss typical communication characteristics and
define an abstracted I/O model for our bench-
mark tool. Then, we describe the design and
implementation of our benchmark tool in Sec-
tion 4 and show the experimental results with
Linux 2.6 systems in Section 5. Related work
and open issues are discussed in Section 6 and
Section 7. Last, we present our conclusions in
Section 8.

2. Network I/O Management Archi-
tectures

Typical network I/O management architec-
tures are the multi-process/multi-thread, the
I/O polling, and the event-driven. This section
describes these three architectures briefly �1.

2.1 Multi-Process/Multi-Thread
A multi-process/multi-thread server allocates

a process/thread to each connection. A ma-
jor advantage of this architecture is implemen-
tation simplicity. Each process/thread in the
server has to only treat a single connection,
and I/O multiplexing is performed by pro-
cess/thread switching. On the other hand,
a well-known disadvantage of this architec-
ture is process/thread management overheads.
When a huge number of processes/threads are
spawned in a server, it often suffers performance
degradation.

2.2 I/O Polling
I/O polling is a function implemented by

�1 Consult Ref. 7) for more implementation details.

select() or poll() in Unix platforms. A
server that utilizes the I/O polling checks
the status of each connection before executing
read/write I/Os, which avoids being blocked at
the I/Os. An advantage of this architecture
is small overheads in process/thread manage-
ment because a single process/thread can treat
more than one connection concurrently. How-
ever, its disadvantage is a lack of scalability.
As the number of connections grows, the cost
of scanning the connections also grows, which
makes the service time longer 8).

2.3 Event-Driven
There are several system interfaces developed

for event-driven servers. Although a standard-
ized one is the POSIX real-time signals, many
operating systems also have their own inter-
faces for event-driven communication process-
ing, such as epoll 9) in Linux, kqueue 10) in BSD
variants, and poll device files in Solaris. The
event-driven mechanisms enable a server pro-
cess/thread to handle more than one connection
concurrently. In addition, they are highly scal-
able because the processing cost of each event
does not depend on the number of the con-
current connections. On the other hand, they
are not much popular compared with the other
architectures for some reasons. For example,
the standardized POSIX real-time signals are
difficult to use with network I/Os because of
their event queue overflow problem 11). Other
system-dependent interfaces involve portability
issues.

3. Network I/O Model

In this section, we describe the network I/O
model for our benchmark tool.

3.1 Client-Server Model
Our benchmark tool adopted a typical client-

server communication model. As depicted in
Fig. 1, client hosts and a server host are con-
nected to each other via a network switch. Dur-
ing tests, a large number of concurrent connec-
tions are established between the clients and the
server, on which pseudo requests and responses
are transferred.

Fig. 1 The network environment for benchmark tests.
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The measurement target of our benchmark
tool is not the performance of a specific server
implementation such as the Apache web server
but the performance of network I/O manage-
ment architectures under a variety of commu-
nication conditions. Therefore, it consists of
both a client program and a server program.

For a precise and fair performance evaluation
of the server architectures, it employs a mi-
crobenchmark approach. The clients and the
server do not process any data in the requests
and the responses to exclude the influence of
the application-layer protocol processing from
the evaluation results. More specifically, the
clients and the server exchange the requests and
the responses which consist of random byte se-
quences and the verification of data receipt is
done only by checking the data size.

3.2 Communication Characteristics in
Benchmark Tests

Communication characteristics are the most
important factors that are directly connected
to the semantics of performance evaluation re-
sults. We describe the communication parame-
ters defined in the benchmark tool and discuss
the general view of their typical influence on the
performance of the server architectures.

3.2.1 The Number of Connections
The number of concurrent connections a

server can handle is one of the most impor-
tant performance indexes. It is often regarded
as synonymous with the server scalability. The
server behavior when the number of concurrent
connections grows is described as follows.
• Multi-process/multi-thread: The number

of processes/threads a system can spawn
is limited by various factors such as the
amount of physical memory. In general, the
context switching overhead and the mem-
ory consumption increase as the number of
processes/threads does.

• I/O polling: The number of the connec-
tions the I/O polling function scans grows
and thus its processing time also grows.
Consequently, it causes a severe degrada-
tion of the service time.

• Event-driven: Processing overheads do not
depend on the number of concurrent con-
nections, which means the event-driven ar-
chitecture can achieve a high scalability.

3.2.2 Throughput
Throughput has two meanings in the context

of server performance: the number of requests
processed per unit time at the server (request

rate �1) and the amount of data exchanged be-
tween the clients and the server. When the
data size distribution in the client-server com-
munications is well-known and the server is not
overloaded (i.e., all the requests that arrive at
the server are processed appropriately without
timeouts), we can regard the throughput to be
determined by the request rate. The influence
of throughput increase on the server perfor-
mance can be summarized as follows.
• Multi-process/multi-thread: The frequency

of processes/threads switchings (context
switchings) increases, which raises process-
ing overheads.

• I/O polling: The behavior of the processing
cost is enormously complicated because it
depends on the intervals of the polling I/O
function invocations, the number of con-
nections to be scanned by the I/O polling,
and the frequency of network I/O events
such as request arrivals at the server 12).

• Event-driven: Although the processing
cost of each event is extremely low, the
summation rises proportionately with the
increase in the throughput.

3.3 Benchmark Parameters
The approach we adopted for our benchmark

tool is abstract microbenchmarking, which ex-
amines the performance of the most basic
server-client I/O models. Based on the discus-
sion in this section, we defined the following
configurable parameters in our benchmark.
• The number of connections: The total

number of connections established between
the clients and the server.

• The request size: The size of the requests
sent by the clients to the server.

• The response size: The size of the re-
sponses sent by the server to the clients.

• The request rate: The number of requests
sent by the clients to the server per unit
time (one second).

• The network I/O management architec-
tures: The server architectures described
in Section 2.

4. Design and Implementation

The benchmark tool consists of a client pro-
gram and a server program. We describe their
design and implementation.

�1 Response rate may be a proper term because the
request rate is not always equal to the response rate.
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4.1 Client
The clients establish TCP connections to the

server and send requests to the server. The
number of connections and the frequency of re-
quest transmissions are given in the configura-
tion. Each client is a multi-threaded process
with two threads: a send thread and a receive
thread. The processing flows in the two threads
are described as follows.

Send Thread
( 1 ) Calculate the time to send a request (the

request transmission time) and wait until
that time.

( 2 ) Choose a connection randomly to send
the request.

( 3 ) Obtain a timestamp as the actual request
transmission time.

( 4 ) Write the request data into the chosen
connection.

( 5 ) Return to the first step.
Receive Thread

( 1 ) Receive a data receipt event.
( 2 ) Read the response data from a connec-

tion according to the event.
( 3 ) If the whole response data is received,

obtain a timestamp as the actual re-
sponse reception time and record the
three timestamps (the request transmis-
sion time, the actual request transmis-
sion time, the response reception time)
into the log.

( 4 ) Return to the first step.
To obtain a data receipt event in the re-

ceive thread, the epoll mechanism in Linux was
adopted. At the design stage of the benchmark
tool, we recognized the event-driven architec-
ture to be the most scalable as a consequence
of the general consideration described in Sec-
tion 3.2. Accordingly, the current client imple-
mentation works only on Linux which imple-
ments the epoll interfaces.

Another point to be noted is the timestamps.
The benchmark tool utilizes the RDTSC (ReaD
Time Stamp Counter) instruction of x86 pro-
cessors to obtain timestamps.

The client implementation should be done
with careful considerations of time preciseness
because the experimental results obtained by
the benchmark tool are influenced strongly by
it. As mentioned above, the preciseness of the
timestamps in the benchmark tool is guaran-
teed by that of the CPU clocks available by
the RDTSC instruction. On the other hand,
the time preciseness of the client execution is

achieved by the following two mechanisms.
• Request synchronization avoidance.
• Fine-grained request transmission timing

control.
4.1.1 Request Synchronization Avoid-

ance
Each client sends requests to the server at the

pre-configured request rate. Thus, the request
transmission timings are determined by the re-
quest rate.

Herein, if each client sends the requests at
constant intervals, synchronization of the re-
quest transmissions among the clients may be
possible. When two requests or more are sent
from some clients in a very short term, queuing
delay and processing delay are caused in the
network switch and the server. These delays
are not negligible especially when the request
size is large. Unfortunately, the problem is that
the significance of the synchronization differs in
every experiment. It depends on highly deli-
cate timings, and therefore the synchronization
behavior in the experiments is not predictable
even if the same configuration parameters are
set in the experiments (See Appendix A.1 for a
more detailed discussion).

There are two approaches to solve this prob-
lem. One is to control the request transmis-
sion timings among the clients and the other is
to randomize the request transmission timings
on each client. The former approach, however,
is not practical when the request rate is high.
For example, if the request rate is configured
at 8,000 per second like in the case of the ex-
periments in this study, the request transmis-
sion intervals are just 125 microseconds. This
means each client has to synchronize its time
clock with the other clients to a precision much
smaller than 125 microseconds, which is almost
impossible without some special time synchro-
nization mechanisms such as GPS.

Thus, we adopted the latter approach for our
benchmark tool. Figure 2 depicts the request
transmission timing randomization. The send
thread of a client determines a time slot for each
request from the configured request rate and
randomizes the request transmission time in
that time slot. Although this mechanism does
not completely solve the synchronization prob-
lem, i.e., there remains some accidental syn-
chronization by a certain ratio, it minimizes its
influence on the results obtained by our bench-
mark tool.
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Fig. 2 Randomizing the request transmission timings.

4.1.2 Fine-grained Request Transmis-
sion Timing Control

As described in the previous subsection, a
client has to control the request transmission
timings to a precision under one millisecond.
That kind of fine-grained timing control is tech-
nically difficult with the kernel timer service
on Unix systems because their kernel scheduler
works only to a precision of milliseconds.

In addition, execution scheduling manage-
ment of the two threads (the send thread and
the receive thread) is important because of the
following rather contradictory reasons �1.
• The scheduling delay of the receive thread

should be minimized because it is equiv-
alent to the delay of obtaining the times-
tamps of response receipt events. This has
a great impact on the accuracy of the ex-
perimental results.

• The send thread should be scheduled as fre-
quently as possible to achieve accurate re-
quest transmission timings.

In the implementation of the send thread of
the client, we utilize a small semi-busy wait loop
for the control of request transmission timings.
The basic processing flow of the send thread is
described in a pseudo code in Fig. 3. This tight
main loop mechanism achieves the time precise-
ness of the request transmissions in a best-effort
manner. Another key point in this implementa-
tion is the frequent and explicit thread switch-
ings by invoking sched yield(). This achieves
the high reliability of the test results because
the receive thread can obtain processor cycles
as fast as possible when they are needed.

4.2 Server
The basic function of the server program is

to receive requests from the clients and to send
responses to them as soon as possible. The
major objective of our benchmark tool is to
evaluate the network I/O management architec-
tures. To achieve this goal, we implemented our

�1 These contradictory requirements are the major rea-
son why real-time systems such as real-time Linux
were not utilized.

for (;;) {
// calculate the request
// transmission timing
next_send_ts = calc_next_send_ts();
// semi-busy wait
for (;;) {
if (get_now_ts() >= next_send_ts)
break;

// switch to the receive thread
// if possible
sched_yield();

}
// send a request
send_req();
// avoid processing successively
sched_yield();

}

Fig. 3 The main loop of the client send thread.

Fig. 4 The modularised server I/O management
architectures.

benchmark tool in a highly modularised man-
ner as depicted in Fig. 4. The architectures are
switchable from the configuration environment.
Because the implementation codes except for
the architecture modules are common in the
execution path, fair performance comparisons
among the architectures are possible. In the
current implementation of the server, we uti-
lize the epoll mechanism of Linux for the event-
driven architecture module.

5. Experimental Results

We conducted experiments using our bench-
mark tool and evaluated the performance of the
server I/O management architectures on Linux
2.6. In this section, we show the experimental
results and present some findings in them. We
also verify the time preciseness of the request
transmissions in the experiments.

5.1 Environments and Workloads
In the experiments, we prepare an environ-

ment where one server and five clients are con-
nected via a gigabit ethernet switch. Table 1
gives the system descriptions of the server and
the clients. On these systems, we stopped all
the unnecessary service processes. In addition,
we changed some system configurations to sup-
port a large number of connections. First,
the maximum number of open files per pro-
cess and the maximum number of processes
were increased. We also increased the value of
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Table 1 The system descriptions of the server and
the clients.

Server CPU: Pentium III (800MHz),
MEM: 2GB,
NIC: Intel Pro/1000T 82543GC (e1000)
OS: CentOS 4.4 (kernel: 2.6.9-42.0.3.EL)

Client CPU: Pentium III (866MHz),
MEM: 512MB,
NIC: NetGear GA620T (acenic)
OS: CentOS 4.4 (kernel: 2.6.9-42.0.3.EL)

Fig. 5 The workload scenario.

FD SETSIZE. Finally, to spawn a large number
of threads, we limited the maximum stack size
to 256 kbyte. This is because a large number
of concurrent threads on a 32-bit system can
cause virtual memory space shortage.

The benchmark tool generates network traf-
fic between the clients and the server according
to the parameters described in Section 3.3. Be-
cause a sudden full load on the server can make
the system unstable and the experimental re-
sults unreliable, a gradual increase in the re-
quest rate is preferable. Thus, we implemented
a workload scenario depicted in Fig. 5. In this
workload, the request rate grows exponentially
to the target for 30 seconds (the period b). The
target request rate is kept for 30 seconds (the
period c) to drive the system into a steady state.
After that, the service time of each request is
measured and recorded in the log file for 10 min-
utes (the period d).

5.2 Performance of Network I/O Man-
agement Architectures

In the experiments, we evaluated the server
performance using two kinds of traffic pattern.
One is an HTTP-like traffic model, which can
be used to evaluate web server architectures.
The other is a minimized traffic model, which
specializes in the event processing performance
of the architectures.

5.2.1 HTTP-like Traffic Model
In the HTTP-like traffic model, the param-

Table 2 The parameter values for the HTTP-like
traffic model.

# of connections 400, 2,000, 10,000
Request size 128 byte
Response size 10 kbyte
Request rate 125, 500, 2,000
Architectures MP, MT, select, poll, epoll

eter values described in Table 2 were used.
The performance index for the evaluations is
the service time: the duration from a request
transmission to a response receipt, which is the
most important factor in the service satisfaction
of end-users.

Figure 6 presents the results. The plotted
service times in the graphs are 1%-tiles, 25%-
tiles, median (50%-tiles), 75%-tiles, and 99%-
tiles as depicted in Fig. 7. From the results,
we can see the multi-process, the multi-thread,
and the epoll servers achieved low service time.
The distributions of their service times were
highly stable even when the number of con-
nections and the request rate were increased
to 10,000 and 2,000 respectively. Their mean
service times were approximately 500 microsec-
onds in all tests.

On the other hand, the select and the poll
servers raised their service times directly pro-
portionately to the number of connections and
the request rate. The mean service times
ranged approximately from 900 microseconds
to 20 milliseconds. This kind of performance
issue in the select and the poll servers were
also discussed in other literatures. For example,
Ref. 8) showed a select-based server degraded
its performance almost linearly as the number
of the connections it handled concurrently in-
creased. It also presented that a server with
an event-driven approach similar to the epoll
server in this study improved the service latency
by an order of magnitude. The experimental re-
sults obtained in this study are consistent with
those results obtained in the previous related
work.

An interesting fact is that the multi-process
and the multi-thread servers, which are gen-
erally recognized as unscalable architectures,
achieved as low a service time as the event-
driven (epoll) architecture did. At present, we
have not yet conducted additional experiments
utilizing other platforms such as FreeBSD and
Solaris, and therefore it can be true only on
Linux 2.6 that we used as the experimental
platform in this study. However, we can de-
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(A) # of connections = 400

(B) # of connections = 2,000

(C) # of connections = 10,000

Fig. 6 The distributions of the service times in the HTTP-like traffic model
(1%-tile, 25%-tile, median, 75%-tile, and 99%-tile).

Fig. 7 The notation of the graphs.

rive some corollaries from it. For example, the
Apache web server, which is one of the most
popular web servers, has no disadvantage with
its multi-process or multi-thread architecture
as far as we operate it on Linux 2.6. We can
also point out that it is a fruitless effort from
the server architecture viewpoint to develop
a new select-based, poll-based, or even epoll-
based web server in order to achieve a higher
scalability than that of the Apache web server.

5.2.2 Minimized Traffic Model
In the minimized traffic model, we conducted

experiments using the parameter values de-
scribed in Table 3. The changes from the
HTTP-like traffic model are the request size
and the response size, which are both set at
one byte in this model. This model minimizes
the server load caused by the test traffic volume

Table 3 The parameter values for the minimized
traffic model.

# of connections 400, 2,000, 10,000
Request size 1 byte
Response size 1 byte
Request rate 125, 500, 2,000, 8,000
Architectures MP, MT, select, poll, epoll

and specializes in the event processing perfor-
mance evaluation. In addition, the highest re-
quest rate for the minimized traffic model was
raised to 8,000 per second in contrast to the
HTTP-like traffic model. The reason for which
the request rate was limited to 2,000 per second
for the HTTP-like traffic model was simply the
server hardware performance restrictions. Ac-
tually, we conducted experiments setting the re-
quest rate at 8,000 per second for the HTTP-
like traffic model, we could not obtain any valid
results because the server completely got satu-
rated.

Figure 8 presents the service time distribu-
tions. The performance behavior in the mini-
mized traffic model was similar to that in the
HTTP-like model. That is, the multi-process,
the multi-thread, and the epoll servers achieved
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(A) # of connections = 400

(B) # of connections = 2,000

(C) # of connections = 10,000

Fig. 8 The distributions of the service times in the minimized traffic model
(1%-tile, 25%-tile, median, 75%-tile, and 99%-tile).

low service times whose mean times are around
200 microseconds. The service time distribu-
tions of the select and the poll servers moved
higher as the number of connections increased.
Their mean service times ranged approximately
between 500 microseconds and 20 milliseconds.

Compared with the HTTP-like traffic model,
the mean service times of the multi-process,
the multi-thread, and the epoll servers in the
minimized traffic model decreased from 500
microseconds to 200 microseconds. This was
mainly caused by the reduction in the data
transmission time. However, the mean ser-
vice times of the select and the poll servers
in the minimized traffic model were almost the
same as those in the HTTP-like traffic model.
This is because a large portion of every service
time was consumed by processing select() or
poll(), and therefore the ratio of the data
transmission time in the total service time was
relatively small.

5.3 Preciseness of Request Transmis-
sions

The benchmark tool implemented a control
mechanism of request transmission timings. It
keeps an accurate request transmission rate and
avoids the synchronization of request transmis-
sions among the clients. However, the control

Fig. 9 Three timestamps in the log.

mechanism is based on a best-effort manner,
and therefore some time lags exist between the
calculated request transmission timings and the
actual ones.

To investigate the time lags in the experi-
ments, each client recorded three timestamps
in the log: the calculated request transmission
time (t1), the actual request transmission time
(t2), and the response receipt time (t3). Fig-
ure 9 depicts the three timestamps. Herein,
the time lag is defined as t2 − t1.

We show the distributions of the time lags
in the HTTP-like traffic model and the min-
imized traffic model in Fig. 10 and Fig. 11.
From these results, we can see most of the re-
quest transmissions were started within 10 mi-
croseconds from the calculated request trans-
mission time. Considering that the highest re-
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(A) # of connections = 400

(B) # of connections = 2,000

(C) # of connections = 10,000

Fig. 10 The distributions of the time lags in the HTTP-like traffic model
(1%-tile, 25%-tile, median, 75%-tile, and 99%-tile).

(A) # of connections = 400

(B) # of connections = 2,000

(C) # of connections = 10,000

Fig. 11 The distributions of the time lags in the minimized traffic model
(1%-tile, 25%-tile, median, 75%-tile, and 99%-tile).
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quest rate in the experiments was 8,000 per sec-
ond, the preciseness of the request transmission
control implemented in our benchmark tool is
good enough.

However, we can also see that a fairly
small portion of the request transmissions in-
volved time lags larger than 10 microseconds
(some 99%-tiles exceed 10 microseconds in the
graphs). A possible reason to explain this is
the relationship between request transmission
intervals and the service time. As mentioned
in Section 4.1, the client implemented the re-
quest transmission timing randomization mech-
anism. Therefore, when the request rate in-
creased, the mean request transmission inter-
val decreased and therefore the possibility of
a collision between the response receipt and
the next request transmission increased. This
kind of collision could occur also when the ser-
vice time was large compared with the request
transmission intervals. Because the select and
the poll servers incurred large service time es-
pecially when the number of connections was
huge, some large time lags were observed with
such servers even when the request rate was not
large. Additionally, in the experiments with the
multi-process, the multi-thread, and the epoll
servers, some large time lags up to 20 microsec-
onds were observed when the request rate was
set at 8,000. In those cases, the service times
(about 200 microseconds) were relatively close
to the mean request transmission interval (625
microseconds �1).

6. Related Work

As mentioned in Section 1, there are many
benchmark tools to evaluate the network ser-
vice performance. Among them, httperf 13) is
one of the most popular benchmark tools whose
technical objective is basically similar to ours.
Httperf is a single-process/single-thread pro-
gram and it has a request transmission con-
trol mechanism with non-blocking �2 select()
in the tight main loop. This solves the issues
of possible long scheduling delays (tens of mil-
liseconds) in operating systems. Thus, the im-
plementation approach is almost the same as
that of our benchmark tool.

�1 The request rate was 8,000 and the request arrival
rate at the server was 125 microseconds. In the ex-
periments, we used five clients and therefore the
mean request transmission interval on each client
was 625 microseconds.

�2 The timeout value is always set at zero.

On the other hand, as we revealed in this
study, select() cannot handle a huge number
of concurrent connections timely. In our bench-
mark tool, we solved this issue by adopting the
event-driven architecture. We also improved
the time preciseness of our benchmark tool by
splitting the program into the send thread and
the receive thread and guaranteeing that the re-
ceive thread got processor cycles quickly when
some response data was received by the oper-
ating system kernel. In addition, the synchro-
nization among the client request transmissions
was avoided by randomizing the request trans-
mission timings.

Another kind of benchmark tool related to
this study is that of clustered benchmark tools.
An example of such tools is Web Polygraph 14),
which is a de facto benchmark tool for high
performance web cache/proxy products. With
Web Polygraph, complicated content models
and test workloads are configurable. However,
it pays no attention to the synchronization issue
among the clients, which is one of the contribu-
tions of this study.

Our benchmark tool implemented the most
basic and popular server architectures from the
practical viewpoint of server developers and op-
erators. On the other hand, some other ad-
vanced server architectures have been proposed
so far in the academic field.

The staged event-driven architecture
(SEDA) 15) is a sophisticated and promising
multi-threading framework. In SEDA, service
processing is divided into multiple simplified
building blocks with event queues, and dy-
namic resource controllers allocate processing
resources including threads to the stages opti-
mizing the system performance. Because our
benchmark tool focuses on the most basic net-
work I/O model, i.e., a simple client-server
data exchange model, it could not derive sig-
nificant insights from experiments even if we
implemented the SEDA architecture in it. How-
ever, in our study, we concluded that Linux 2.6
was highly scalable against the number of pro-
cesses/threads and therefore we can mention
that system operators of SEDA-based servers
do not have to worry much about the number of
processes/threads at each stage except for the
situations where explicit resource management
is required.

User-level threading is another approach to
implement multi-thread programs. Capriccio16)

is a user-level thread package for network
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servers. Because the management costs of
user-level threads are much lower than that
of kernel-level ones, the scalability against the
number of threads can be improved by an order
of magnitude. However, it still requires event
management mechanisms between the server
threads and the underlying operating system
kernel because the network I/Os are handled
in the kernel. As a result, we can regard a
user-level multi-thread server as a kind of event-
driven server from the viewpoint of server ar-
chitecture although their programming models
are different from each other. As we examined
in this study, the event management cost in
an event-driven server is almost the same as
the (kernel-level) thread management cost in
a (kernel-level) multi-thread server. Therefore,
even if the thread scalability can be largely im-
proved by a user-level multi-threading, its ben-
efit is rather confining from the viewpoint of the
total system performance.

7. Open Issues

The major goal of this study is to design
and implement a generic and abstracted bench-
mark tool for server architectures. Although
we believe the most basic part of the goal was
achieved, there still remain several advanced
open issues.

First, the benchmark tool only measures the
service times on pre-established TCP connec-
tions. A network server accepts new clients by
opening a listening socket and processing new
connection establishment requests. Therefore,
it is desirable that the benchmark tool is able
to model the management mechanisms of the
listening socket. On the other hand, the lis-
tening socket can be handled independently of
the other pre-established sockets. For exam-
ple, a select/poll server can allocate a thread to
the listening socket. Developing an appropriate
server architecture that models the processing
mechanism of the listening socket is an open
issue.

Second, the benchmark tool and experiments
can be extended to involve other parameters.
For example, the experiments conducted in this
study did not give consideration to network
delays and packet losses. The peak perfor-
mance of real-world network servers is often
much lower than that pre-examined in experi-
ments with LAN environments where there are
neither significant network delays nor packet
losses. Fortunately, adding those factors of real

network behaviors into the experiments is inde-
pendent of the benchmark tool implementation.
A straightforward approach is to put a network
emulator between the clients and the server.

Including the server processing time as server
parameter is another example. One approach to
implement the server processing time is to put
some dummy load that consumes CPU cycles
between receiving a request and sending a re-
sponse. This can emulate a server like an HTTP
server with CGI programs. Another possible
approach is to insert a short sleep, which can
emulate disk I/Os that do not consume many
CPU cycles.

Last, establishing a method to verify tech-
nically the correctness of the benchmark tool
behavior is a complex issue. Although we ob-
tained various useful results in this study, the
last question still remains whether the request
data were really issued to the network strictly
at the expected times or not. In other words,
the current implementation of the benchmark
tool cannot examine the duration between the
time a client obtains a timestamp of an actual
request transmission time and the time an eth-
ernet frame that contains the request data ap-
pears in the network.

There are several approaches to resolve this
question. One is recording timestamps in the
network interface driver of the clients, which
can reveal more precise behavior of the clients.
Utilizing a network monitoring device is the
most direct approach to investigate the net-
work traffic in the experimental network. How-
ever, even with it, small additional delays may
be inserted by packet mirroring in the switch
and/or packet processing in the monitoring de-
vice. Also, recording timestamps in the server,
typically in the network interface driver, is an-
other approach, which puts some extra load on
the server though.

8. Concluding Remarks

In this study, we developed a benchmark tool
to evaluate the performance of three typical
network I/O management architectures: the
multi-process/multi-thread, the I/O polling,
and the event-driven. Using the benchmark
tool, server developers can compare the archi-
tectures quantitatively and choose the best one
according to the service requirements.

From the experiments with Linux 2.6 sys-
tems, we saw the multi-process/multi-thread
and the event-driven architectures achieved
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higher performance than the I/O polling archi-
tecture that incurred a long service time espe-
cially when a large number of concurrent con-
nections were handled. Therefore, we can con-
clude that there are no longer any architectural
reasons we should adopt the I/O polling archi-
tecture into network service programs.

Generally, the multi-process/multi-thread ar-
chitecture is often considered to be unscalable
compared with the other architectures. How-
ever, the results obtained in this study did
not agree with that. One of the reasons the
performance of the multi-process/multi-thread
servers were high is the O(1) kernel scheduler
was implemented in Linux 2.6. The process-
ing cost (context switching cost) of the O(1)
scheduler does not depend on the number of
the processes/threads in a system, and there-
fore it is highly scalable against the number of
processes/threads.

In addition, we observed almost no difference
between the performance of the multi-process
architecture and that of the multi-thread archi-
tecture. This was caused by the thread imple-
mentation in Linux 2.6 (LPTL: Linux POSIX
Thread Library 17)). In Linux, threads are im-
plemented using the clone() system call, and
therefore the basic management mechanism of
threads is similar to that of processes. The ma-
jor difference between a process and a thread
is their virtual memory space, i.e., each pro-
cess has its own separated full virtual memory
space and all the threads in a process share the
virtual memory space of the process. However,
because the multi-process server of our bench-
mark tool do not invoke exec() after invoking
fork(), the larger portion of the virtual mem-
ory space is kept shared among the processes
through the copy-on-write mechanism of vir-
tual memory paging. This suppressed the per-
formance difference between the multi-process
architecture and the multi-thread architecture.

Those advanced features implemented in
Linux 2.6, which we used in the experiments,
may not be implemented in other platforms
such as FreeBSD and Solaris. Our future work
will focus on the investigation of the perfor-
mance behaviors on such platforms and quan-
titative comparisons among them.
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Appendix

A.1 Impact of Request Synchroniza-
tion

In the experiments, five clients sent requests
to a single server and measured the service time
of each response. If more than one client sends a
request simultaneously in a very short term, the
service time will be worsen unfairly because the
server can process those requests only serially
and all ethernet frames for the responses are put
finally into a single output queue for the server
network interface. Without the request syn-
chronization avoidance mechanism, each client
sends requests at regular intervals and therefore
the impact of the request synchronization dif-
fers from experiment to experiment depending
on highly delicate timings.

Herein, we can roughly calculate the degree
of the impact. In the HTTP-like traffic model,
the response size was set at 10 kbyte. Because
we utilized gigabit ethernet networks in the ex-
periments, the transmission delay of a single re-
sponse was at least 82 microseconds. So, if five
requests are sent to the server almost at the
same time, one of the responses suffers an ex-
tra delay of 328 microseconds caused by the re-
quest synchronization. Compared with the ob-
served service times in the experiments with the
multi-process, the multi-thread, and the epoll
servers shown in Fig. 6, which range approxi-
mately from 300 to 800 microseconds, the im-
pact is not negligible.
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