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Array database is a new kind of database, dealing with the big data storing and processing in science fields. The window 

aggregation is a typical aggregate query of it. However, in the current array databases, naive method is used to calculate the 

window aggregates, which will do much redundant computation and lead to low efficiency. In this thesis, I propose an algorithm 

improved with incremental computation for window aggregate queries. It buffers some intermediate aggregate results and reuses 

them when computing, eliminates the redundant computation. The time complexity analysis is also offered, which shows the 

advantages of the improved algorithm clearly. In order to test the performance, a simple array data process system is 

implemented, with both naive method and incremental computation algorithm implemented inside the system. The test result also 

shows that the improved algorithm is much better than the naive one, especially when the aggregated window is big. 

 

 

1. Introduction     

1.1 Background 

Array database is a new kind of databases developed recently. 

Unlike traditional relational databases, array database take 

multidimensional arrays instead of table as the basic store and 

process data units. As science and industry are growing 

increasingly data-intensive, array database is designed to solve 

the big data storage and processing. The array structure naturally 

fits in the data schema very well in many science fields and has 

many advantages over table when storing or processing data 

analyze processes. 

Array data model has two kinds of elements: dimensions and 

attributes. As showed in figure 1, „I‟ and „J‟ are dimensions of 

the array and the array has two attributes, one is integer and the 

other is float type. The attribute values exist in cells which are 

determined by the combination of dimension values, as 

something like coordinators.  

Because the special data model, array database has some 

queries which relational database doesn‟t have. Window 

aggregates is a typical useful query in array database that 

towards array data analyzing and processing. It‟s also the major 

subject this thesis will discuss about. 

1.2 Goal and plan 

The goal of the algorithm design is to apply the idea of 

incremental computing to reduce the redundant calculation and 

speed up the window aggregate queries.  

In order to actually be able to run and test designed method, 

need to implement an array processing system that supports the 

basic operators and queries in common array database. Then 

implement the incremental computing method for window 

queries as well as naive method so that the testing of efficiency 

differences between the two methods can be done. As window 
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aggregates, mainly implement the 4 kinds of aggregate functions: 

sum, average, maximum and minimum. Other more complex 

functions are not discussed in this paper. 

2. Basic and Plan 

This section introduces some basic concepts which need to be 

explained first before discussing the incremental computation 

optimization over window aggregations. 

2.1 Array data processing system 

The topic is about optimizing a kind of query in array 

database, it will require a platform to implement the designed 

algorithm and process the test works. So I implemented a small 

array data processing system.  

This system takes multidimensional arrays as basic process 

unit. Since the main point of this topic is to design algorithm to 

improve efficiency of window query, there is no need to study 

the lower level storage structure and mechanism in details. So in 

the system, the data used by the query will be simply maintained 

in the memory. In this array data processing system, 

fundamental operators of array as well as some array queries are 

implemented. 

 

Figure 1 Interface of the Array Data Process System 

 

Figure 1 above show the running interface of the system. The 

displayed last query command „aggr A sum(b) by window(2,2)‟ 

is asking to run a query of window aggregate, which is exactly 

the discussing query in this thesis. The command means that 

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.8
2013/11/26



 

 

 2 
 

process window aggregate over array „A‟ on attribute „b‟ with 

the aggregate function „sum‟ and the aggregating window size is 

2*2. More information about window aggregates is introduced 

below. 

2.2 Window aggregates 

Window aggregation query is the major subject to be 

improved in this thesis. It is necessary to introduce how window 

aggregation works before discussing about the incremental 

computing method. 

Window aggregates allow you to specify groups by a moving 

window and compute aggregates over these windows. Here, a 

window is more like a subarray of the original array, defined by 

a size in each dimension. The moving window starts at the first 

element of the array and moves in stride-major order from the 

lowest to highest value in each dimension. 

 

Figure 2 Window Aggregates 

 

In different Array Databases, the syntax expression of 

window aggregates may be different and in this thesis I will 

describe it using the expressions in my Array Processing System. 

Check this simple example of window aggregates: 

For a 2-dimensional array „A‟ with size 4x5, which has a 

integer attribute named „a‟, calculate the following window 

query over it: 

 Aggr A max(a) by window(2,3) 

It means for array „A‟, calculate max aggregate function on 

attribute „a‟ over moving window with size 2x3. The query 

result is showed in figure 3. 

 

Figure 3 Window aggregate example 

 

The result of a window query will be an array with the same 

size of the original array, the element value of a cell in the result 

array will be the aggregate value of the cell‟s corresponding 

window in the original array. In my system, I define each cell‟s 

corresponding window is the window taking the cell as the 

top-left unit, as the grey parts showed in figure 3. This definition 

of window may vary in different array databases, like SciDB 

take one cell‟s corresponding window with the cell as its 

centroid. Still these differences over forms won‟t affect the 

indeed property of window queries. 

In the Array Processing System, I first implement the naive 

method of the window aggregates, which is also the common 

used algorithm for calculating window queries in current array 

databases. Is simply travel every cell for each window and 

calculate the aggregate value. But it is obvious that in this way, 

there is a lot of redundant computation. As the neighboring 

windows have many overlap areas, the naive method will scan 

and calculate many areas repeatedly. Although this method is 

easy to implement, lots of redundant operations will waste much 

process resource. So I bring the idea of incremental computing 

into the window aggregates, by taking uses of intermediate 

aggregate results, reuse them when computing to eliminate the 

redundant computation. 

2.3 Base Window and Window Unit 

In order to describe the incremental computation algorithm 

more clearly, some concept definitions will be shown first here.  

 Base Window 

Base windows represent these basic windows in incremental 

computing, treated as the start window for each computing 

round. In an n-dimensional array, each base window is 

determined by the first n-1 dimension value. In each computing 

round, based on a base window and move on the last dimension, 

I call the generated windows as the base window‟s „derivative 

windows‟. 

 Window Unit 

Window units are the basic computing units in the process of 

incremental computing of window aggregates. Each window 

consists of window units, as shown below: 

 
Figure 4 Base window and window units( in 3D array) 

 

3. Incremental Compute 

3.1 Algorithm overview 

The main idea of the incremental computing improvement of 
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the window aggregates is to buffers some intermediate 

aggregate results and reuses them when computing, eliminates 

the redundant computation. For an N-dimensional array, the 

incremental compute steps will be like: 

1. Generate a base window, scan the elements inside it and 

calculate the window‟s aggregate value in unit of window unit. 

Initialize the buffer for storing the intermediate aggregate 

values. 

2. Start the compute round for the base window generated 

in step 1, take it as the start point, moving on the last dimension 

step by step. Each moving step will lead to a new corresponding 

derivative window. Compare to the previous computed window, 

this new window only add a new window unit and reduce an old 

window unit. The rest area of these two windows is exactly the 

same, can be computed incrementally. 

3. Generate new base windows, repeat step 1~2, do the 

compute rounds until all windows of the origin array have been 

calculated. 

3.2 Sum/Avg aggregates 

The calculating method of sum and average aggregate 

functions are almost the same. To get the average value of the 

window, just need to divide the sum with the size of the 

calculating window. So here consider these two aggregate 

functions together. 

For the sum/avg aggregate function, the main idea of 

accelerating is to compute the sum of each window‟s element 

values incrementally. Here, I use a sum list to store needed 

intermediate computed results. This sum list cost w_n space, 

storing sum values of every window unit belongs to the window 

that has been computed in the previous moving step. Since most 

window units of the current computing window are same as the 

previous computed window, we can reuse the sums stored in the 

sum list to calculate the current window‟s sum quickly. Here is a 

simple example to show how incremental computing works: 

Array : A[ i = 1:5, j = 1:5 ] <int a> 

Query : aggr A sum(a) by window(3,3) 

As the steps mentioned in Chapter 3.1: 

1.  Generate a base window, scan each window unit of it and 

compute these window units‟ sums, initialize the sum list with 

the sum values. 

 

Figure 5 Initialize base window and sum list (process step 1) 

2.  Moving on the last dimension, in this case the second 

dimension „j‟, moving the window to the right by step of one 

window unit, then will get a new derivative window. Scan the 

new coming window unit, calculate its sum and update the sum 

list, replace the sum value of the oldest window unit. After the 

updating, the total sum of the values in the sum list is exactly 

the aggregate sum of the current window. 

 

Figure 6 Process new window unit, update sum list(step 2) 

 

3.  Keep move forwards, calculate the aggregate value of all 

the windows derived by the generated base window in step 1. 

The figure 7 below shows the detailed value of sum list in each 

window moving step. The grey ones are the updated cells in that 

step and the total sum is exact the aggregate sum for the window 

in that step. 

 

Figure 7 Sum list updating status 

 

4.   Keep moving the base window down to get new base 

windows, for each base window repeat step 1~3, which can be 

considered as a compute round. After finish all the base 

windows‟ compute rounds, the aggregate query also has been 

done completely. 

 

Figure 8 Move on base window, repeat compute round 

 

For the arrays with more than 2 dimensions, the main idea of 

incremental computing of sum/avg functions is similar: use sum 

list to mention the window units‟ sums of the previous 
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calculated window. Then there is no need to compute the current 

window‟s most window units, whose aggregate sums can be 

easily get from the sum list. Only one window unit, the new 

coming one needs to be scanned. 

Here is another example of 3-dimensinal array. Taken window 

size as wx*wy*wz. In order to show the figure more clear, take 

wz equals 4. As showed in figure 9, the outside cuboid 

represents the whole array, the small cuboid inside represents a 

base window, it is consisted of wz( 4 in this case) window units. 

 
Figure 9 3D array incremental computing 

 

The main process of incremental computing is exactly the 

same as 2-Dimensional array. Move the window towards the 

direction of z-axis, get new derivative windows, calculating 

their aggregate values incrementally by using the sum list. After 

all the windows that derived from the current base window are 

all completed, moving on the direction of x-axis, y-axis to 

generate new base windows and repeat the process described 

above to finish all the windows inside the original array. Then 

the window query has also got the aggregate result. 

3.3 Min/Max aggregates 

For the aggregate functions of maximum and minimum, the 

improvement of window queries by using incremental 

computing will get a little complex. Since only use a buffer 

sequence like sum list which is used in sum/avg functions, still 

can‟t get the min/max value among all these data in the buffer 

sequence quickly. We need to scan this buffer sequence of 

min/max values to get the current window‟s aggregate value. Of 

course this will cost some time and lower the efficiency of the 

method, especially when the window size is large. 

In order to solve this problem, I apply the data structure of 

„heap‟ instead of simple buffer sequence to maintain the 

max/min values of the previous derivative window. By using 

heap, it will save lots of time getting the min/max value among 

all the intermediate aggregate results. In the introduction below 

I will take min function as example for simple description. 

The detailed process: 

1. Generate a base window, compute the min value of every 

window unit inside it. Insert these min values into the heap. For 

the nodes in the heap, they contains two values, one is the 

node‟s corresponding window unit‟s min value „v‟, the other one 

is the position „p‟ of the window unit in the array. 

2.  Moving towards on the last dimension, process the 

derivative windows of the base window one by one and 

calculate their min aggregate incrementally. First scan the new 

window unit which has just joined the current window, get its 

min value. Then insert this min value together with the window 

unit‟s position into the heap. 

3. Since the window is moving, the window unit has the 

minimum value may be already outside the computed window. 

Check the top node of heap, if its corresponding window unit is 

no longer in the current window (use position „p‟ to judge), 

delete the top node. Keep doing this until the top node‟s 

corresponding window unit is inside current window. Then the 

top node‟s value is exactly the current window‟s min value. 

4. Keep move the base window down to get new ones, for 

each base window repeat step 1~3, which can be considered as a 

compute round. After finish all the base windows‟ compute 

rounds, the aggregate query also has been done completely. 

For window aggregate of min/max functions, the core idea 

remains the same. The usage of heap only speeds up the process 

of reusing the buffered intermediate aggregate results. The basic 

algorithm is same as sum/avg function. Still, because the heap 

operations need to spend some extra time, min/max function 

will be slower than sum/avg function at some degree. 

4. Analysis 

This chapter will analyze time complexity of naive method 

and incremental computing algorithm of window aggregates. 

Compare these two methods and check the improvement 

theoretically. 

Before analysis, some parameters in window aggregate need 

to be defined so that the description can be clear and convenient: 

 2-dimensional array size X∙Y   

 Window size   a∙b 

General case: 

 N-dimensional array size  𝐷1 ∙ 𝐷2 ∙ … ∙ 𝐷𝑛

 Window size   𝑤1 ∙ 𝑤2 ∙ … ∙ 𝑤𝑛 

4.1 Naive method 

First consider the simple 2-dimensional array, there are 𝑋 ∙ 𝑌 

windows need to be calculated at all. For each window, every 

cell inside it needs to be scanned to compute the window‟s 

aggregate value. All the windows‟ size can be viewed as 𝑎 ∙ 𝑏. 

No matter what aggregate function the window query uses, the 

compute process over each cell will be constant, so the time 

complexity will be 
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𝑂(𝑋 ∙ 𝑌 ∙ 𝑎 ∙ 𝑏) 

Expand to general cases, time complexity of window 

aggregates‟ naive method is 

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙∏𝑤𝑖)

𝑛

𝑖=1

 

4.2 Incremental computing 

4.2.1 Sum/Avg 

Also consider the 2-dimensional array first. At total X base 

windows exist. For each base window, need to move on the 

second dimension to get windows to process the incremental 

computing and there are Y move steps at all. In other words, 

each base window has Y derivative windows to be calculated.  

When calculating each derivative window, need to scan the 

new window unit which has a cells, from the analysis above, the 

time complexity is: 

𝑂(𝑋 ∙ 𝑌 ∙ 𝑎) 

N-dimensional array is similar, the number of base windows 

is ∏ Di
n−1
i=1  , moving on the last dimension and derivate Dn 

windows. For each derivate window, the new window unit to be 

scanned has ∏ wi
n−1
i=1  cells. So the time complexity for general 

cases will be 

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙∏𝑤𝑖)

𝑛−1

𝑖=1

 

Compare to the naive method, the incremental computing 

improvement reduce a multiply item „wn‟ in the time complexity. 

This means that the improved algorithm is wn times faster than 

the naive method.  

From the expression above, we can also find a special feature: 

the time complexity of incremental computing for window 

sum/avg aggregates has no relationship with the window size on 

the last dimension - wn. This means no matter how big the 

window is on the last dimension, it won‟t affect the efficiency of 

the incremental computing algorithm. I will confirm this feature 

in the test stage in next chapter. 

4.2.2 Max/Min 

Consider max/min functions of window aggregates, besides 

the analyzed part above, the part of heap operators also need to 

be considered. Here I analyze the time complexity in two 

aspects: one is the min/max calculation of window units, the 

other one is the operators in heap. 

The calculation of window units is similar to the sum/avg 

function, which has been already analyzed before. The number 

of cells that need to be scanned is the same, only the computed 

value is max/min value instead of sum. So the time complexity 

of this part is still 

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙∏𝑤𝑖)

𝑛−1

𝑖=1

 

Then consider the heap operation part. As a heap, to insert a 

new node will cost O(log⁡(L)) , to delete the top node and 

maintain the rest nodes remaining the heap property will also 

cost O(log⁡(L)). Here L means the number of nodes inside the 

heap. The time complexity of heap operations above is result of 

average analysis, which is fundamental in data structure. So 

won‟t give detailed explanations here. 

Back to the analysis of window query, there are ∏ Di
n−1
i=1  

base windows, for each base window, at total Dn window units‟ 

min/max values need to be insert into the heap, among these 

values, at most Dn −wn ones will be deleted from the heap 

during the incremental computing process. So take heap‟s size 

„L‟ as Dn, the number of insert and delete operation can also be 

approximate to Dn. So the time complexity of heap part will be 

𝑂(∏𝐷𝑖

𝑛−1

𝑖=1

∙ 𝐷𝑛 ∙ (𝑙𝑜𝑔𝐷𝑛 + 𝑙𝑜𝑔𝐷𝑛) = 𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙ 𝑙𝑜𝑔𝐷𝑛) 

In summary, for the max/min functions‟ window aggregation, 

its time complexity is 

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙∏𝑤𝑖 +∏𝐷𝑖

𝑛

𝑖=1

∙ 𝑙𝑜𝑔𝐷𝑛)

𝑛−1

𝑖=1

= 𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙（∏𝑤𝑖

𝑛−1

𝑖=1

+ 𝑙𝑜𝑔𝐷𝑛）) 

Observe this expression, compare to the item ∏ wi
n−1
i=1 , 

logDn  will be much slower in most cases, so the time 

complexity of max/min is only a little bigger than sum/avg. Of 

course, it is also about wn times faster than naive method. 

Also, we can see that min/max functions‟ incremental 

computation is like sum/avg functions, the time complexity is 

unrelated with aggregating window‟s size on last dimension - 

wn. This is very interesting. It means that when process the 

window queries, no matter the aggregating window‟s size is 

100*2, or 100*1000, the running time will be the same.  

4.3 Further Optimization 

From the previous analysis, it is clear that the improvement of 

incremental computing is mainly on the reducing of the multiply 

item wn. wn is the window size on the last dimension. When 

design the incremental computation algorithm, on purpose of 

simple implement, I choose the first n-1 dimension to determine 

the base windows and moving on the last dimension to get base 

windows‟ derivative windows. Apparently, this design can be 

optimized. Before process the window aggregate, we can figure 
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out in which dimension, the aggregating window‟s size is the 

biggest. Then treat this dimension instead of the last dimension 

as the window moving dimension and take the rest n-1 

dimensions to generate the base windows. In this way, the 

reducing multiply item will be the biggest one among all the wi. 

Then time complexity will be improved to 

For Sum / Avg: 

𝑂(
∏ 𝐷𝑖
𝑛
𝑖=1 ∙ ∏ 𝑤𝑖

𝑛
𝑖=1

max⁡(𝑤𝑖)
) 

Before optimization (form changed to compare): 

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙∏𝑤𝑖)

𝑛−1

𝑖=1

= 𝑂(
∏ 𝐷𝑖
𝑛
𝑖=1 ∙ ∏ 𝑤𝑖

𝑛
𝑖=1

𝑤𝑛
) 

Similarly, for min/max functions, the optimized time 

complexity will be 

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙（
∏ 𝑤𝑖
𝑛
𝑖=1

max⁡(𝑤𝑖)
+ 𝑙𝑜𝑔𝐷𝑛）) 

Before optimization: 

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙（
∏ 𝑤𝑖
𝑛
𝑖=1

𝑤𝑛
+ 𝑙𝑜𝑔𝐷𝑛）) 

From the analysis above, we can see that this optimization 

will works very well when the window size is not so structured. 

It means the window get large size in some dimensions and get 

small size in other dimensions. But for the aggregate window 

that has almost same edge size in every dimension, this 

optimization will change nothing. 

Here is a simple example on 3-dimensional array, run window 

aggregate query with window size 500*50*5. The origin 

incremental computing algorithm will reduce time complexity 

by the multiply item w3 = 5. Meanwhile, as the algorithm 

using this optimization, the reducing multiply item will be 

max(wi) = w1 = 500. It leads to 100 times faster than the 

origin algorithm at the process speed theoretically. But if the 

window size is 50*50*50, this optimization won‟t affect the 

speed at all. 

5. Evaluation 

This chapter will introduce the test results of the incremental 

computing algorithm for window aggregates. All the tests are 

run in my array processing system. 

5.1 Performance 

Run same test data of window aggregates over incremental 

computing algorithm and naive method. Compare the running 

time. 

First test series is 2-dimensinal array of size 1000×1000, 

attributes values are random integers range from 0 to 1000. 

Increase the window size while testing, the result is showed 

below: 

Table 1 Test result on 2-dimensional array 1000*1000 

Note: IC stands for incremental computation algorithm, while N 

stands for Naive method, similarly hereinafter 

 

From the result, we can see that the incremental computing 

method is much faster than the naive one. As the window size 

gets bigger, the effect of improvement gets greater. Since bigger 

the aggregating window is, more redundant calculation the naive 

method will process. 

 

Figure 10 running time-window size Graph 

 

In the graph above, because the disparity of running time 

between these two methods is really large when the window gets 

big, it‟s difficult to find a proper scale to display the graph well. 

Still, we can see that the incremental computing greatly improve 

the calculate efficiency. For 100*100 window query, the 

improved algorithm can output the result within one second. But 

for the same data, the naive method need more than 2 minutes. 

Here is another set of test cases of 3-dimensional array. 

Table 2 Test result on 3-dimensional array 80*80*80  

Win. Size 5*5*5 10*10*10 15*15*15 20*20*20 25*25*25 

Avg(IC)/ms 80 260 510 900 1330 

Avg(N)/ms  1240 7680 23850 50540 88490 

Max(IC)/ms 190 460 850 1400 2040 

Max(N)/ms 1210 7640 23320 50610 88160 

 

The test result also shows the superior performance of 

incremental computing algorithm. According to the time 

Win. size 5*5 10*10 20*20 30*30 40*40 50*50 

Avg(IC*) 50ms 70ms 120ms 180ms 250ms 300ms 

Avg(N*) 590ms 1.89s 6.95s 14.93s 26.0s 39.89s 

Max(IC) 260ms 320ms 390ms 470ms 550ms 630ms 

Max(N) 590ms 1.88s 6.98s 14.96s 25.93s 40.04s 
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complexity analysis in the last chapter, it should be wn times 

faster than naive method. "wn" represents the window size in 

the last dimension. Check the test result above and we can see 

that the real improvement of process speed almost fits in the 

analysis, even get better. It may be influenced by some constant 

running time items. 

5.2 Feature test 

The time complexity analysis of incremental computing 

method shows that its computation amount is not related with 

the window size on the last dimension - wn. In other words, for 

the same array, no matter how wn varies in window queries, 

the aggregate processing time will remain similar.In order to 

verify this feature as well as the analyzed time complexity‟s 

validity, I design a set of test cases specially. 

First case is the same 1000*1000 2-dimension array used 

above. This time remain the first dimension‟s window size 

invariant as 40, and increase wn, in this case w2 to check how 

the running time behaves. 

Table 3 Feature test for incremental computing (2-D) 

 

The result show clearly that no matter how w2 varies, the 

processing time of window aggregate queries using incremental 

computing almost remain constant. Relatively, the naive method 

also behaves as the analyzed in last chapter, its consumed time 

has linear relation with the whole window size. 

Here is another 3-dimension test data for the same test 

purpose. 

Table 4 Feature test for incremental computing (3-D) 

 

Apparently, the test result matches the analysis well. 

5.3 Test summary 

This chapter mainly introduces the test status of the topic. The 

test work has two aspects. 

Firstly, test to compare the performance between naive 

method and incremental computing. The result shows that the 

improvement is quite good. Secondly, I design special cases to 

verify the time complexity analysis as well as this feature of 

incremental computing algorithm.  

I tried to test against the window aggregates in current array 

databases, for example SciDB. But since these array databases 

of course will store data in disks and the major time will be cost 

on accessing the data required by the window query instead of 

the query processing itself. As my own array data processing 

system using data directly in memory, there is no meaning and 

no way to compare. However, I need to state that this algorithm 

is a high level method and does not concern with the low level 

data store structures and mechanisms. It takes array data as input 

and output query result. So basically it can be implemented into 

any array databases as long as the base data structure is “array”. 

6. Summary and Future Work 

This thesis proposes an improvement algorithm for window 

aggregates in array database. The improvement is based on 

incremental computation.  

First introduce the background of array databases and window 

aggregates. Then mainly talk about the incremental computing 

method. Describe the algorithm‟s design idea and working 

process. The idea is to buffer intermediate aggregate values and 

reuse them while calculating the following windows. In this way, 

big amount of redundant calculation will be reduced and will 

save much time processing the window queries.Then analyze 

the time complexity of the algorithm, get quantitative analysis 

about the improving effect. It turns out the incremental 

computing method will save a multiple item wn comparing to 

the naive method. It‟s because for each window, naive one need 

to scan all the window units, while IC method only need to scan 

one window unit. As a window has wn window units at total, it 

is nature the time efficiency of IC method will be wn times 

better. 

The test was run in the array data processing system 

implemented by my own. The result verifies the time complexity, 

prove that the incremental computing method can improve the 

efficiency of window queries greatly. 

There are some further works can be expanded of this topic. 

First, the algorithm can be implemented into the current Array 

Database, like SciDB and try parallel processing among the 

cluster. Besides, the concept of array stream can be introduced 

into the system. Since stream data naturally has dimension of 

time, this time window aggregates can also use similar 

incremental computing method to optimize. Still, as stream data 

has requirement on real-time process, the method need to be 

modified in many aspects. 

 

Win. Size 40*10 40*20 40*30 40*40 40*50 40*60 40*70 

Avg(IC) 

/ms 
250 250 240 250 240 240 250 

Max(IC) 

/ms  
570 560 550 550 560 550 550 

Win. Size 
20*20*

10 

20*20*

20 

20*20*

30 

20*20*

40 

20*20*

50 

20*20*

60 

Sum(IC) 

/ms 
910 900 910 930 940 940 

Min(IC) 

/ms 
1410 1400 1380 1360 1360 1350 
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