

 1

An Incremental Computation Scheme over Array Database

JIANG LI
†1 KAWASHIMA HIDEYUKI

†2

Array database is a new kind of database, dealing with the big data storing and processing in science fields. The window

aggregation is a typical aggregate query of it. However, in the current array databases, naive method is used to calculate the

window aggregates, which will do much redundant computation and lead to low efficiency. In this thesis, I propose an algorithm

improved with incremental computation for window aggregate queries. It buffers some intermediate aggregate results and reuses

them when computing, eliminates the redundant computation. The time complexity analysis is also offered, which shows the

advantages of the improved algorithm clearly. In order to test the performance, a simple array data process system is

implemented, with both naive method and incremental computation algorithm implemented inside the system. The test result also

shows that the improved algorithm is much better than the naive one, especially when the aggregated window is big.

1. Introduction

1.1 Background

Array database is a new kind of databases developed recently.

Unlike traditional relational databases, array database take

multidimensional arrays instead of table as the basic store and

process data units. As science and industry are growing

increasingly data-intensive, array database is designed to solve

the big data storage and processing. The array structure naturally

fits in the data schema very well in many science fields and has

many advantages over table when storing or processing data

analyze processes.

Array data model has two kinds of elements: dimensions and

attributes. As showed in figure 1, „I‟ and „J‟ are dimensions of

the array and the array has two attributes, one is integer and the

other is float type. The attribute values exist in cells which are

determined by the combination of dimension values, as

something like coordinators.

Because the special data model, array database has some

queries which relational database doesn‟t have. Window

aggregates is a typical useful query in array database that

towards array data analyzing and processing. It‟s also the major

subject this thesis will discuss about.

1.2 Goal and plan

The goal of the algorithm design is to apply the idea of

incremental computing to reduce the redundant calculation and

speed up the window aggregate queries.

In order to actually be able to run and test designed method,

need to implement an array processing system that supports the

basic operators and queries in common array database. Then

implement the incremental computing method for window

queries as well as naive method so that the testing of efficiency

differences between the two methods can be done. As window

 †1 Tsukuba University

 †2 Tsukuba University

aggregates, mainly implement the 4 kinds of aggregate functions:

sum, average, maximum and minimum. Other more complex

functions are not discussed in this paper.

2. Basic and Plan

This section introduces some basic concepts which need to be

explained first before discussing the incremental computation

optimization over window aggregations.

2.1 Array data processing system

The topic is about optimizing a kind of query in array

database, it will require a platform to implement the designed

algorithm and process the test works. So I implemented a small

array data processing system.

This system takes multidimensional arrays as basic process

unit. Since the main point of this topic is to design algorithm to

improve efficiency of window query, there is no need to study

the lower level storage structure and mechanism in details. So in

the system, the data used by the query will be simply maintained

in the memory. In this array data processing system,

fundamental operators of array as well as some array queries are

implemented.

Figure 1 Interface of the Array Data Process System

Figure 1 above show the running interface of the system. The

displayed last query command „aggr A sum(b) by window(2,2)‟

is asking to run a query of window aggregate, which is exactly

the discussing query in this thesis. The command means that

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.8
2013/11/26

 2

process window aggregate over array „A‟ on attribute „b‟ with

the aggregate function „sum‟ and the aggregating window size is

2*2. More information about window aggregates is introduced

below.

2.2 Window aggregates

Window aggregation query is the major subject to be

improved in this thesis. It is necessary to introduce how window

aggregation works before discussing about the incremental

computing method.

Window aggregates allow you to specify groups by a moving

window and compute aggregates over these windows. Here, a

window is more like a subarray of the original array, defined by

a size in each dimension. The moving window starts at the first

element of the array and moves in stride-major order from the

lowest to highest value in each dimension.

Figure 2 Window Aggregates

In different Array Databases, the syntax expression of

window aggregates may be different and in this thesis I will

describe it using the expressions in my Array Processing System.

Check this simple example of window aggregates:

For a 2-dimensional array „A‟ with size 4x5, which has a

integer attribute named „a‟, calculate the following window

query over it:

 Aggr A max(a) by window(2,3)

It means for array „A‟, calculate max aggregate function on

attribute „a‟ over moving window with size 2x3. The query

result is showed in figure 3.

Figure 3 Window aggregate example

The result of a window query will be an array with the same

size of the original array, the element value of a cell in the result

array will be the aggregate value of the cell‟s corresponding

window in the original array. In my system, I define each cell‟s

corresponding window is the window taking the cell as the

top-left unit, as the grey parts showed in figure 3. This definition

of window may vary in different array databases, like SciDB

take one cell‟s corresponding window with the cell as its

centroid. Still these differences over forms won‟t affect the

indeed property of window queries.

In the Array Processing System, I first implement the naive

method of the window aggregates, which is also the common

used algorithm for calculating window queries in current array

databases. Is simply travel every cell for each window and

calculate the aggregate value. But it is obvious that in this way,

there is a lot of redundant computation. As the neighboring

windows have many overlap areas, the naive method will scan

and calculate many areas repeatedly. Although this method is

easy to implement, lots of redundant operations will waste much

process resource. So I bring the idea of incremental computing

into the window aggregates, by taking uses of intermediate

aggregate results, reuse them when computing to eliminate the

redundant computation.

2.3 Base Window and Window Unit

In order to describe the incremental computation algorithm

more clearly, some concept definitions will be shown first here.

 Base Window

Base windows represent these basic windows in incremental

computing, treated as the start window for each computing

round. In an n-dimensional array, each base window is

determined by the first n-1 dimension value. In each computing

round, based on a base window and move on the last dimension,

I call the generated windows as the base window‟s „derivative

windows‟.

 Window Unit

Window units are the basic computing units in the process of

incremental computing of window aggregates. Each window

consists of window units, as shown below:

Figure 4 Base window and window units(in 3D array)

3. Incremental Compute

3.1 Algorithm overview

The main idea of the incremental computing improvement of

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.8
2013/11/26

 3

the window aggregates is to buffers some intermediate

aggregate results and reuses them when computing, eliminates

the redundant computation. For an N-dimensional array, the

incremental compute steps will be like:

1. Generate a base window, scan the elements inside it and

calculate the window‟s aggregate value in unit of window unit.

Initialize the buffer for storing the intermediate aggregate

values.

2. Start the compute round for the base window generated

in step 1, take it as the start point, moving on the last dimension

step by step. Each moving step will lead to a new corresponding

derivative window. Compare to the previous computed window,

this new window only add a new window unit and reduce an old

window unit. The rest area of these two windows is exactly the

same, can be computed incrementally.

3. Generate new base windows, repeat step 1~2, do the

compute rounds until all windows of the origin array have been

calculated.

3.2 Sum/Avg aggregates

The calculating method of sum and average aggregate

functions are almost the same. To get the average value of the

window, just need to divide the sum with the size of the

calculating window. So here consider these two aggregate

functions together.

For the sum/avg aggregate function, the main idea of

accelerating is to compute the sum of each window‟s element

values incrementally. Here, I use a sum list to store needed

intermediate computed results. This sum list cost w_n space,

storing sum values of every window unit belongs to the window

that has been computed in the previous moving step. Since most

window units of the current computing window are same as the

previous computed window, we can reuse the sums stored in the

sum list to calculate the current window‟s sum quickly. Here is a

simple example to show how incremental computing works:

Array : A[i = 1:5, j = 1:5] <int a>

Query : aggr A sum(a) by window(3,3)

As the steps mentioned in Chapter 3.1:

1. Generate a base window, scan each window unit of it and

compute these window units‟ sums, initialize the sum list with

the sum values.

Figure 5 Initialize base window and sum list (process step 1)

2. Moving on the last dimension, in this case the second

dimension „j‟, moving the window to the right by step of one

window unit, then will get a new derivative window. Scan the

new coming window unit, calculate its sum and update the sum

list, replace the sum value of the oldest window unit. After the

updating, the total sum of the values in the sum list is exactly

the aggregate sum of the current window.

Figure 6 Process new window unit, update sum list(step 2)

3. Keep move forwards, calculate the aggregate value of all

the windows derived by the generated base window in step 1.

The figure 7 below shows the detailed value of sum list in each

window moving step. The grey ones are the updated cells in that

step and the total sum is exact the aggregate sum for the window

in that step.

Figure 7 Sum list updating status

4. Keep moving the base window down to get new base

windows, for each base window repeat step 1~3, which can be

considered as a compute round. After finish all the base

windows‟ compute rounds, the aggregate query also has been

done completely.

Figure 8 Move on base window, repeat compute round

For the arrays with more than 2 dimensions, the main idea of

incremental computing of sum/avg functions is similar: use sum

list to mention the window units‟ sums of the previous

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.8
2013/11/26

 4

calculated window. Then there is no need to compute the current

window‟s most window units, whose aggregate sums can be

easily get from the sum list. Only one window unit, the new

coming one needs to be scanned.

Here is another example of 3-dimensinal array. Taken window

size as wx*wy*wz. In order to show the figure more clear, take

wz equals 4. As showed in figure 9, the outside cuboid

represents the whole array, the small cuboid inside represents a

base window, it is consisted of wz(4 in this case) window units.

Figure 9 3D array incremental computing

The main process of incremental computing is exactly the

same as 2-Dimensional array. Move the window towards the

direction of z-axis, get new derivative windows, calculating

their aggregate values incrementally by using the sum list. After

all the windows that derived from the current base window are

all completed, moving on the direction of x-axis, y-axis to

generate new base windows and repeat the process described

above to finish all the windows inside the original array. Then

the window query has also got the aggregate result.

3.3 Min/Max aggregates

For the aggregate functions of maximum and minimum, the

improvement of window queries by using incremental

computing will get a little complex. Since only use a buffer

sequence like sum list which is used in sum/avg functions, still

can‟t get the min/max value among all these data in the buffer

sequence quickly. We need to scan this buffer sequence of

min/max values to get the current window‟s aggregate value. Of

course this will cost some time and lower the efficiency of the

method, especially when the window size is large.

In order to solve this problem, I apply the data structure of

„heap‟ instead of simple buffer sequence to maintain the

max/min values of the previous derivative window. By using

heap, it will save lots of time getting the min/max value among

all the intermediate aggregate results. In the introduction below

I will take min function as example for simple description.

The detailed process:

1. Generate a base window, compute the min value of every

window unit inside it. Insert these min values into the heap. For

the nodes in the heap, they contains two values, one is the

node‟s corresponding window unit‟s min value „v‟, the other one

is the position „p‟ of the window unit in the array.

2. Moving towards on the last dimension, process the

derivative windows of the base window one by one and

calculate their min aggregate incrementally. First scan the new

window unit which has just joined the current window, get its

min value. Then insert this min value together with the window

unit‟s position into the heap.

3. Since the window is moving, the window unit has the

minimum value may be already outside the computed window.

Check the top node of heap, if its corresponding window unit is

no longer in the current window (use position „p‟ to judge),

delete the top node. Keep doing this until the top node‟s

corresponding window unit is inside current window. Then the

top node‟s value is exactly the current window‟s min value.

4. Keep move the base window down to get new ones, for

each base window repeat step 1~3, which can be considered as a

compute round. After finish all the base windows‟ compute

rounds, the aggregate query also has been done completely.

For window aggregate of min/max functions, the core idea

remains the same. The usage of heap only speeds up the process

of reusing the buffered intermediate aggregate results. The basic

algorithm is same as sum/avg function. Still, because the heap

operations need to spend some extra time, min/max function

will be slower than sum/avg function at some degree.

4. Analysis

This chapter will analyze time complexity of naive method

and incremental computing algorithm of window aggregates.

Compare these two methods and check the improvement

theoretically.

Before analysis, some parameters in window aggregate need

to be defined so that the description can be clear and convenient:

 2-dimensional array size X∙Y

 Window size a∙b

General case:

 N-dimensional array size 𝐷1 ∙ 𝐷2 ∙ … ∙ 𝐷𝑛

 Window size 𝑤1 ∙ 𝑤2 ∙ … ∙ 𝑤𝑛

4.1 Naive method

First consider the simple 2-dimensional array, there are 𝑋 ∙ 𝑌

windows need to be calculated at all. For each window, every

cell inside it needs to be scanned to compute the window‟s

aggregate value. All the windows‟ size can be viewed as 𝑎 ∙ 𝑏.

No matter what aggregate function the window query uses, the

compute process over each cell will be constant, so the time

complexity will be

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.8
2013/11/26

 5

𝑂(𝑋 ∙ 𝑌 ∙ 𝑎 ∙ 𝑏)

Expand to general cases, time complexity of window

aggregates‟ naive method is

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙∏𝑤𝑖)

𝑛

𝑖=1

4.2 Incremental computing

4.2.1 Sum/Avg

Also consider the 2-dimensional array first. At total X base

windows exist. For each base window, need to move on the

second dimension to get windows to process the incremental

computing and there are Y move steps at all. In other words,

each base window has Y derivative windows to be calculated.

When calculating each derivative window, need to scan the

new window unit which has a cells, from the analysis above, the

time complexity is:

𝑂(𝑋 ∙ 𝑌 ∙ 𝑎)

N-dimensional array is similar, the number of base windows

is ∏ Di
n−1
i=1 , moving on the last dimension and derivate Dn

windows. For each derivate window, the new window unit to be

scanned has ∏ wi
n−1
i=1 cells. So the time complexity for general

cases will be

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙∏𝑤𝑖)

𝑛−1

𝑖=1

Compare to the naive method, the incremental computing

improvement reduce a multiply item „wn‟ in the time complexity.

This means that the improved algorithm is wn times faster than

the naive method.

From the expression above, we can also find a special feature:

the time complexity of incremental computing for window

sum/avg aggregates has no relationship with the window size on

the last dimension - wn. This means no matter how big the

window is on the last dimension, it won‟t affect the efficiency of

the incremental computing algorithm. I will confirm this feature

in the test stage in next chapter.

4.2.2 Max/Min

Consider max/min functions of window aggregates, besides

the analyzed part above, the part of heap operators also need to

be considered. Here I analyze the time complexity in two

aspects: one is the min/max calculation of window units, the

other one is the operators in heap.

The calculation of window units is similar to the sum/avg

function, which has been already analyzed before. The number

of cells that need to be scanned is the same, only the computed

value is max/min value instead of sum. So the time complexity

of this part is still

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙∏𝑤𝑖)

𝑛−1

𝑖=1

Then consider the heap operation part. As a heap, to insert a

new node will cost O(log⁡(L)) , to delete the top node and

maintain the rest nodes remaining the heap property will also

cost O(log⁡(L)). Here L means the number of nodes inside the

heap. The time complexity of heap operations above is result of

average analysis, which is fundamental in data structure. So

won‟t give detailed explanations here.

Back to the analysis of window query, there are ∏ Di
n−1
i=1

base windows, for each base window, at total Dn window units‟

min/max values need to be insert into the heap, among these

values, at most Dn −wn ones will be deleted from the heap

during the incremental computing process. So take heap‟s size

„L‟ as Dn, the number of insert and delete operation can also be

approximate to Dn. So the time complexity of heap part will be

𝑂(∏𝐷𝑖

𝑛−1

𝑖=1

∙ 𝐷𝑛 ∙ (𝑙𝑜𝑔𝐷𝑛 + 𝑙𝑜𝑔𝐷𝑛) = 𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙ 𝑙𝑜𝑔𝐷𝑛)

In summary, for the max/min functions‟ window aggregation,

its time complexity is

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙∏𝑤𝑖 +∏𝐷𝑖

𝑛

𝑖=1

∙ 𝑙𝑜𝑔𝐷𝑛)

𝑛−1

𝑖=1

= 𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙（∏𝑤𝑖

𝑛−1

𝑖=1

+ 𝑙𝑜𝑔𝐷𝑛）)

Observe this expression, compare to the item ∏ wi
n−1
i=1 ,

logDn will be much slower in most cases, so the time

complexity of max/min is only a little bigger than sum/avg. Of

course, it is also about wn times faster than naive method.

Also, we can see that min/max functions‟ incremental

computation is like sum/avg functions, the time complexity is

unrelated with aggregating window‟s size on last dimension -

wn. This is very interesting. It means that when process the

window queries, no matter the aggregating window‟s size is

100*2, or 100*1000, the running time will be the same.

4.3 Further Optimization

From the previous analysis, it is clear that the improvement of

incremental computing is mainly on the reducing of the multiply

item wn. wn is the window size on the last dimension. When

design the incremental computation algorithm, on purpose of

simple implement, I choose the first n-1 dimension to determine

the base windows and moving on the last dimension to get base

windows‟ derivative windows. Apparently, this design can be

optimized. Before process the window aggregate, we can figure

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.8
2013/11/26

 6

out in which dimension, the aggregating window‟s size is the

biggest. Then treat this dimension instead of the last dimension

as the window moving dimension and take the rest n-1

dimensions to generate the base windows. In this way, the

reducing multiply item will be the biggest one among all the wi.

Then time complexity will be improved to

For Sum / Avg:

𝑂(
∏ 𝐷𝑖
𝑛
𝑖=1 ∙ ∏ 𝑤𝑖

𝑛
𝑖=1

max⁡(𝑤𝑖)
)

Before optimization (form changed to compare):

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙∏𝑤𝑖)

𝑛−1

𝑖=1

= 𝑂(
∏ 𝐷𝑖
𝑛
𝑖=1 ∙ ∏ 𝑤𝑖

𝑛
𝑖=1

𝑤𝑛
)

Similarly, for min/max functions, the optimized time

complexity will be

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙（
∏ 𝑤𝑖
𝑛
𝑖=1

max⁡(𝑤𝑖)
+ 𝑙𝑜𝑔𝐷𝑛）)

Before optimization:

𝑂(∏𝐷𝑖

𝑛

𝑖=1

∙（
∏ 𝑤𝑖
𝑛
𝑖=1

𝑤𝑛
+ 𝑙𝑜𝑔𝐷𝑛）)

From the analysis above, we can see that this optimization

will works very well when the window size is not so structured.

It means the window get large size in some dimensions and get

small size in other dimensions. But for the aggregate window

that has almost same edge size in every dimension, this

optimization will change nothing.

Here is a simple example on 3-dimensional array, run window

aggregate query with window size 500*50*5. The origin

incremental computing algorithm will reduce time complexity

by the multiply item w3 = 5. Meanwhile, as the algorithm

using this optimization, the reducing multiply item will be

max(wi) = w1 = 500. It leads to 100 times faster than the

origin algorithm at the process speed theoretically. But if the

window size is 50*50*50, this optimization won‟t affect the

speed at all.

5. Evaluation

This chapter will introduce the test results of the incremental

computing algorithm for window aggregates. All the tests are

run in my array processing system.

5.1 Performance

Run same test data of window aggregates over incremental

computing algorithm and naive method. Compare the running

time.

First test series is 2-dimensinal array of size 1000×1000,

attributes values are random integers range from 0 to 1000.

Increase the window size while testing, the result is showed

below:

Table 1 Test result on 2-dimensional array 1000*1000

Note: IC stands for incremental computation algorithm, while N

stands for Naive method, similarly hereinafter

From the result, we can see that the incremental computing

method is much faster than the naive one. As the window size

gets bigger, the effect of improvement gets greater. Since bigger

the aggregating window is, more redundant calculation the naive

method will process.

Figure 10 running time-window size Graph

In the graph above, because the disparity of running time

between these two methods is really large when the window gets

big, it‟s difficult to find a proper scale to display the graph well.

Still, we can see that the incremental computing greatly improve

the calculate efficiency. For 100*100 window query, the

improved algorithm can output the result within one second. But

for the same data, the naive method need more than 2 minutes.

Here is another set of test cases of 3-dimensional array.

Table 2 Test result on 3-dimensional array 80*80*80

Win. Size 5*5*5 10*10*10 15*15*15 20*20*20 25*25*25

Avg(IC)/ms 80 260 510 900 1330

Avg(N)/ms 1240 7680 23850 50540 88490

Max(IC)/ms 190 460 850 1400 2040

Max(N)/ms 1210 7640 23320 50610 88160

The test result also shows the superior performance of

incremental computing algorithm. According to the time

Win. size 5*5 10*10 20*20 30*30 40*40 50*50

Avg(IC*) 50ms 70ms 120ms 180ms 250ms 300ms

Avg(N*) 590ms 1.89s 6.95s 14.93s 26.0s 39.89s

Max(IC) 260ms 320ms 390ms 470ms 550ms 630ms

Max(N) 590ms 1.88s 6.98s 14.96s 25.93s 40.04s

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.8
2013/11/26

 7

complexity analysis in the last chapter, it should be wn times

faster than naive method. "wn" represents the window size in

the last dimension. Check the test result above and we can see

that the real improvement of process speed almost fits in the

analysis, even get better. It may be influenced by some constant

running time items.

5.2 Feature test

The time complexity analysis of incremental computing

method shows that its computation amount is not related with

the window size on the last dimension - wn. In other words, for

the same array, no matter how wn varies in window queries,

the aggregate processing time will remain similar.In order to

verify this feature as well as the analyzed time complexity‟s

validity, I design a set of test cases specially.

First case is the same 1000*1000 2-dimension array used

above. This time remain the first dimension‟s window size

invariant as 40, and increase wn, in this case w2 to check how

the running time behaves.

Table 3 Feature test for incremental computing (2-D)

The result show clearly that no matter how w2 varies, the

processing time of window aggregate queries using incremental

computing almost remain constant. Relatively, the naive method

also behaves as the analyzed in last chapter, its consumed time

has linear relation with the whole window size.

Here is another 3-dimension test data for the same test

purpose.

Table 4 Feature test for incremental computing (3-D)

Apparently, the test result matches the analysis well.

5.3 Test summary

This chapter mainly introduces the test status of the topic. The

test work has two aspects.

Firstly, test to compare the performance between naive

method and incremental computing. The result shows that the

improvement is quite good. Secondly, I design special cases to

verify the time complexity analysis as well as this feature of

incremental computing algorithm.

I tried to test against the window aggregates in current array

databases, for example SciDB. But since these array databases

of course will store data in disks and the major time will be cost

on accessing the data required by the window query instead of

the query processing itself. As my own array data processing

system using data directly in memory, there is no meaning and

no way to compare. However, I need to state that this algorithm

is a high level method and does not concern with the low level

data store structures and mechanisms. It takes array data as input

and output query result. So basically it can be implemented into

any array databases as long as the base data structure is “array”.

6. Summary and Future Work

This thesis proposes an improvement algorithm for window

aggregates in array database. The improvement is based on

incremental computation.

First introduce the background of array databases and window

aggregates. Then mainly talk about the incremental computing

method. Describe the algorithm‟s design idea and working

process. The idea is to buffer intermediate aggregate values and

reuse them while calculating the following windows. In this way,

big amount of redundant calculation will be reduced and will

save much time processing the window queries.Then analyze

the time complexity of the algorithm, get quantitative analysis

about the improving effect. It turns out the incremental

computing method will save a multiple item wn comparing to

the naive method. It‟s because for each window, naive one need

to scan all the window units, while IC method only need to scan

one window unit. As a window has wn window units at total, it

is nature the time efficiency of IC method will be wn times

better.

The test was run in the array data processing system

implemented by my own. The result verifies the time complexity,

prove that the incremental computing method can improve the

efficiency of window queries greatly.

There are some further works can be expanded of this topic.

First, the algorithm can be implemented into the current Array

Database, like SciDB and try parallel processing among the

cluster. Besides, the concept of array stream can be introduced

into the system. Since stream data naturally has dimension of

time, this time window aggregates can also use similar

incremental computing method to optimize. Still, as stream data

has requirement on real-time process, the method need to be

modified in many aspects.

Win. Size 40*10 40*20 40*30 40*40 40*50 40*60 40*70

Avg(IC)

/ms
250 250 240 250 240 240 250

Max(IC)

/ms
570 560 550 550 560 550 550

Win. Size
20*20*

10

20*20*

20

20*20*

30

20*20*

40

20*20*

50

20*20*

60

Sum(IC)

/ms
910 900 910 930 940 940

Min(IC)

/ms
1410 1400 1380 1360 1360 1350

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.8
2013/11/26

 8

Reference

1) Adam Seering, Philippe Cudre-Mauroux, Samuel Madden Samuel,

and Michael Stonebraker. Efficient Versioning for Scientific Array

Databases, ICDE, 2012.

2) Alex van Ballegooij, Roberto Cornacchia, Arjen P. de Vries, Martin

Kersten. Distribution Rules for Array Database Queries. Database and

Expert Systems Applications Lecture Notes in Computer Science

Volume 3588, 2005, p 55-64

3) Emad Soroush, Magdalena Balazinska, and Daniel Wang.

ArrayStore: A Storage Manager for Complex Parallel Array Processing.

SIGMOD conference, 2011

4) Emad Soroush and Magdalena Balazinska. Time Travel in a

Scientific Array Database. International Conference on Data

Engineering (ICDE), 2013.

5) M.Stonebraker, J. Becla, D. DeWitt etc. Requirements for Science

Data Bases and SciDB. CIDR Conference, Asilomar, CA, USA, 2009

6) M. Kersten, Y. Zhang, M. Ivanova; SciQL, A query language for

science applications. EDBT/ICDT 2011 Workshop on Array Databases,

Pages 1-12

7) P. Cudre-Mauroux, H. Kimura, K.-T. Lim etc. A Demonstration of

SciDB: A Science-Oriented DBMS. VLDB'09 Volume 2, Number 1,

1534-1537, Lyon, France, 2009

8) Paul G. Brown. Overview of SciDB, Large Scale Array Storage,

Processing and Analysis. SIGMOD conference, 2010

9) Tingjian Ge , Zdonik, S. Handling Uncertain Data in Array

Database Systems. ICDE 2008. IEEE 24th International Conference,

2008

10) SciDB Development team. SciDB User Guide version 12.10, 2012.

11) Ying Zhang, Martin Kersten, Milena Ivanova; SciQL: bridging the

gap between science and relational DBMS. IDEAS 2011, p 124-133

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan

Vol.2013-DBS-158 No.8
2013/11/26

