
A bounds-driven analysis of “Skull and Roses”
cards game

Gragera Aguaza, Alonso1,a) Baffier, Jean-françois1,2,b)

Suppakitpaisarn, Vorapong3,4,c)

Abstract: In this paper, we analyze the game with large number of short states named Skull & Roses from
a computer science point of view. We describe the game in a formal way, and use that formulation to obtain
bounds and average value on the game length, state-space size, and the game tree size. As a result, we
can imply that developing an AI strategy for Skull & Roses could be interesting challenge. Since the game
learning curve is relatively short for human, the game could be another evidence to show differences between
humans and computers in game playing strength.

1. Introduction

The Skull & Roses game was created by Hervé Marly,

illustrated by Rose Kipik, and edited by lui-même in 2010.

After that, the game gains its popularity very quickly. As

the moment this paper was submitted, the rule of the game

has been officially published in German, French and English.

The game received the international price of as d’or, jeu de

l’année, Cannes 2011.

Compared to Go and Shogi, this game learning curve is

much shorter for humans. In our experiments, players who

have completed 5-6 games can enjoy this game, develop his

strategy, and have a chance to win the game over experi-

enced players.

On the other hand, Skull & Roses tends to be one of the

hardest game with partial information. The game has three

game stages with totally differentiated gameplays, but de-

cision on each one affect the progress on the others. This

number of differentiated game stages is large compared with

other classical turn-based games. However, the number of

turns on each stage is relatively small. In short, humans can

quickly enjoy the game thanks to the large number of short

stages.

In this work, we used this fragmented game structure to

develop a method to find upper bounds of the following num-

bers:

→ the state-space size

→ the search tree size

Also, we run simulations to find the average of the following

1 Graduate School of IST, The University of Tokyo
2 JFLI, CNRS; LRI, Université Paris-Sud
3 Global Research Center for Big Data Mathematics, NII
4 JST, ERATO, Kawarabayashi Large Graph Project
a) alonso@is.s.u-tokyo.ac.jp
b) jf.baffier@is.s.u-tokyo.ac.jp
c) vorapong@nii.ac.jp

numbers:

→ the game length

→ the branching factor

All numbers are relatively large compared to other games

analyzed in the literature. This fact indicates that it should

be hard to develop a competitive AI strategy for Skull &

Roses . Because of this, Skull & Roses could be another

game to show the difference between humans and computers

in game playing strength. This would give us more insight

about games with large number of short stages.

Also, it took Hervé Marly 15 years to balance the

game[3]. Investigations on the search space bounds can be

interesting to compare the balance found by a computer to

the hard balancing work of a famous board-game designer.

1.1 Notations

There are four main parameters of Skull & Roses that we

will consider in this paper: the number of players P ≥ 2,

the initial number of skulls S ≥ 1, the initial number of

roses R ≥ 1, and the number of wins (successful challenges)

required W ≥ 1.

The original game is the one with 3 6 P 6 6, R = 3,

S = 1 , W = 1 and the expansion – Skull & Roses RED –

brings P up to 12.

2. Game Rules

Below, we formally describe the rules of Skull & Roses .

Please refer to Fig. 1 as the decomposition of the different

stage of a round.

Game sequence:

(1) Play a round.

(2) If last challenger is still playing, he takes the initia-

tive.

(3) If last challenger is not playing, next player,

(challenger + 1) mod P , takes the initiative.

The 18th Game Programming Workshop 2013

- 1 -

Placement Tree Bet Tree Revelation Tree

First Turn

Fig. 1 Decomposition of a Round Tree
Each colored node represents a new associate tree; only leaves of a
Bet Tree lead to a new Revelation Tree; only leaves of the Revelation
Tree lead to a new round.
The composition of the trees is different depending if we consider
state-space or search-tree, however the decomposition follows the same
idea.

(4) Repeat until winning condition is reached.

Round sequence:

(1) Do one First turn.

(2) Until a challenge is set, every player in order do either

a Card turn or set a challenge.

(3) Every player in order do either a Bet turn or pass

(definitively), until the challenger is decided.

(4) The challenger does a Revelation turn, until a skull

is revealed or the number of roses revealed match the

maximum bet.

(5) Let wp be the number of games that Challenger p has

won so far. If the challenge is successful, increase wp

by one. Otherwise, do a Discard turn.

Starting Condition:

(1) Each player has R roses and S skulls and 0 win.

(2) Player 1 takes the initiative.

Winning condition:

(1) Winning W challenges.

(2) Be last player standing.

First turn: Each player places simultaneously a card in his

own pile.

Card turn: Place a card on the top your pile.

Bet turn: Increase the current bet.

Revelation turn:

If your own pile is not empty, turn up the top card of

your own pile. Otherwise, turn up the top card of any

player’s pile.

Discard turn:

If the revealed skull is your card, choose a card to discard

by yourself from your card. Otherwise, let the owner of

the revealed skull choose one of your card to discard ran-

domly. For both cases, the players other than you do not

know which card is removed.

Successful challenge: The challenge is successful, if the chal-

lenger revealed a number of roses equal to the bet without

revealing a skull.

Unsuccessful challenge: The challenge is unsuccessful, if the

challenger revealed a skull in the process of the challenge.

3. Bounds

In this section, we will derive upper bounds for state-

space size and game-tree size. As there are a large number

of variables to be considered in this analysis, we group those

variables into four groups as follows:

• Round Variables

– g - the next player to make a decision

– sp, rp - the number of skulls and roses remained at

Player p on the beginning of this round

– wp - the number of games that Player p has won so

far.

• Placement Variables

– dp ∈ {s, r}∗ - the current placement of Player p.

• Betting Variables

– bp ∈ {t, f} - the current state of Player p for this

round. bp = t if Player p has already decided to pass

(not to bet anymore in this round). bp = f otherwise.

– m - the current maximum bet

• Revelation Variables

– vp - the number of cards of Player p that have been

revealed

3.1 State-Space Upper Bound

It is obvious that the variables presented previously in

this section are enough to describe the state space of our

game. Hence, we know that the state space size cannot be

larger than the size of the domain sets of those variables.

In this subsection, our derivation will be focused on the up-

per bound of that domain size for each variable group. The

bound is also the upper bound for the size of state space.

Our results in this subsection can be summarized as follows:

Round Variables : P [(S + 1)(R + 1)(W + 1)]P

Placement Variables : (R + S)

[
2

(
S + R

S

)]P
Betting Variables : P 2(R + S)2P

Revelation Variables : (R + 2) + (R + 1)P−1

Combining them to form the global upper-bound, we get:

State Space Size ≤ P 3(R + S)2 ·
[
R + 2 + (R + 1)P−1

]
×

[
4(S + 1)2(R + 1)(W + 1)

(
S + R

S

)]P
.

Lemma 1. The domain size of round variables cannot be

larger than P [(S + 1)(R + 1)(W + 1)]P .

Proof. This lemma is obvious since we know that g ∈
{1, . . . , P}, sp ∈ {0, 1, . . . , S}, rp ∈ {0, 1, . . . , R}, and

wp ∈ {0, 1, . . . ,W}.

The 18th Game Programming Workshop 2013

- 2 -

Lemma 2. The domain size of placement variables cannot

be larger than (R + S)
[
2
(
S+R
S

)]P
.

Proof. Assume that there are sp skulls and rp roses re-

mained at player p. Let M(`) be the number of methods

to place ` cards from those skulls and roses. We know that

M(`) ≤
(
sp+rp

rp

)
≤
(
S+R
R

)
.

Let `p be the number of cards placed by Player p, and

`∗ = minp `p. By the game rule, we know that the number

of card placed by each player cannot be different by more

than one, i.e. `∗ ≤ `p ≤ `∗ + 1 for all p. Hence, the place-

ment for each player is at most M(`∗)+M(`∗+1) ≤ 2
(
S+R
R

)
.

The number of placements possible for all player is at most

(M(`∗) + M(`∗ + 1))P assuming that the minimum num-

ber of cards among all players is `∗. Thus, the number

of placement is at most
∑S+R−1

`∗=0 (M(`∗) + M(`∗ + 1))P ≤

(S + R)
[
2
(
S+R
R

)]P
.

Lemma 3. The domain size of betting variables cannot be

larger than P (R + S)2P .

Proof. m cannot be larger than the number of cards held

by all player at the beginning, P (R+S), and bp ∈ {t, f} for

all Player p. And g ∈ {1, ..., p} for the player to make the

decision. Thus, the domain size is at most P 2(R+S)2P .

Lemma 4. The domain size of revelation variables cannot

be larger than (R + 2) + (R + 1)P−1

Proof. Let Player p∗ be the one who won the bet. By the

game rule, he has to reveal all of his cards before begin re-

vealing the others. Let `p∗ be the number of cards placed

by Player p∗. If vp∗ 6= `p∗ , vp must be 0 for all p 6= p′. vp∗

can be a number between 0 and R + 1. Hence, our domain

size is R + 2 in this case.

When vp∗ = `p∗ , the other vp can be larger than 0. The

revelation step stops when a skull is revealed, so the number

of cards of Player p 6= p∗ revealed cannot be larger than R,

i.e. vp ∈ {0, 1, . . . , R} for p 6= p∗. For this case, our domain

size is at most (R + 1)P−1.

By summing up the results from both cases, we know

that the domain size cannot be larger than (R + 2) + (R +

1)P−1.

3.2 Game Tree Size Upper Bound

Our analysis for the game tree size has several steps, which

can be stated as follows:

(1) We find the upper bound of the number of rounds re-

quired to finish the game. As shown in Lemma 5,

we can show that the number cannot be larger than

R = (R + S + W)P .

(2) In one round, we find the upper bound for the number

of nodes in our game tree that is in placement step.

In Lemma 6, we found that the number is at most

P = 2(R+S)+1.

(3) Every nodes in the placement step have two types of

children. Player can continue placing their cards or

start the betting step. We will consider the decision

to bet as a single node, which is a child of all nodes in

the placement step. We consider that node as a root

of the subtree that has a different structure from the

tree for the placement step. We call that subtree as

betting tree, and we show that the number of leaves of

the subtree is at most B = P (R+S)P+1 in Lemma 7.

(4) The descendant of every leaves of the betting tree are

nodes for the revelation step. We call the subtree of

revelation nodes for each leaves of betting tree as reve-

lation tree. We show that the number of leaves of this

subtree at most V = (P − 1)R(P−1)+1 in Lemma 8.

(5) We know that the number of leaves for our game tree

is at most PBV for one round. Those leaves will be a

parent of the beginning of the next round. As we know

that there will be at most R rounds played, the number

of leaves of our game tree is at most PBVR.

Lemma 5. The maximum number of rounds before the

game ends is at most (R + S + W)P .

Proof. On the beginning of the game, sp = S, rp =

R, W − wp = W for all Player p. In every round,∑
p (sp + rp + (W − wp)) decreases by 1. The game stops

before the number drops to 0. Hence, there are at most

(R + S + W)P rounds played.

Lemma 6. For each round, the number of nodes in place-

ment stage cannot be larger than 2(R+S)+1.

Proof. In each step, current player can choose to place a

skull or rose. Each placement node has two placement chil-

dren. Hence, a tree of placement nodes in one round is a

binary tree. Because the depth of that binary tree is at most

R + S, the number of nodes is at most 2(R+S)+1.

Lemma 7. The number of leaves for each bet tree is at

most P (R+S)P+1.

Proof. Consider a node that represents a state that q play-

ers has not been passed and t cards remained for betting,

i.e. q = ||{p|bp = f}|| and t =
∑

p ||dp||−m. Let B(q, t) be

the number of leaves of a subtree rooted at that node. We

know that

B(q, t) =

s−1∑
s=0

B(s, t) + B(q, t− 1)

for any q ≤ 2 and q ≤ 1, and B(q, t) = 1 otherwise.∑s−1
s=0 B(s, t) represents the case when the player decides

to bluff with higher bet, and B(q, t− 1) represents the case

when the player decides to pass. We note that the player

who turns the game into the betting step cannot pass on his

first turn. Therefore, the number of leaves we have in our

betting tree is

B′(q, t) =

s−1∑
s=0

B(s, t),

The 18th Game Programming Workshop 2013

- 3 -

Table 1 The upper bound of state-space size and tree size we get
from our analysis for each game parameter we can have
in Skull & Roses RED

(P, S,R,W) State-space size Tree size

(2, 1, 3, 2) 109 1066

(3, 1, 3, 2) 1012 10226

(4, 1, 3, 2) 1018 10506

(5, 1, 3, 2) 1024 10919

(6, 1, 3, 2) 1025 101475

(7, 1, 3, 2) 1028 102181

(8, 1, 3, 2) 1031 103043

(9, 1, 3, 2) 1034 104068

(10, 1, 3, 2) 1037 105262

(11, 1, 3, 2) 1040 106628

(12, 1, 3, 2) 1043 108169

when t of the number of players remained in this round, and

q is the number of cards placed during the placement step.

By induction, we can show that

B′(q, t) ≤ qt+1 ≤ P (R+S)P+1.

Lemma 8. The number of leaves for each revelation tree

is at most (P − 1)R(P−1)+1.

Proof. The player who won the bet can choose to reveal a

card from the other P − 1 players. As there are at most R

roses placed for each player, the player cannot pick more

than R(P − 1) + 1 cards. Hence, the revelation tree is

an (R(P − 1) + 1)-depth tree in which each node has at

most P − 1 children. The number of leaves is at most

(P − 1)R(P−1)+1.

In Table 1, we calculate the upper bound we get for each

game parameter we can have in Skull & Roses RED.

4. Simulations Results

Besides the analysis in the previous section, we also per-

form a simulation to find an average branching factor and

game length. For the game length, we run 107 games with

the assumption that players make decision randomly. The

possibility that players select each of their choices is set to be

uniform. For the average branching factor, we also perform

107 uniformly random simulations. We collect the number

of children of each node we visit in those simulations, and

take an average value.

The simulation results are shown in Table 2. In the same

table, we also show the comparison between Connect Four,

Backgammon, Chess, Shogi, Go, and Skull & Roses . It can

be obviously seen in the table that Skull & Roses can be

competitive with the top games in every factors.

5. Conclusion and Future Works

In this paper, we perform both the analysis and simula-

tion to show that Skull & Roses is one difficult game for AI

strategy developer. Beside the results that Skull & Roses

Table 2 Skull & Roses results compared with Connect Four,
Backgamon, Chess, Shogi, Go: A Skull & Roses game,
S&R(P, S,R,W), is defined by a quadruplet of the play-
ers, starting skulls, starting roses, and required chal-
lenges

Game Game Branching State- Game

length factor space Tree

Connect Four [1], [7] 36 4 1013 1021

S&R(3, 1, 3, 2) 63 2 1012 10226

Backgammon [5] 55 250 1020 10144

S&R(6, 1, 3, 2) 434 16 1025 101475

S&R(9, 1, 3, 2) 1304 43 1034 104068

S&R(12, 1, 3, 2) 2858 149 1043 108169

Chess [4] 80 35 1047 10123

Shogi [2], [8] 115 92 1071 10226

Go [1], [6] 150 250 10171 10360

is significantly complicated for AI strategy, we know from

this work that those analysis are significantly harder for the

game with large number of short game states, compared to

the other games analyzed before. The simulation is also

very complicated, and developing monte-carlo-based strat-

egy could be very challenging task.

Besides the case when P, S,R,W can be any natural num-

ber, we are also interested in more specific case when some

of those variables are set to be a small constant. Specifically,

we are improving our upper bound for the case when S = 1,

R = 3, W = 2 as in Skull & Roses RED. We are also look-

ing for other evidences to show that developing competitive

AI strategy for Skull & Roses is difficult.

Acknowledgements

The authors would like to thank Mr. Yuki Kawata, Mr.

Chihiro Komaki, Mr. Frédéric Maillasson, Prof. Hiroshi

Imai, and anonymous reviewers for giving us several useful

comments during the course of this research.

References

[1] Allis, V. L.: Searching for solutions in games and artficial
intelligence, PhD Thesis, University of Limburg, Maastricht
(1994).

[2] Iida, H., Sakuta, M. and Rollason, J.: Computer shogi, Arti-
ficial Intelligence, Vol. 134, No. 1-2, pp. 121–144 (2002).

[3] Marly, H.: Rules of Skull & Roses, (online), available from
〈http://www.skull-and-roses.com/pdf/Skull rules Us.pdf〉
(accessed 2013-09-23).

[4] Shannon, C. E.: Programming a computer for playing chess,
Philos. Mag. (7), Vol. 41, No. 314, pp. 256–275 (1950).

[5] Tesauro, G.: Practical Issues in Temporal Difference Learn-
ing, Machine Learning, pp. 257–277 (1992).

[6] Tromp, J. and Farneback, G.: Combinatorics of Go, Pro-
ceedings of 5th International Conference on Computer and
Games, Torino, Italy (2006).

[7] Tromp, J.: John’s connect four playground, (online), available
from 〈http://homepages.cwi.nl/ tromp/c4/c4.html〉 (accessed
2013-09-23).

[8] Yen, S.-J., Chen, J.-C., Yang, T.-N. and Hsu, S.-C.: Com-
puter Chinese Chess, ICGA Journal, Vol. 27, No. 1, pp. 3–18
(2004).

The 18th Game Programming Workshop 2013

- 4 -

