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Abstract: This paper describes the first gait verification system for criminal investigation using footages from surveil-
lance cameras. The system is designed so that the criminal investigators as non-specialists on computer vision-based
gait verification can, independently, use it to verify unknown perpetrators as suspects or ex-convicts in criminal inves-
tigations. Each step of the gait verification process is proceeded by interactive operation on a graphics-user interface.
Eventually, for each pair of compared subjects selected by a user, the system outputs a posterior probability on a verifi-
cation result, which indicates that compared subjects are the same, with the consideration of various circumstances of
the subjects such as the size, frame-rate, observation views, and clothing of subjects. One gait-specialist and ten non-
gait-specialists participated in operation tests of the system using five different datasets with various types of scenes,
each of which contained two or three verification sets. It was shown that all the non-gait-specialists, as well as the
gait-specialist, could obtain reasonable verification results for almost all of the verification sets.
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1. Introduction

Surveillance footage-based person verification techniques are
beginning to play an important role in criminal investigation with
the significant increase in the use of surveillance cameras. In par-
ticular, gait, as a behavioral biometric cue, has attracted much at-
tention in recent years because of the difficulty in disguising it and
the ability to discriminate subjects at a distance without requir-
ing their cooperation. In fact, many gait recognition techniques
have been developed [1], [2], [3], [4], [5] in the computer vision
community. In addition, gait verification from closed-circuit tele-
vision (CCTV) images has been admitted as criminal evidence
against a burglar in UK courts [6], and gait evidence has also been
used as a cue for criminal investigation in Japan.

One of the primary tasks of gait recognition from surveillance
footages in criminal investigation [7] is to verify the unknown
perpetrator (criminal person) as a suspect or someone with a crim-
inal record in a quantitative way by analyzing the gait computa-
tionally. The point is that the verification result influences much
on the strategic direction of criminal investigation, and further-
more, it could be judged as a criminal evidence at subsequent
stage, court. Therefore, the verification result should have suffi-
cient properness and validity. To obtain such verification result,
the analyst (person in charge of verification) should make sure
that the processed results in each step of gait verification (e.g.,
subject detection, tracking, segmentation, and feature extraction)
contain no unintended errors.

From this point of view, it is preferable to obtain the verifi-
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cation result by an interactive procedure composed of automatic
and manual processes, so that any error in the results can be cor-
rected by manual checking and judgment, rather than using fully
automatic software *1.

To complete such a procedure, specialist knowledge on
computer-vision-based gait analysis is required, which most
criminal investigators (e.g., police officers and intelligence
agency) do not possess, because it is a relatively new area of
study [8] and has not yet been in common use like fingerprint
and face analysis. Moreover, there is no packaged software tool
which carefully assists the task. Consequently, the criminal in-
vestigators need to hand the task to gait-specialists such as the
computer vision researchers specializing in gait analysis *2. An
example of the work flow involved in gait verification is illus-
trated in Fig. 1.

While requesting help from gait-specialists is to some extent a
reasonable solution, it is inefficient in time and cost for use in ev-
ery criminal case. In particular, time is often crucial for the initial
investigation. Therefore, it is desirable for criminal investigators
to execute gait verification by themselves in a timely manner.

With this motivation, we have constructed a gait verification
system as an analytical tool for criminal investigation to replace
the work of the gait-specialist as shown in Fig. 1. The system
is designed specifically for non-gait-specialists such as criminal
investigators, so that they can obtain gait verification results by
simply learning the system operation following the instruction
manual. To the best of our knowledge, this system is the first gait
verification system established for criminal investigation, except
for unpublished private systems.

Although there are various scenarios for perpetrator verifica-

*1 There is no algorithm which can guarantee perfect results all the time.
*2 In fact, Japanese police have requested our laboratory gait verification

services at least once a month over the last few years.
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Fig. 1 An example of the work flow of gait verification and the aim of the constructed system. First, the
criminal investigators acquire footages of a perpetrator and a suspect. They offer the gait verifica-
tion task to a gait-specialist such as computer vision-based gait researcher, who then verifies the
perpetrator against the suspect based on gait analysis. Finally, the gait-specialist reports the re-
sults to the criminal investigators, whose next action in the criminal investigation is based on these
results. The replacement of the gait-specialist in this work flow is the purpose of the constructed
system.

tion, we focus on the following two scenarios,
( 1 ) One-to-one verification: individualized verification against

the specified suspects in other surveillance footages,
( 2 ) One-to-many verification: batch verification against people

registered on the databases of criminal records in the crimi-
nal intelligence agency.

Note that one-to-many verification essentially covers one-to-one
verification from a technical view point, that is, a one-to-many
verification procedure is achieved by a batch process of one-to-
one verification. We consider the two scenarios separately for
convenience in practical applications.

The system provides two types of verification functions associ-
ated with the two scenarios and supports the whole process of gait
verification, from subject selection to gait feature matching. The
input and output of the constructed system are shown in Fig. 2
and the key characteristics of the system are listed as follows.
• Usability intended for the non-gait-specialist

The system has a graphics-user interface (GUI) so that a
user, who has no specialist knowledge of computer vision-
based gait analysis but is computer literate, can proceed
through each process of gait verification interactively. In
addition, several automatic processing functions are imple-
mented to reduce the burden of manual operation.

• Professional gait analysis
The Gait Energy Image (GEI) [1], which is the most widely
used and has high discrimination capability [9], is used as
the gait feature for verification. In addition, a view transfor-
mation model [2], [10] enables verification between subjects
captured from different observation views.

• Objective output
The verification result is output in the form of the posterior
probability of the distance score between compared gait fea-
tures. In the one-to-one verification function, a pair of sub-
jects (a probe subject and a gallery subject) is matched and
a corresponding posterior probability is output. In the one-
to-many verification, a probe subject is matched to all the

Fig. 2 Data flow of the constructed system.

gallery subjects in the system database, and a list of the can-
didates with the highest posterior probabilities is output in
descending order. Note that the system simply outputs these
objective values, and never makes any judgment.

• Applicability to various circumstances
The circumstances of the compared subjects are often dif-
ferent (e.g., image resolution, captured frame rate, obser-
vation view, clothing, and baggage). It is known that the
performance of gait recognition is influenced by these cir-
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cumstances [9], [11], [12]. Therefore, in order to com-
pute a reliable posterior probability, it should be computed
based on circumstance-dependent probability density func-
tions (PDFs) of distance score. In the constructed sys-
tem, the circumstance-dependent PDFs are arranged by
means of multi-view gait dataset, and the system computes a
circumstance-dependent posterior probability as an output.

A prime contribution of this work is that it is the first construc-
tion of a system as a packaged tool for gait verification in criminal
investigation, and it is not a proposal for a novel gait verification
algorithm in itself. Moreover, it should be noted that the system is
simply a decision-support system for criminal investigators (non-
gait-specialists), and is not a decision (judgment) making system.

In fact, this system is a major upgrade of the previously re-
ported system [13] and the following extensions widen its range
of applications.
• Cross-view verification based on the view transformation

model [2], [10]: The previous version only supports the
same-view verification (observation views of an input pair
of subjects must be the same). On the other hand, the ob-
servation view of surveillance footage is varied on a crime
by crime, and thus the observation views of an input pair
of subjects are frequently different in general. As a result,
the application range of the previous system is significantly
limited in criminal investigation. Therefore, we introduce
the view transformation model-based gait feature matching
framework to realize the cross-view verification which ex-
tremely enhances the practical value of the system.

• One-to-many verification function: While we consider the
two verification scenarios as described above, the previous
system only supports the one-to-one verification function.
From the view point of system usability, the one-to-many
verification function as another independent function from
one-to-one verification is preferable to be developed (e.g.,
it seems to be nonsense to use one-to-one verification func-
tion repetitively for one-to-many verification when dozens
of pairs are verified at one time). Therefore, we added the
one-to-many verification function as another module.

The outline of this paper is as follows. We summarize related
work in Section 2, and describe the gait verification framework
in Section 3. The details of the constructed system are then de-
scribed in Section 4 and the effectiveness of the system is evalu-
ated via operation tests carried out by eleven users in Section 5.
The discussion is presented in Section 6. Finally, we give our
conclusions in Section 7.

2. Related Work

2.1 Video-based Gait Analysis
Video-based gait analysis has been widely studied as an ap-

proach to acquiring soft biometrics such as age [14], [15] and
gender [16] as well as hard biometrics, namely, the identification
of a person using model-based approaches [17], [18], [19], [20]
or appearance-based approaches [1], [2], [3], [4], [5], [21], [22].

Although model-based approaches have several advantages
over appearance-based ones (e.g., view invariance) and there ex-
ist some model-based gait analysis services [23], [24], [25], these

often require good quality images to calculate model parameters
with high accuracy from a gait sequence, which may be difficult
to obtain from many surveillance cameras.

On the other hand, there has been a recent trend towards
appearance-based approaches because of low computational cost
and robustness to noise, and in general a tendency to outperform
model-based approaches. Of the appearance-based approaches,
Iwama et al. [9] reported that the GEI [1], also known as the av-
eraged silhouette [21], achieved the best performance given the
large population gait database [26]. In addition, Matovski et
al. [27] reported that the GEI-based gait recognition performance
was almost unchanged after a year long time lapse, indicating the
real possibility of using gait as a tool for criminal investigation.

2.2 Biometric System for Criminal Investigation
The relationship or difference between biometrics and foren-

sics is discussed in Refs. [28] and [29].
Many biometric modalities have been used in crime investiga-

tions. As early as 1881, Bertillon proposed to identify reoffenders
based on anthropological methods [30]. In his method, 11 anthro-
pometric characteristics were measured, and used together with a
description of the iris color for identification.

Faulds proposed in 1880 the use of fingerprints for the purpose
of investigative identification [31]. Around the same time, Her-
schel used fingerprints to identify individuals, and undertook a
study on the permanence of the fingerprints [32]. After that Gal-
ton evaluated the permanence and uniqueness of fingerprints, and
proposed classification methods for fingerprints at the end of the
19th century [33]. Henry proposed a fingerprint classification sys-
tem [34]. Since then, fingerprints have been employed as useful
marks of identity and in automated systems [35].

Nowadays, deoxyribonucleic acid (DNA) is frequently
screened for at crime scenes for identification purposes [36]
because DNA can be obtained from biological stains of blood
samples, saliva, and hair follicles. Handwriting-based methods
have also been proposed [37], [38], [39], because ransom letters
or threatening letters associated with blackmail can include
handwritten characters that can provide clues to identifying
perpetrators. Ear [40], [41] and teeth or bitemarks [42], [43] are
also useful in crime investigations.

Digital traces including recordings from phone-tapping and
surveillance cameras are also available, and voice or speech [44],
[45], [46], face [47], [48], [49], [50], and gait recognition [7],
[51], [52] can be used in crime investigation analysis.

As mentioned above, many biometric modalities have been
used for criminal investigation, and various systems for person
verification in criminal investigation that use modalities including
fingerprints, face, speech, handwriting, and ear are reported (e.g.,
[35], [38], [41], [53], [54]). To the best of our knowledge, no such
verification system based on gait has been reported. Although a
type of gait identification system [55] for visual surveillance has
been developed, it is unsuitable for use in criminal investigation
mainly because, (i) it does not support interactive functions such
as the manual correction of errors in automatically processed re-
sults, (ii) it cannot be applied to the various circumstances of sub-
jects (as listed in Section 1).
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3. Gait Verification Framework

In this section, we describe a framework for gait verification
between a pair of subjects (probe and gallery subjects), imple-
mented in the constructed system. In the verification process, two
subjects are compared using their gait features, and the result is
represented as a posterior probability, which indicates the extent
to which they could be the same subject.

3.1 Gait Feature
The GEI [1] is used as the gait feature, because it is the most

widely used owing to its high discrimination performance as re-
ported in Ref. [9]. The GEI is obtained by averaging silhouettes
over a gait cycle and its process is illustrated in Fig. 3.

The GEI is created as following procedures. First, silhouette
of a target subject is extracted as foreground in each frame of a
given gait sequence. Next, registration and size-normalization are
carried out for the extracted silhouette sequence. In this step, the
height and horizontal center of the silhouette regions are obtained
for each frame, and silhouette regions are scaled so that the height
is just pre-defined size, while maintaining the aspect ratio (e.g.,
88 by 128 pixels). Then, the gait period M is calculated based on
the Normalized Auto Correlation (NAC) of the size-normalized
silhouette sequence (see the work of Ref. [2] for further details
about gait period estimation). Finally, a GEI is obtained by aver-
aging size-normalized silhouettes over a gait period as,

GEI(x, y)k =
1
M

M+k∑

t=k

I(x, y, t), (1)

where k is the first frame identifier in GEI calculation and I(x, y, t)
is the silhouette value (0: background, 1: foreground) at the posi-
tion (x, y) at the t-th frame. The creation process is illustrated in
Fig. 3.

3.2 Gait Feature Matching
For a given gait sequence composed of N frames in which the

gait period is M frames (M ≤ N), N −M+1 different sections
of the gait period can be found by shifting the initial frames, and
we compute the GEI for each section. We then let Lp and Lg be
the numbers of sections in the probe and gallery sequences and
xp,k and xg,k are the GEIs of probe and gallery subjects at the k-th
section, a feature distance D between probe and gallery subjects
is defined as,

D = min
i, j
‖ xp,i − xg, j ‖2, (2)

where i (1 ≤ i ≤ Lp) and j (1 ≤ j ≤ Lg) are the section identifiers
in the probe and gallery sequences, and ‖ · ‖2 is the Euclidean
distance.

Fig. 3 GEI creation process.

3.2.1 View and Clothing-invariant Matching
When the circumstances of the compared subjects differ, the

differences may affect the discrimination capability of the gait
feature. In particular, the differences in the observation view and
clothing (or baggage) seriously degrade the discrimination capa-
bility as reported in Refs. [11] and [56]. Furthermore, such dif-
ferences might spoil the verification validity in essential.

Therefore, we incorporate view-invariant gait feature matching
using a view transformation model [2] (VTM), which enables us
to transform a gait feature with one view into that with another
view. Figure 4 illustrates the VTM-based gait feature matching.

In this scheme, the VTMs are trained in advance for all the
pairs of predefined discrete observation views by GEIs of non-
target training subjects (e.g., volunteers such as lab. members)
with the observation views in training stage. More specifically,
view transformation (mapping) matrix A(θi, θ j) of gait feature
from view θi to view θ j is trained for all the combinations (θi, θ j).

In matching stage, an input pair of GEIs of target subjects
(e.g., perpetrator and suspect) with different observation views is
matched after view transformation by A(θi, θ j), in which one GEI
is transformed so that its observation view becomes the same as
that of the other GEI. In Fig. 4, for example, the gallery GEI
xg,θ2 with observation view θ2 is transformed by VTM (matrix)
A(θ2, θk) to the GEI x̂g,θk (=A(θ2, θk)xg,θ2 ) with observation view
θk which is the observation view of probe GEI (see the work of
Ref. [2] for further detail procedures).

Also, we introduce the concept of part-based gait feature
matching [56] via spatial feature masking for clothing-invariant
matching. An example of feature masked matching is illustrated
in Fig. 6 (P) and (Q).

Putting it all together, the GEI x used for the distance calcu-
lation is rewritten as x′, which is the view-transformed and spa-
tially masked GEI. Of course, for each of the compared subjects,
specifications for the view and mask are needed. The detailed
processes of such specifications in this system are described in

Fig. 4 VTM-based gait feature matching.
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Table 1 Definition of factors.

Factor Variations

Size of the GEI 22 by 32 [pixels] and 44 by 64 [pixels]
Frame rate 5, 7.5, 15, 30 [fps]
Observation view 12 azimuth views times 2 tilt angles (Fig. 9 shows the sample image from each angle)
Feature mask 11 by 16 [blocks] (as shown in Fig. 11 (a))

Section 4.

3.3 Circumstance-dependent Posterior Probability
After the calculation of a feature distance, the distance score is

mapped to a posterior probability of the same person with con-
sideration of the circumstances (e.g., camera setting, observation
view, and clothing). Let Ip and Ig be information describing
the circumstances of the probe and gallery subjects, and then a
circumstance-dependent posterior probability for a given distance
score D is calculated as:

P(X=1|D; Ip, Ig)=
P(D|X=1; Ip, Ig)P(X=1)

ΣX P(D|X; Ip, Ig)P(X)
, (3)

where X is a random variable which represents whether the com-
pared subjects are the same (X=1) or different (X=0).
3.3.1 Definition of Circumstances

To calculate the posterior probability shown in Eq. (3), a
circumstance-dependent probability density function (PDF) of
the distance score in each class (P(D|X; Ip, Ig), X ∈ {0, 1}) needs
to be trained *3. For example, let us focus on the observation view
as a circumstance. If we discretely approximate the azimuth view
at a relatively fine level, while the approximation error could be
sufficiently small, it explosively increases the required number of
PDFs to cover all the combinations of the probe and gallery views
(e.g., 1 [deg] interval leads s to 64,980 combinations (360C2 for
cross view and 360 for the same view), which also means the ex-
plosive increase of the training gait features for the combinations.
On the other hand, the combination number becomes smaller if
we consider more coarsely-discretized observation views. In such
a case, however, the approximation error becomes larger and the
validity of posterior probability is degraded.

Therefore, the circumstance should be defined carefully and
appropriately by considering the tradeoff between the validity
of the calculated posterior probability and the availability of the
training data.

Taking into account the above discussion, we focus on four fac-
tors, the size of the subject in the captured image, captured frame
rate, observation view, and feature mask region, as information
that describes the circumstances that affect the PDFs. For the size
of the subject, we consider the normalized size of the subject’s
silhouette for GEI creation, that is, the (template) size of the GEI.
In addition, we quantize the variation of each factor as shown in
the Table 1. Note that we consider the feature mask as a block-
wise mask as shown in Fig. 11 (a). Consequently, we define these
factors as circumstances and calculate the factor-dependent PDFs
as circumstance-dependent PDFs.

*3 Prior probabilities P(X) are also set for calculating the posterior proba-
bility. We set neutral probabilities to P(X) on the basis of the discussion
in Ref. [57] for each pair of circumstances. Therefore, P(X = 1) and
P(X=0) are set to 0.5 in this verification framework.

Note that these circumstances should be specified for each ver-
ified pair of subjects in the system. The details of these specifica-
tions in the system’s operation are described in Section. 4.

3.4 Training of VTM and Circumstance-dependent PDF
3.4.1 Training Database

We used a multi-view gait database comprising two datasets *4,
one for training the VTMs and the other for training the
circumstance-dependent PDFs. Both datasets were composed of
sets of size-normalized silhouette sequences of normal walking
on the treadmill captured by 24 cameras (12 azimuth views times
2 tilt angles), each of which corresponds to each observation view
defined as the factor of circumstances. The normalized size was
88 by 128 pixels and the captured frame rate was 60 fps. The for-
mer dataset included 114 sequences of 82 subjects (one or two
sequences per subject), and the latter included 206 sequences of
103 subjects (two sequences per subject).

We then generated additional silhouette sequences with dif-
ferent sizes (22 by 32 and 44 by 64 pixels) and different frame
rates (5, 7.5, 15, and 30 fps) by resizing and resampling the orig-
inal size-normalized silhouette sequences in both datasets, which
were regarded as the extended datasets.
3.4.2 Training of VTM

By considering the sizes of the GEI and the frame rates, the
VTMs about the GEI between all possible combinations of the
observation views were trained using the extended dataset. Note
that the trained VTMs were dependent on the frame rates, the
sizes of the GEI, and observation views.
3.4.3 Training of Circumstance-dependent PDF

The distributions of distance scores for all combinations of the
four factors were calculated using the extended dataset, in each
of which two sequences were arranged for each subject, one as a
gallery sequence and the other as a probe sequence. The distance
score is calculated for each pair of gallery and probe sequences.
The corresponding PDF is then estimated by non-parametric ker-
nel density estimation using a Gaussian kernel.

4. Gait Verification System

4.1 Overview
The system is designed to be used as a tool for criminal investi-

gators (non-gait-specialists), providing gait verification between
probe and gallery subjects registered in the system from their in-
put image sequences. Note that for descriptive purposes we con-
sider the perpetrators as probe subjects and the suspects and those
with previous convictions as gallery subjects in this system.

The system is composed of a subject database and four mod-
ules: registration, silhouette creation, one-to-one verification, and
one-to-many verification modules. The data flow of the system

*4 These are the extended datasets from those introduced in Ref. [58].
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Fig. 5 Interface dialogs for the main menu, registration module, and silhouette creation module. (A) im-
age in input sequence, (B) frame no. of the displayed image, (C) control panel for browsing image
sequence, (D) cropped image of the subject, (E) subject’s contour (red line) based on the silhouette
created by the user.

Table 2 Typical functions and processing modes in each module.

Function Processing mode

Registration module
Image sequence input Manual
Subject selection Semi-automatic (interactive)
Subject registration Manual

Silhouette creation module
Silhouette creation Semi-automatic (interactive)
Silhouette save Manual

One-to-one/many verification module
Feature extraction Automatic
Feature masking Manual
Probability calculation Automatic

Fig. 6 Interface dialog for the one-to-one verification module. (A) ID of a
selected probe subject, (B) cropped movie of the probe subject, (C)
GEI of the probe subject, (D) button for the GEI creation of the probe
subject, (E) observation view of the probe subject, (F) ID of a se-
lected gallery subject, (G) cropped movie of the gallery subject, (H)
GEI of the gallery subject, (I) button for GEI creation of the gallery
subject, (J) observation view of the gallery subject, (K) mask region
(black region corresponds to the mask), (L) button for opening the
mask edit dialog shown in Fig. 11 (b), (M) size of the GEI, (N) run
button for verification, (O) posterior probability, (P) probe GEI with
mask (and view transformation), (Q) gallery GEI with mask (and
view transformation), (R) image of the GEI difference, (S) PDFs of
the current circumstances.

is summarized in Fig. 2, and typical functions for each module
are listed in Table 2. Screenshot images of the interface dialogs
for the four modules are shown in Fig. 5 (b) and (c), Fig. 6, and
Fig. 7. These dialogs are started from a main menu dialog shown

Fig. 7 Interface dialog for the one-to-many verification module. (A) ID of
a selected probe subject, (B) cropped movie of the probe subject, (C)
GEI of the probe subject, (D) observation view of the probe subject,
(E) run button for verification, (F) ranking of posterior probabilities,
(G) forward-reverse button of the rank list (rank 1 to 5 and rank 6
to 10), (H) IDs of the gallery subjects, (I) cropped movies of the
gallery subjects, (J) GEIs of the gallery subjects, (K) images of the
GEI difference, (L) posterior probabilities.

in Fig. 5 (a).

4.2 Processing Modes of Functions
As mentioned in Section 1, each step in the verification proce-

dure for criminal investigation should be checked and judged by
the user, because the verification result is required to have suffi-
cient validity as criminal evidence. In addition, in some cases,
manual operations are essential or more effective than automatic
operations. For example, in the presence of multiple subjects in a
footage, a target subject (e.g., perpetrator, suspect), can be speci-
fied only by a user (criminal investigator) who knows which is the
target. Besides, in the case of the de-noising process in silhouette
creation, interactive de-noising is often more effective than full-
automatic de-noising. That is, if the user can manually specifies
the noise region as a region of interest (ROI), the automatic de-
noising process does not have to be applied to a whole image, but
just applied to the ROI without affecting the remaining region of
the image.

Consequently, we carefully set the processing modes for each
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Fig. 9 View selection dialog. From these displayed views, a user selects the most similar view to the
input view.

Fig. 8 Input dialog of the subject’s information for registration. (A) ID,
(B) subject’s type, (C) frame rate, (D) button for opening the view
selection dialog shown in Fig. 9, (E) run button for registration.

function in terms of system usability, efficiency, and validity: au-
tomatic, semi-automatic (interactive), and manual, as shown in
Table 2.

4.3 User-system Interaction
This section briefly describes how a user interacts with the con-

structed system to complete the gait verification.
4.3.1 Registration Module

In this module, a user registers a target subject in the system.
First, a user inputs the image sequence including a target subject
and the first image of the sequence is displayed on the dialog as
shown in Fig. 5 (A). The user then sets a section of the normal
walking (stable walking interval) of the subject and a bounding
box in each frame of the section. In the setting of a normal walk-
ing section, the user specifies the first and the last frames by visual
checking. In the setting of the bounding boxes, the user sets the
bounding boxes at the first and the last frames of the section man-
ually (a rectangle drawing by mouse), and the bounding boxes at
the remaining frames can then be set by an automatic interpola-
tion function.

The user then registers the selected subject in the subject’s
database with information of the ID, type (probe, gallery or back-
ground *5), captured frame rate, and observation view. An input
dialog of this information is shown in Fig. 8. Note that the frame

*5 Typically, the type of background is the image sequence including no
moving object and is used for silhouette creation.

Fig. 10 Examples of the processing results on the silhouette creation dialog.
(a) result of manual painting, (b) result of background subtraction,
(c) result of graph-cut-based segmentation, (d) perfect silhouette af-
ter finalizing by manual painting.

rate is selected from the candidates indicated in the combo box
shown in Fig. 8 (C), and the observation view is specified by se-
lecting the most similar view to the input view from a view se-
lection dialog *6 shown in Fig. 9, which is opened from a button
shown in Fig. 8 (D).
4.3.2 Silhouette Creation Module

In this module, a user creates a silhouette sequence of the reg-
istered subject. First, a user selects a registered subject from the
subject’s database, and the subject’s cropped image (the cropped
region is based on the bounding box set in the registration mod-
ule) is displayed on the dialog as shown in Fig. 5 (D). In this mod-
ule, the subject’s silhouette is shown to the user as the subject’s
contour line (red line) overlaid on the corresponding original im-
age as shown in Fig. 5 (E).

The user creates the subject’s silhouette for each frame mainly
by using the mouse-based manual painting function and auto-
matic functions of background subtraction and graph-cut-based
segmentation [59]. The example on processing the results of these
functions is shown in Fig. 10 (a), (b), and (c). In addition, some
overall automatic functions such as area filtering, dilation, and
erosion functions support the silhouette creation. The user can in-
teractively adjust some parameters for each function (e.g., thresh-
old for background subtraction) via the parameter adjust dialog.

One useful routine is as follows. First, a user runs the back-
ground subtraction function and then executes the graph-cut-
based segmentation using the background subtraction results as
the subject’s seed region. Finally, the user checks all the silhou-

*6 Technically, an automatic view estimation is possible if the camera is
correctly calibrated. However, the calibration requires specialist knowl-
edge and hence it is almost impossible for users we assumed. For more
details, see the discussion in Section 6.
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Fig. 11 Definition of block-wise mask and a dialog for feature mask spec-
ification. The block resolution is set to 11 by 16 blocks. In (b),
the compared GEIs are displayed (probe on the left, gallery on the
right) on the dialog and the translucent blue blocks indicate the user
specified blocks as the mask.

ettes visually and modifies them using the manual painting func-
tion if necessary. An example of a perfect silhouette created by
the above routine is shown in Fig. 10 (d).

After creating the subject’s silhouettes, the user saves them to
the subject’s database.
4.3.3 One-to-one Verification Module

In this module, a user executes the one-to-one verification be-
tween the probe and gallery subjects registered in the system.
First, the user selects a pair of registered probe and gallery sub-
jects to be verified from the subject’s database. Next, the user
creates the GEI for each subject by pushing the button shown in
Fig. 6 (D) and (I). The size of the GEI is automatically decided
based on the smaller silhouette height of one of the two subjects
so that the height of the GEI is smaller than the silhouette height
(e.g., when the smaller silhouette height is 50 pixels, the size of
the GEI is set as 22 by 32 pixels), and the size decided on is dis-
played on the dialog as shown in Fig. 6 (M).

The user then checks the outliers (differences in clothing or
baggage conditions, such as wearing a helmet, hood, or back-
pack) in the compared GEIs and manually specifies such regions
as mask regions if necessary. The mask region is set on the mask
edit dialog shown in Fig. 11 (b), which is opened from a button
shown in Fig. 6 (L). The mask blocks are specified by select-
ing the blocks displayed on the mask edit dialog as shown in
Fig. 11 (b). Finally, a posterior probability of Eq. (3) is calculated
and the result is displayed on the dialog as shown in Fig. 6 (O).
4.3.4 One-to-many Verification Module

In this module, a user executes the one-to-many verification be-
tween probe and gallery subjects registered in the system. First,
the user selects a subject to be verified from a probe list of the
subject’s database. The user then verifies the subject against all
the gallery subjects in the subjects’ database by pushing the but-
ton shown in Fig. 7 (E), and the verification results are displayed
on the dialog in the form of a list of gallery subjects, in which the
top ten subjects with higher posterior probabilities are sorted in
descending order as shown in Fig. 6 (L).

4.4 Implementation
The system was implemented on the mixed platform of C#,

C++/CLI, and C++ using Visual Studio 2008 (Professional Edi-
tion) with .net framework 3.5 SP1. The OpenCV library (version
2.3) was also used for image processing. The system runs on

computers operating Windows XP, Windows Vista, or Windows
7.

5. Experiment

In this experiment, we conducted the operation test of the
constructed system with a total of eleven participants composed
of a gait-specialist (who was also the implementer of the sys-
tem) and ten non-gait-specialists with sufficient computer liter-
acy (e.g., technical support staff and students in our laboratory
at the University). The aim of this operation test was to con-
firm that the non-gait-specialists can use the system following a
brief instruction manual, and more specifically, they, as well as
the gait-specialist, can obtain reasonable results in a reasonable
time on their own. We tested this with the one-to-one verification
scenario *7.

5.1 Instruction to the Participants
First, all the non-gait-specialists received a 90-minute instruc-

tion on the outline of gait verification and how to use the system
with a manual. They then practiced the operation of the system
for 3 to 5 hours using preliminary datasets for verification, while
receiving advice from the system implementer.

5.2 Test Datasets
Five verification datasets were arranged for the operation test.

Sample images of each dataset are shown in Table 3 and the de-
tails of each dataset are shown in Table 4. Note that the build
and height of each gallery subject are similar to those of the other
gallery subjects in the same dataset, and hence each dataset is
challenging in terms of verification.

5.3 Test Results
The verification outputs (posterior probabilities) for the 11 par-

ticipants are summarized in Table 5, and the operation times (av-
erage, minimum, and maximum) in each module are summarized
in Table 6. Note that the column for “ground truth” indicates
that a pair of probe and gallery subjects are either the same or
different subjects in Table 5, and that participant #1 is the gait-
specialist, while the others are the non-gait-specialists in both ta-
bles. Note that the gait-specialist obtained reasonable results for
all the datasets, namely, the posterior probabilities for pairs for
the same subjects are extremely high (more than 89.9%) while
those for the pairs of different subjects are low (less than 35.4%).
5.3.1 Verification Outputs

First, we focused on the clothing variations of datasets A and
B. For dataset A, the probe subject a wore a hood while the
gallery subjects b and c did not. Therefore, the associated parts
had to be masked to obtain a valid result. For this set, all the par-
ticipants successfully masked the head region and as a result, the
results for all the participants show the same tendency in Table 5.

In addition, for dataset B, whereas the probe subject d wore
tight outer clothing, the gallery subjects e, f, and g wore loose

*7 In terms of user operation, operations of the one-to-many verification
module are almost the same as the one-to-one verification module.
Therefore, we conducted the operation test using only the one-to-one
verification scenario.
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Table 3 Sample images of the datasets for the operation test.

Table 4 Details of the datasets for the operation test.

Subjects’ height Number of images in a section
Dataset ID Subject ID (approx.) [pixel] normal walking (approx.) Frame rate [fps] View

a 60 70 15 Left lateral
A b 50 65 15 Left lateral

c 50 70 15 Left lateral

d 80 40 7.5 Right lateral
B e 95 30 7.5 Right lateral

f 95 35 7.5 Right lateral
g 95 30 7.5 Right lateral

h 65–75 90 15 Right rear oblique
C i 90 65 15 Right lateral

j 90 60 15 Right lateral
k 90 80 15 Right lateral

l 50–55 60 15 Right front oblique
D m 120 50 15 Left lateral

n 120 50 15 Left lateral

o 85–98 55 7.5 Right front oblique
E p 55–60 55 15 Left rear oblique

q 55–60 60 15 Left rear oblique

outer clothes with hoods. Hence the associated upper body parts
needed to be masked. For this set, while nine participants suc-
cessfully masked the associated upper body parts, the other two
participants (#6 and #9) masked only the hooded parts. As a re-
sult, the posterior probabilities for the same subject pairing by the
two participants were slightly lower than those for the other par-
ticipants as shown in Table 5. In fact, the results were actually
improved by retrying masking the upper part of both participants.
More specifically, the posterior probabilities of participants #6
and #9 for the same subject pairing were changed from 76.7%
to 85.1% and from 87.0% to 95.4%, while those for the different
subject pairings were changed from 0.3% to 1.6% (subject f) and
from 0.0% to 0.0% (subject g), and from 1.7% to 11.3% (subject
f) and from 0.0% to 0.0% (subject g).

Next, we focused on the view variations of datasets C, D, and
E. In Table 5, we see that the results for datasets C and E ob-
tained by all the participants indicate the same tendency. In fact,
for these datasets, all the participants appropriately selected the

observation views of the probe and gallery subjects.
Conversely, for dataset D, two participants (#6 and #9) mis-

selected observation views (tilt types) of the gallery subjects *8,
because they did not have a firm understanding of observation
view, in particular, the tilt view. This mis-selection decreased the
validity of the verification, particularly in terms of view transfor-
mation. Consequently, the posterior probabilities obtained by #6
and #9 declined compared to those of the other participants as
shown in Table 5.

Note that, after receiving additional training lectures w.r.t. ob-
servation views, the two participants #6 and #9 were able to select
the appropriate view, and the results were improved: the posterior
probabilities of participants #6 and #9 for the same subject pairing
were changed from 46.0% to 84.8% and from 65.9% to 89.5%,
while those for the different subject pairings were changed from
22.3% to 58.2% and from 25.9% to 51.5%.

*8 In dataset D, while the appropriate view is camera 15 in Fig. 9 with al-
most no tilt, the selected view was camera 11 in Fig. 9 with tilt.
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Table 5 Verification outputs (posterior probabilities) of each participant [%].

Subject ID Participant ID
Dataset ID Probe Gallery Ground truth 1 2 3 4 5 6 7 8 9 10 11

A a b Different 0.4 20.5 4.3 0.2 4.2 0.5 0.9 0.7 2.2 0.9 1.6
c Same 95.2 90.2 96.7 93.4 80.4 83.4 97.3 97.6 89.4 94.5 99.5

e Same 96.0 96.7 95.1 97.7 92.7 76.7 96.5 88.4 87.0 96.7 93.0
B d f Different 11.0 30.0 10.6 18.0 4.0 0.3 23.7 17.9 1.7 0.2 3.9

g Different 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

i Same 89.9 89.4 89.1 77.6 90.5 90.5 83.9 83.6 86.5 90.0 88.6
C h j Different 3.8 7.7 15.3 3.9 7.7 4.9 3.8 5.7 4.4 4.8 3.3

k Different 7.9 8.8 13.4 8.0 11.7 14.0 11.6 7.5 11.2 8.4 12.3

D l m Different 35.4 37.0 54.9 29.0 30.4 22.3 36.2 35.5 25.9 36.7 35.7
n Same 91.5 81.0 89.1 73.5 85.0 46.0 73.3 74.4 65.9 72.9 85.6

E o p Different 32.5 33.5 29.1 39.5 27.1 31.4 34.6 30.3 33.4 30.5 30.5
q Same 93.3 88.1 89.8 86.6 88.3 80.4 87.3 91.1 74.5 87.5 88.9

Table 6 Approximate operation times for each participant [min].

Participant ID
Module 1 2 3 4 5 6 7 8 9 10 11 Average

Register Average 2 4 4 5 4 3 4 4 5 4 4 4
Min/Max 2/3 2/7 2/6 5/5 2/6 2/5 3/5 3/9 5/5 3/8 2/7

Silhouette Average 25 18 24 22 19 19 30 18 22 16 19 21
Min/Max 5/42 7/37 9/46 10/45 6/35 10/30 13/48 7/30 10/40 5/38 6/33

One-to-one Average 1 1 1 1 2 1 2 2 2 1 1 1
verification Min/Max 1/1 1/1 1/2 1/1 1/3 1/2 1/3 1/2 2/2 1/2 1/1

Whole verification Average 59 49 62 59 51 46 74 46 59 45 50
process Min/Max 36/82 33/77 35/85 41/76 27/82 32/59 47/100 27/58 37/82 24/77 29/76

In total, all the non-gait-specialists obtained the results which
indicated the same tendency with those of the gait-specialist for
almost all the verification datasets (46 verification pairs out of
50). On the other hand, in addition to unsatisfactory results of
participants #6 and #9 for dataset B and E (4 pairs as mentioned
above), we notice that there still exist certain inter-user deviations
of the posterior probabilities even if excluding the participants #6
and #9 (e.g., from 72.9% to 91.5% for dataset D). Therefore,
these results imply that more practice is desirable in selecting the
appropriate mask region and observation views for such failure
participants and also further improvements to suppress the inter-
user deviations of the posterior probability as discussed in Sec-
tion 6.
5.3.2 Operation Times

Focusing on operation times in Table 6, these varied to some
extent depending on the participants. The averaged working
times for subject registration, silhouette creation, and one-to-one
verification were 4 minutes, 21 minutes, and 1 minutes and a de-
tailed breakdown is shown in Table 6. To carry out the whole
verification process, it was necessary to use the registration and
silhouette modules twice, and the verification module once. In
these evaluation experiments, the whole verification process was
completed in 24 minutes for the shortest case, and only 100 min-
utes for the longest case. These results show that each partici-
pant obtained the verification results within reasonable operation
times.

6. Discussion

6.1 Inter-user Deviation in the Manual Operation
Although it was shown that reasonable results were provided

by almost all the verification pairs in the experiments, there still
remained certain deviations from expectation owing to inter-user
variations in the manual operations such as the selection of image

sequence intervals, observation views, and feature masks. There-
fore, it seems worthwhile to introduce semi-automatic functions
to reduce these deviations.

One of the potential countermeasures exploits walking trajec-
tories in selecting stable walking intervals and estimating the ob-
servation views automatically. Assuming a ground plane con-
straint for the calibrated camera, the walking trajectory is rela-
tively easy to extract as a sequence of footprints on the ground
plane [60], [61]. Although camera calibration is essential for
this purpose, on-site camera calibration using calibration targets
is a troublesome procedure, and almost impossible for the non-
specialist. This is the main reason why our system does not con-
tain a function for estimating walking trajectories.

Bazin et al. [62] proposed an alternative method for image-
based camera calibration using vanishing points estimated from
lines in a scene (e.g., buildings, roads, corridors), although the
method has an intrinsic ambiguity w.r.t. scale. It is, however,
still useful in estimating walking trajectories because scale in-
formation is not needed just to select stable walking intervals and
to estimate observation views. Thus, the automatically-selected
walking intervals and estimated observation views are shown to
a user as candidates, and these are manually modified by the user
if necessary. These are indeed semi-automatic functions.

As for gait feature masking, there are several potential ap-
proaches for inferring regions to be masked (e.g., masked GEI [3],
clothing change-aware part-based gait recognition [56], backpack
detection [63], and carried-item detection [64]). Therefore, such
automatically inferred regions can be shown to a user for possible
masking, and manually modified by the user if necessary, which
is also a semi-automatic function.

In this way, it is expected that semi-automatic functions would
reduce the deviation between users and that more stable posterior
probabilities would be provided.
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6.2 Improvement of the VTM
Although the VTM implemented in our system basically works

well, the performance for cross-view matching is still worse than
for same-view matching. In fact, whereas an averaged posterior
for the same subjects in the same-view matching (pairs of probe
a and gallery c, probe d and gallery e) is 94.3%, while that in
cross-view matching (pairs of probe h and gallery i, probe l and
gallery n, probe o and gallery q) is 85.7% *9. Nevertheless, it
has been reported that the accuracy of VTM can be improved by
using multi-view references in Refs. [2] and [65], and hence the
performance of cross-view matching can be improved with the
additional effort of collecting more footage from different views
of suspect targets.

Degradation in the performance for cross-view matching
can also be caused by view differences between the actual
probe/gallery view and the user-selected view from the 24 dis-
crete views shown in Fig. 9. One effective countermeasure for
this problem is to introduce an arbitrary view transformation
model [66], where gait data of non-target training subject (e.g.,
volunteers such as lab. members) are stored as exemplar in the
form of a 3D gait volume sequence. Using the 3D gait volume
sequences of non-target training subjects, we can obtain 2D gait
silhouettes of the non-target subjects projected to arbitrary views
of target subjects (e.g., perpetrator and suspect). Thereafter, the
discrete VTM used in this paper is applicable in the same way.

Thus, there is further room for improvement in cross-view
matching by taking the above two points into consideration in
the future.

7. Conclusion

We constructed the first gait verification system for criminal
investigation. The system was designed so that criminal inves-
tigators as non-gait-specialists could obtain without assistance
vision-based gait verification results between perpetrators and
suspects. The system outputs verification results between com-
pared subjects in the form of the posterior probability that in-
dicates whether they are the same subjects, considering circum-
stances such as the subject size, frame rate, clothing, and obser-
vation views. We conducted an operation test of the constructed
system with one gait-specialist and ten non-gait-specialists. All
the non-gait-specialists, as well as the gait-specialist, obtained
reasonable verification results for almost all the verification sets.

Although there is still room for improvement in system usabil-
ity and accuracy of verification, we believe that this system will
allow criminal investigators to use gait verification, which will
contribute much to more efficient criminal investigation. A sem-
inar of the constructed system for Japanese police is planned in
the near future.
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[38] Franke, K. and Köppen, M.: A computer-based system to sup-
port forensic studies on handwritten documents, IJDAR, Vol.3, No.4,
pp.218–231 (2001).

[39] Franke, K., Schomaker, L., Veenhuis, C., Taubenheim, C., Guyon, I.,
Vuurpijl, L., van Erp, M. and Zwarts, G.: WANDA: A generic Frame-
work applied in Forensic Handwriting Analysis and Writer Identifica-
tion, HIS, pp.927–938 (2003).

[40] Champod, C., Evett, I.W. and Kuchler, B.: Earmarks as Evidence: A
Critical Review, Journal of Forensic science, Vol.46, No.6, pp.1275–
1284 (2001).

[41] Alberink, I. and Ruifrok, A.: Performance of the FearID earprint iden-
tification system, Forensic Science International, Vol.166, pp.145–54
(2007).

[42] Pretty, I.A. and Sweet, D.: A look at forensic dentistry - Part 1: The
role of teeth in thedetermination of human identity, British Dental
Journal, Vol.190, pp.359–366 (2001).

[43] Adams, B.: The diversity of adult dental patterns in the United States
and the implications for personal identification, Journal of Forensic
Science, Vol.48, No.3, pp.497–503 (2003).

[44] Champod, C. and Muewly, D.: The inference of identity in foren-
sic speaker recognition, Speech Communication, Vol.31, pp.193–203
(2000).

[45] Rose, P.: Forensic Speaker Identification, CRC Press (2002).
[46] Neustein, A. and Patil, H.A. (Eds.): Forensic Speaker Recognition

Law Enforcement and Counter-Terrorism, Springer Science+Business
Bedia, LLC (2012).

[47] Iscan, M.Y.: Introduction of techniques for photographic compari-
son: Potential and problems, Forensic Analysis of the Skull: Cranio-
facial Analysis, Reconstruction, and Identification, pp.57–70, Wiley-
Liss (1993).

[48] Vanezis, P. and Brierley, C.: Facial Image Comparison of Crime Sus-
pects Using Video Superimposition, Science & Justice, Vol.36, No.1,
pp.27–33 (1996).

[49] Vanezis, P., Lu, D., Cockburn, J., Gonzalez, A., McCombe, G.,
Trujillo, O. and Vanezis, M.: Morphological classification of facial
features in adult Caucasian males based on an assessment of pho-
tographs of 50 subjects, Journal of Forensic Sciences, Vol.41, No.5,
pp.786–791 (1996).

[50] Yoshino, M.: Conventional and novels methods for facial-image iden-
tification, Forensic Science Review, Vol.16, No.2, pp.104–114 (2004).

[51] Lynnerup, N. and Vedel, J.: Person Identification by Gait Analysis and
Photogrammetry, Journal of Forensic science, Vol.50, No.1, pp.112–
118 (2005).

[52] Larsen, P.K., Simonsen, E.B. and Lynnerup, N.: Gait Analysis
in Forensic Medicine, Journal of Forensic Sciences, Vol.53, No.5,
pp.1149–1153 (online), DOI: 10.1111/j.1556-4029.2008.00807.x
(2008).

[53] FaceIt R© Argus - Solutions - L-1 Identity Solutions, available from
〈http://www.l1id.com/pages/71-faceit-argus〉 (accessed 2013-01-28).

[54] Moreno, A. and Grigoras, C.: Automatic Speaker Recognition
Methodology Using BATVOX, Symposium of Forensic Sciences

(2007).
[55] Alese, B.K., Mogaji, S., Adewale, O.S. and Daramola, O.: Design and

Implementation of Gait Recognition System, International Journal of
Engineering and Technology, Vol.2, No.7, pp.1102–1110 (2012).

[56] Hossain, M.A., Makihara, Y., Wang, J. and Yagi, Y.: Clothing-
Invariant Gait Identification using Part-based Clothing Categoriza-
tion and Adaptive Weight Control, Pattern Recognition, Vol.43, No.6,
pp.2281–2291 (2010).

[57] Hummel, K.: On the Theory and Practice of Essen-Möller’s W value
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