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Bumpy Pyramid Folding Problem
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Abstract: Folding problems are investigated for a class of petal (or star-like) polygons P, with an n-polygonal base B
surrounded by a sequence of triangles for which adjacent pairs of sides have equal length. Linear time algorithms using
constant precision are given to determine if P can fold to a pyramid with flat base B, and to determine a triangulation
of B (crease pattern) that allows folding into a bumpy pyramid that is convex. By Alexandrov’s theorem, the crease
pattern is unique if it exists, but the general algorithm known for this theorem is pseudo-polynomial, with very large
running time; ours is the first efficient algorithm for Alexandrov’s theorem for a special class of polyhedra. We also
show a polynomial time algorithm that finds the crease pattern to produce the maximum volume bumpy pyramid.

Keywords: Alexandrov’s theorem, bumpy pyramid, efficient algorithm, paper folding.

1. Introduction: Three Petal Folding Prob-
lems

In 1525, the German painter Albrecht Dürer published his mas-

terwork on geometry [7], whose title translates as, “On Teaching

Measurement with a Compass and Straightedge.” In the book,

he presented each polyhedron by drawing a net for it: an unfold-

ing of the surface to a planar layout. To this day it remains a

big open problem whether every convex polyhedron has a (non-

overlapping) net. Several strategies and algorithms for unfolding

a polyhedron have been investigated. One, called star unfolding,

is produced by cutting along every shortest path to each vertex

(i.e., it may cut a face of a polyhedron).

To understand unfolding, it is interesting to look at the inverse:

one folding problem asks what polyhedra can be folded from a

given polygonal sheet of paper. For example, the Latin cross,

which is a typical unfolding of a cube, can form 23 polyhedra by

85 distinct ways of folding. Comprehensive surveys of folding

and unfolding can be found in [6], [9].

In this paper, we investigate a folding problem for a class of

polygons that can come from star unfolding, or from unfolding

pyramids by cutting all edges incident on an apex. Although it

is tempting to call this class star polygons, this would cause con-

fusion with star-shaped polygons, which are defined by visibility

(there exists a point in the polygon that sees the entire interior)

and not by folding. Since the result of star unfolding need not be
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star-shaped, we choose to call them petal polygons (Fig. 1). A

polygon P = (p1, c1, p2, c2, . . . , pn, cn) is a petal polygon if and

only if it satisfies three conditions.

( 1 ) The subpolygon B = (p1, p2, . . . , pn), called the base of the

polygon P, is convex and each point ci is outside of B.

( 2 ) The pairs of edges incident on each pi have equal length.

(That is, for each i = 1, 2, . . . , n, lengths |pici| = |ci−1 pi| =
�i*

1.)

( 3 ) The total of the internal angles at all ci is less than 360◦.
(That is, the sum of angles

∑n−1
i=0 ∠pici pi+1 < 360◦.)

The inverse of the star unfolding for pyramids, in this termi-

nology, is the petal folding problem: determine if the polyhedra

P that can be folded from a petal polygon by gluing the pairs

of edges incident on each pi. (Thus, all vertices ci meet at the

apex c.) We investigate three specific variations of the general

petal folding problem.

We first consider the conditions under which the n-gon base B
can be kept flat. This petal pyramid folding problem asks whether

we can obtain the pyramid from a given petal polygon P. We first

show that this problem can be solved in linear time, and that pre-

cision of the computation is constant and does not grow with n.

Theorem 1 Let P be a petal polygon. Then the petal pyramid

folding problem can be solved in linear time.

When we cannot fold P into a pyramid, we may still be able to

fold P into a polyhedron, collecting the vertices ci to an apex c,

by triangulating the base B to make a pattern of creases. A

crease pattern is a planar straight-line graph with an assignment

of mountain or valley to each edge. From the perspective of an

observer, a valley fold has dihedral angle at most 180◦, and a

mountain fold has dihedral angle at least 180◦. (Mountain and

valley are opposites, and swapping all assignments is considered

the same crease pattern, since that is equivalent of viewing the

same shape from the opposite side.)

*1 In this paper, all indices are computed modn.
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Fig. 1 A petal polygon and resulting pyramid.

A folding of P that collects the vertices ci to an apex c by fold-

ing the base B according to some crease pattern is called a bumpy
pyramid. These foldings can be surprisingly complex. Even for

n = 4, a petal polygon P typically folds to two different bumpy

pyramids (one convex and one non-convex), but sometimes can

fold to only one or even to no bumpy pyramid.

Thus, for the second problem, we add the constraint of con-

vexity and define convex bumpy pyramid folding: find a crease

pattern to fold a convex bumpy pyramid, or determine that no

such crease pattern exists. Here the crease pattern is a triangula-

tion of the base B with all creases assigned to be mountain folds.

Through a connection to power diagrams [3], every P can fold to

a unique convex polyhedron if the lengths �i are sufficiently large,

and the corresponding crease pattern (triangulation) on B can be

found in linear time using constant precision:

Theorem 2 Let P be a petal polygon with 2n vertices. Then

the convex bumpy pyramid folding problem can be solved in lin-

ear time.

We are helped by two things suggested by the wording of this

theorem. First, once the triangulation is chosen, there is little

further choice for the crease pattern—all creases must be flat or

mountain folds for the result to be convex. Second, Alexandrov’s

theorem implies that, if a petal polygon P can fold into a convex

polyhedron, then that folding is unique. Thus, the problem is to

find the unique crease pattern on B—in other words, the triangu-

lation of B—so that P folds to a convex polyhedron by mountain

folding on the creases.

Let us elaborate on this, and its related results. Alexandrov’s

theorem states that every metric with the global topology and lo-

cal geometry required of a convex polyhedron is in fact the intrin-

sic metric of some convex polyhedron. Thus, if P is a net of a con-

vex bumpy pyramid, then the shape (as a convex polyhedron) is

uniquely determined. Alexandrov’s theorem was stated in 1942,

and a constructive proof was given by Bobenko and Izmestiev in

2008 [4]. A pseudo-polynomial algorithm for Alexandrov’s theo-

rem, given by Kane et al. in 2009, runs in O(n456.5r1891/ε121) time,

where r is the ratio of the largest and smallest distances between

vertices, and ε is the coordinate relative accuracy [8]. The expo-

nents in the time bound of the result are remarkably huge. As far

as the authors know, Theorems 1 and 2 are the first efficient algo-

rithms for Alexandrov’s theorem for a family of nontrivial convex

polyhedra.

Aronov and O’Rourke used a Voronoi diagram to prove that the

star unfolding has no overlap in the plane [2]. In star unfolding, a

base face remains flat and flaps are obtained by straightening cuts

along geodesic paths that cross several faces to reach the same

point c. The sites for this Voronoi diagram are the copies of c,

which would be the cis, and the metric is Euclidean distance in

the plane. In convex bumpy pyramid folding, as we will see, the

triangular flaps remain flat, while the base is folded along diago-

nals. These diagonals will form a triangulation dual to the power

diagram, which is a Voronoi diagram of sites pi using the power

distance.

Finally, we turn to the third problem, which is to find a crease

pattern of B such that P folds to the bumpy pyramid of maxi-
mum volume. At first glance, it may seem that the convex bumpy

pyramid should achieve the maximum volume, but this is not true

in general. In this paper, we give counterexamples: two petal

polygons whose non-convex bumpy pyramids have larger vol-

umes than their convex bumpy pyramids. We here note that, if

the crease pattern of B is fixed, then its volume can be computed

using the results by Sabitov [10], although it is better compu-

tationally to decompose the polyhedron into tetrahedra by cuts

from the apex to the creases and summing the volumes of the

tetrahedra. Even though the number of possible triangulations of

the base B can be exponential, we can find the bumpy pyramid of

maximum volume by dynamic programming in O(n3), at least for

the Real RAM model.

The relationship between the big open problem of unfolding a

convex polyhedron without overlap and this research is discussed

in Concluding remarks.
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Fig. 3 The locus of c′i (t) for folding �pi pi+1ci(t).

2. Preliminaries
The introduction gives the three conditions for a petal polygon

P; we should remark that condition 3 becomes important once

n > 3. When the total sum of interior angles at the ci is greater

than 360◦, the apex will be a point of negative curvature, and must

be a saddle in any folded polyhedron. A simple example is drawn

in Fig. 2: by mountain folding around the edges of B and p1 p3,

we have a polyhedron that is a saddle at the apex c.

In our first two problems, the solutions require that the result

be a convex folded polyhedron, which is not possible when con-

dition 3 is violated. In a sense, the edges of a polygon violating

condition 3 are too short to make a convex bumpy pyramid, so we

eliminate those to make our arguments clear.

We need a little more notation to describe folding processes.

We suppose initially that P is on the xy plane, and that each

point p of P is given Cartesian coordinates in the plane, namely

(x(p), y(p)). When we consider the folding of P in general, we put

P into an xyz space, and then each point p of P is described by

three coordinates, (x(p), y(p), z(p)). For two points in the plane

or in space, p and q, the line that contains the line segment pq is

denoted pq.

Let Ti denote the triangle formed by the three points pi pi+1ci.

Consider a folding of the triangle Ti onto B along the line pi pi+1.

In the plane this would be a reflection or flip across the line; in

space the movement is described as the function of time, rotating

the triangle about pi pi+1 from the initial position at t = 0 back

into the plane at t = 1 (Fig. 3). That is, when we flip the triangle

Ti, the point ci moves from ci(0) to ci(1); If ci stops at apex c and

is glued to form a (bumpy) pyramid, we have c = ci(t) for some

0 < t < 1.

We can also watch the projection c′(i) of the motion of ci back

in the xy plane. That is, for ci = (x(ci), y(ci), z(ci)), the projection

c′i = (x(ci), y(ci), 0). We define τi, the trace of ci, as the locus of

all projections c′i as ci moves from ci(0) to ci(1) through space.

In fact, τi is simply the segment ci(0)ci(1), which lies in the xy

plane; we will use τi when we are focusing on the plane, and

ci(0)ci(1) when we are thinking of this as the limits of motion of

ci in space.

Lemma 3 We suppose that we mountain fold the triangle Ti

onto B by flipping it. The trace τi of ci(t) is the chord between

the intersections of the two circles, Ci and Ci+1, centered at pi

and pi+1 and with radius |pici| and |pi+1ci|, respectively. The line

through τi is perpendicular to the line pi pi+1.

Note that the trace is easily constructed by reflection about a line

in the plane.

3. Folding to Pyramids
In this section, we suppose that the base B is on an xy plane,

and each point ci moves to the positive side of B, and generates a

trace τi on the xy plane. (We observe from outside, so this folding

is mountain folding along the line pi pi+1 for some i. That is, we

always have pi = (x(pi), y(pi), 0) and ci = (x(ci), y(ci), z(ci)) with

z(ci) ≥ 0. The opposite folding is valley folding.)

The ci can meet at a common apex if and only if the corre-

sponding traces, τi, meet at a common point in the plane. In fact,

it is enough if n−1 of the traces meet at a common point, because

then the nth will as well.

Lemma 4 Let P be a petal polygon whose base B has n sides.

Then P can fold to a pyramid if and only if the n − 1 traces τi in-

tersect at the same point c′.
Proof.Suppose that the points pi lie in the xy plane in three di-

mensions. Consider spheres S i centered at pi of radius �i, which

makes S i pass through ci−1 and ci. Each trace τi is the projec-

tion onto the xy plane of the disk bounded by the intersection

S i ∩ S i+1. If n − 1 traces intersect in a common point c′, then all

spheres contain c′, so it is in the remaining trace as well.

Now, if P folds to a pyramid, then all cis must meet at a com-

mon apex c. That is, for all i ∈ [1..n], there exists an αi ∈ (0, 1)

with ci(αi) = c. By Lemma 3, the projection c′ will lie on all

traces τi.

For the reverse, if a point c′ lies on trace τi, then there is a

unique αi ∈ (0, 1) with projection c′i (αi) = c′. Thus, ci(αi) on

the intersection S i ∩ S i+1, which have the same height above c′.
Similarly, ci−1(αi−1) lies on the intersection S i−1∩S i, so these two

spheres have the same height above c′. By transitivity, all spheres

have the same height above c′, so all ci(αi) meet at the same point

c, which is the apex of a folded pyramid. �
Now, to prove Theorem 1, it is suffices to show that we can

check for a common intersection c′ of traces in linear time. The

candidate position is the solution to simultaneous linear equations

(c′ − ci) · (pi − pi+1) = 0. By Lemma 4, it is enough to look at

n − 1 equations, so for n = 3 always has a unique candidate; for

n > 3 we check that the solution for 2 independent equations sat-

isfies the rest. Once we have the candidate c′, we simply check

that its distance to the line pi pi+1 is less than that of ci. Using

(x, y)⊥ = (−y, x), this is

∣∣∣(pi − pi+1)⊥ · (c′ − pi)
∣∣∣ ≤ (pi − pi+1)⊥ · (ci − pi).

Using Cramer’s rule to find c′ shows that the inequalities can be

evaluated with four times the input precision, so constant time

apiece, and O(n) time overall. This completes the proof of Theo-
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rem 1.

It is interesting to note that for any base B and chosen origin

o, both in the xy plane, by making the triangle flaps to the ci suf-

ficiently long, it is always possible to fold a pyramid that has its

apex above o. (Actually, you only get to choose the length of

one flap, because then all the other edge lengths, as well as the

height of the apex are determined.) In proving this we introduce

the power distance.

Theorem 5 Let B = (p1, p2, . . . pn) be a convex polygon in

a Cartesian plane with origin o. If we choose any one length

li > |pio|, it is possible to construct the points (c1, c2, . . . , cn) for a

petal polygon that folds to a pyramid with apex c projecting onto

the origin o.

Proof. Define a distance function on points for each i ∈ [1..n] as

di(q) =

√
|q − pi|2 − |o − pi|2 =

√
q · q − 2q · pi. This is a form

of the power distance [3] defined for circles in which all the cir-

cles pass through the origin. The level sets Li(α) = {q ∈ R2 |
di(q) = α} are circles centered at pi; for α > 0 they are circles

that contain the origin o.

Place ci(α) at the intersection Li(α) ∩ Li+1(α) that lies to the

right of ⇀pi pi+1. We observe that all such ci(α) lie on the line

through the origin perpendicular to pi pi+1, because this line con-

tains all points q for which di(q)2 − di+1(q)2 = 2q · (pi+1 − pi) = 0.

If we choose an α > 0, therefore, for each i ∈ [1..n], the trace

of ci(α) goes through the origin, and Theorem 4 says that we can

fold to a pyramid with apex projecting to the origin. �

4. Folding to Bumpy Pyramids with 4 Vertices
Hereafter, we consider the bumpy pyramid, where we allow

to fold the base along diagonals that join two vertices pi p j. To

simplify the discussion, we generally assume that each bumpy

pyramid is, in fact, surely bumpy; that no four points on the base

are on the same plane in the resulting polyhedron, so the base is

completely triangulated.

When n = 3, we have the lengths of six edges of a tetrahe-

dron. By Alexandrov’s theorem, if the tetrahedron exists, then it

is uniquely determined. Its volume can be computed in a con-

stant time using the equation in Sabitov [10]. Indeed, this could

be used instead of Theorem 1 to test foldability when n = 3: the

petal polygon P folds to a unique tetrahedron if and only if it has

a positive volume computed by the equation. Now we turn to the

special case n = 4. This case is already not so obvious, and the

results in this section are helpful for the general case.

Let P = (p1, c1, p2, c2, p3, c3, p4, c4) be a petal polygon. There

are two candidates for diagonals to fold, p1 p3 or p2 p4, to make

bumpy pyramids from P. For these two candidates, we have the

following theorem.

Theorem 6 For a petal polygon P of 8 points, either (1) no

bumpy pyramid can be folded, (2) one convex bumpy pyramid

can be folded, or (3) one convex bumpy pyramid and one con-

cave bumpy pyramid can be folded.

Proof. Suppose that we have a bumpy pyramid by folding along

the line p2 p4; this pyramid consists of two tetrahedra cp1 p2 p4

and cp3 p2 p4 that share a common triangle cp2 p4. We can fold it

if and only if the three edges, |p2 p4|, |cp2| = �2, and |cp4| = �4,

satisfy the triangle inequality. For each i, let Ci be a circle of ra-

dius �i centered at pi. The triangle inequality is satisfied if and

only if C2 and C4 intersect. For the circles C1 and C3, we can use

the same argument. Therefore, we have three cases.

Case 1: No pair of (C1,C3) and (C2,C4) intersect, as in Fig. 4(1).

In this case, the four triangles are so short that no pyramid can be

folded.

Case 2: One of (C1,C3) and (C2,C4) intersects. Without loss of

generality, we assume that C1 and C3 intersect as in Fig. 4(2). In

this case, we cannot make a triangle cp2 p4 since three edges do

not satisfy the triangle inequality. Therefore, only one pyramid

can be folded by folding along p1 p3.

Now we show that the resulting pyramid is convex. To derive

a contradiction, we suppose that the pyramid is concave by val-

ley folding along p1 p3. Consider its intersection with the plane

through triangle p2cp4: we see that the length of the path from p2

to p4 through the apex c is greater than the length of path p2hp4

for a point h on p1 p3. This contradicts that C2 and C4 do not in-

tersect. Therefore, to obtain a bumpy pyramid, we must mountain

fold along p1 p3.

Case 3: Both of (C1,C3) and (C2,C4) intersect, as in Fig. 4(3).

By Alexandrov’s theorem we cannot obtain two convex bumpy

pyramids; so we show that one must be convex and the other con-

cave.

We first consider folding along p1 p3 (Fig. 5). The resulting

polyhedron can be split into two tetrahedra cp1 p2 p3 and cp1 p4 p3

by cutting the shared triangle T = (p1, p3, c). This T can be de-

picted twice by joining p1 p3 and two intersections of C1 and C3

(thick lines in Fig. 5). Let t1 and t2 be the intersection points.

Now we consider two more intersection points; c1,2 is of

c1(0)c1(1) and c2(0)c2(1), and c3,4 is of c3(0)c3(1) and c4(0)c4(1).

Then, by Theorem 4, c1,2 and c3,4 are both on the line t1t2. When

c1,2 is closer to p2 than c3,4 as in the figure, we have to moun-

tain fold along the line p1 p3 to make the resulting polyhedron.

Thus, we assume that c3,4 is closer to p2. In this case, we have

to valley fold along the line p1 p3 to glue two tetrahedra cp1 p2 p3

and cp1 p4 p3. However, in this case, when we consider the line

p2 p4, we can conclude that we have to mountain fold along the

line p2 p4 to obtain the resulting bumpy pyramid. Therefore, we

obtain one convex bumpy pyramid and one concave bumpy pyra-

mid. �

5. Folding a Convex Bumpy Pyramid
We now turn to the general convex bumpy pyramid problem.

From at the cases in the proof of Theorem 6 that created convex

bumpy pyramids, we observed that the projections of the ci as the

come together at an apex are sweeping out a power diagram of the

vertices of the base B. We first show that this is true in general—

that to obtain a convex bumpy pyramid when one exists, we can

fold the diagonals of B that are dual to the power diagram edges.

Then we show that the power diagram of the vertices of a convex

polygon can be computed in linear time by extending the Voronoi

algorithm of Aggarwal et al. [1].

Theorem 7 Let P = (p1, c1, p2, c2, . . . , pn, cn) be a petal

polygon with base B = (p1, . . . , pn). Let D be the set of diag-

onals of B that are dual to the power diagram of B with weights
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�i = |pici|. If P can fold to a convex bumpy pyramid, then it can

do so by mountain folding the diagonals of D.

Proof. The uniqueness of the convex bumpy pyramid follows

from Alexandrov’s theorem, so we focus on showing the rela-

tion to the power diagram, which is a well-known variation of a

Voronoi diagram [3]. For completeness, we include brief sketches

of the properties we need; see the literature for more details.

A special form of the power distance was defined for Theo-

rem 5; the general power distance for point pi with weight �i is

di(q) =

√
|q − pi|2 − �2i .

This is often depicted by drawing the 0-level set, which is a circle

Ci centered at pi of radius �i.

Use the power distance for the vertices of B to define a Voronoi

diagram, which is a decomposition of the plane into maximally

connected regions with the same set of closest neighbors. In par-

ticular the edges Ei, j are the non-empty sets defined by pairs of

vertices i and j with i � j as follows:

Ei, j = {q ∈ R2 | di(q) = d j(q) and ∀k ∈ [1..n]dk(q) ≤ di(q) −→ k ∈ {i, j}}.

Edges are easily seen to be line segments by expanding di(q) −
d j(q) = 2q(pi − p j) + p2

i − p2
j − (�2i − �2j ); the line of Ei, j contains

the intersection points of the circles, Ci ∩C j.

The intersection of halfplanes containing pi defined by all

edges Ei,k is the convex cell of pi, so the edges define a parti-

tion of the plane into convex cells, edges, and vertices, which is

the power diagram. The dual of the power diagram of B tells us

which diagonals to use to fold our convex bumpy pyramid: use a

diagonal pi p j iff Ei, j is non-empty.

Because B is convex, we can show that, for all i ∈ [1..n], power

diagram edge Ei,i+1 goes to infinity. Consider any p j not an end-

point of the B-edge pi pi+1; both vectors pi − p j and pi+1 − p j

have positive projection on the normal vector (pi − pi+1)⊥, so if

we move far enough in that direction, we eventually cross the Ei, j

and Ei+1, j power diagram edges from the p j side. This completes

the characterization of the properties we need from the power di-

agram.

Now, because the power diagram of vertices of B decomposes

the plane into a cell for each pi, and edges Ei,i+1 go to infinity,

each cell is unbounded and the edges form an acyclic and con-

nected graph. We have a tree, and can consider the infinite edges

to be external nodes. A leaf is a tree node that is incident on two

external nodes.

This tree gives our folding order. For any leaf, fold the two

flaps that correspond to the infinite edges. Suppose that the ver-

tices of P for these flaps are pi−1, ci−1, pi, ci, and pi+1. If the traces
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τi−1 and τi are long enough to include the power diagram vertex

equidistant to pi−1, pi, and pi+1, then the flaps for ci−1 and ci will

meet at an apex c that projects to the vertex. We then discard the

point pi from B and the leaf from the power diagram, and proceed

recursively with a new P that has a triangle flap pi−1, c, pi+1. This

flap is already partially folded, but will continue folding forward

according to the power diagram edge Ei−1,i+1, so we may safely

fold it back to the plane before continuing.

The recursive folding ends with a base at which all flaps can

meet, completing a convex bumpy pyramid. �
Lemma 8 The power diagram of B can be computed in linear

time.

Proof. This is a straightforward application of the not-so-

straightforward ideas in the Voronoi algorithm of Aggarwal et
al. [1] to the case of the power diagram. Since we have not found

it in the literature, we include a detailed sketch.

The basic algorithm is incremental construction, which can be

made to run in time proportional to the number of edges of the

cell of an inserted vertex in our case, since we can always know

where to begin. First, imagine deleting a site p from a power di-

agram of B: the neighbors of p’s cell will steal back the area that

belonged to the cell. To reinsert p, one can simply walk over the

portions of the diagram that will lie in p’s cell, starting from the

infinite edge defined by the neighbors of p.

By the way, we could make a randomized incremental con-

struction that runs in two stages: First, randomly delete vertices

from B, keeping track of neighbors at the time of deletion. Sec-

ond, in reverse order, insert vertices incrementally into the power

diagram, starting from the infinite edge between the neighbors.

This would run in expected linear time, since it is only the point

location that necessitates Θ(n log n) expected time in randomized

incremental construction [5].

For a deterministic algorithm, Aggarwal et al. [1] identify a

constant fraction of the Voronoi cells that are not adjacent to each

other, so that they could be inserted simultaneously in time pro-

portional to the Voronoi size. The same idea works for the power

diagram of the vertices of B.

Mark the vertices pi red or blue to satisfy three rules:

1) No two adjacent sites are marked red.

2) No three adjacent sites are marked blue.

3) If there is a point in the plane q for which di−1(q) and

di−1(q) are the two smallest elements of the five element set

{di−2(q), di−1(q), di(q), di+1(q), di+2(q)} (equivalently, Ei−1,i+1 is an

edge in the power diagram of these five vertices), then pi is red.

Marking is easy to do in linear time: Initially mark red ver-

tices forced by rule 3, and the rest blue, then while there exists

three consecutive blue, change the center to red. The only trouble

would be if rule 3 applied to consecutive vertices, but this is not

possible due to the structure of power diagrams.

In fact, consecutive red sites cannot have power diagram cells

that are adjacent: If cells for pi and p j touch and there is a single

vertex between them, then that vertex must be red and pi, p j are

both blue. But there cannot be more than two vertices between

consecutive reds, and in such a case the Ei, j bisector must run

into one of the cells, making the vertex for the other red, so at

least one of pi and p j are blue.

Aggarwal et al. [1] prove a combinatorial lemma that exploits

this condition.

Lemma 9 (Aggarwal et al. [1]) Let T be a binary tree em-

bedded in the plane. Each leaf of T has an associated “neigh-

borhood,” which is a connected subtree rooted at that leaf, and

leaves adjacent in the topological order around the tree have dis-

joint neighborhoods. Then there are a fixed fraction of the leaves

with disjoint, constant-size neighborhoods, and such leaves can

be found in linear time (assuming that neighborhoods can be

traced out in breadth-first order).

Now, we can sketch the divide and conquer of Aggarwal et
al. [1]: Mark the vertices, and compute the power diagram of the

blue by recursion, giving a tree where leaves will be edges that

go to infinity between blue vertices that have a red between them.

The neighborhood of such a leaf is the region closer to this red

vertex than either blue vertex. Lemma 9 says that a constant frac-

tion of the red sites with disjoint, constant-size neighborhoods

can be found. These red sites can be merged into the blue power

diagram in constant time apiece.

Finally, a constant fraction of the sites remain red; we again

compute their power diagram recursively and merge it into the

blue power diagram—we can do this in linear total time if we

merge connected portions starting and ending with the infinite

edges. As Aggarwal et al. [1] show, the total time is O(n). �
With these Lemmas, we prove Theorem 2:

Lemma 10 If a petal polygon P of 2n points folds to a bumpy

pyramid, then it folds to a unique convex bumpy pyramid. More-

over, the triangulation of B for folding to the convex bumpy pyra-

mid can be found in linear time using constant precision.

Proof. By Theorem 7 the power diagram is a tree that gives the

folding order, if it is possible. It is easy to follow this tree and

perform the folding; since all recursive steps can be phrased in

terms of a subpolygon of B with original lengths determining the

triangular flaps, the precision does not increase. By Lemma 8,

the tree can be computed in linear time and constant precision.

�

6. Bumpy Pyramid of Maximum Volume
We here give two examples of petal polygons such that concave

ones have larger volumes than convex ones in Fig. 6.

Using the results by Sabitov [10], we can directly compute

their volumes and obtain the claim, but here we give more ex-

pressive explanations to reveal the hidden ideas of the polygons.

The petal polygon in Fig. 6(1) folds to a convex polyhedron of

almost zero volume by mountain folding along the line p1 p3. On

the other hand, it folds to a concave polyhedron of larger vol-

ume when we valley fold along the line p2 p4. For the other petal

polygon in Fig. 6(2), when we mountain fold along the line p2 p4,

we obtain almost a pyramid with a triangle base p1 p2 p4, and the

point p3 is almost on the inner point of the triangle p2cp4. On the

other hand, when we valley fold along the line p1 p3, the resulting

concave bumpy pyramid has almost a square base, and hence it

has a larger volume.

Therefore, we can conclude that sometimes a non-convex

bumpy pyramid has a larger volume than convex one folded from

the same petal polygon.
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Fig. 6 Petal polygons that can fold to form convex or non-convex bumpy pyramids, but the non-convex

ones have larger volume than the convex ones.

Theorem 11 Let P be a petal polygon whose base B has n
vertices. The crease pattern (triangulation of B) that gives the

bumpy pyramid with maximum volume can be found in O(n3)

time.

Proof. We use dynamic programming in which each subproblem

S (i, k) is a sequence of 1 ≤ k < n consecutive edges of B, using

k + 1 vertices pi to pi+k. The weight of a subproblem, w(i, k),

is the maximum volume of the bumpy pyramid folded from the

petal polygon with vertices pi, ci, . . . , ci+k−1, pi+k, c′, where c′ is

the point with lengths |c′pi| = �i and |c′pi+1| = �i+1. Thus, when

k = 1 we have two flaps that fold together, w(i, 1) = 0, and when

k = n − 1, we have P back again and w(1, n − 1) is the maximum

volume that we seek.

We say that (i, j, k), with 1 ≤ i ≤ n, 1 ≤ j < k < n is valid if a

six-vertex petal polygon with base �pi pi+ j pi+k and flaps with cor-

responding lengths �i, �i+ j and �i+k can be folded to a tetrahedron;

let V(i, j, k) denote the volume of this tetrahedron. For 1 < k < n,

w(i, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max1≤ j<k V(i, j, k) + w(i, j) + w(i + j, k) if (i, j, k) is valid,

−∞ otherwise.

Thus, we have n2 subproblems, and the computation for each can

be performed in O(n) time if we assume a Real RAM model. By

storing with each subproblem the index j at which the maximum

occurred, we can recover the crease pattern that gives the maxi-

mum. �

7. Concluding Remarks
In this paper, we consider polyhedra folded from a petal poly-

gon P. Although the complete characterization of the property is

still open, we give the first nontrivial steps to the new problem.

Especially, we give the first nontrivial and efficient algorithms

for Alexandrov’s theorem of finding a unique crease pattern if

it exists, by restricting our attention to the special case of petal

polygons.

We close by mentioning the potential relationship between this

problem and the big open problem whether every convex poly-

hedron have a non-overlapping net. When we attempt to develop

a general convex polyhedron onto the plane, one natural way is

to first cut and open at a vertex of the convex polyhedron. In the

case, we cut all edges incident to the vertex, and open the trian-

gle flaps. After that, the natural reduction process would remove

the triangle flaps and attach a bumpy (triangulated) face along the

open area. This process can be regarded as removing a bumpy

pyramid from the polyhedron to reduce the number of vertices. If

we have a complete characterization of bumpy pyramids, it may

give us the first step of an induction. From this viewpoint, the

bumpy pyramid can play an important role to discuss the devel-

opment of general polyhedra.

The last author thanks Teruo Nishiyama, who introduced the

petal pyramid folding problem for n = 4. His question led us to

this rich vein of problems about bumpy pyramids.
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