
Randomized Algorithms for Online Knapsack Problems

Xin Han∗, Yasushi Kawase†, and Kazuhisa Makino ‡

Abstract

In this paper, we study online knapsack problems. The input is a sequence of items
e1, e2, . . . , en, each of which has a size and a value. Given the ith item ei, we either put ei
into the knapsack or reject it. In the removable setting, when ei is put into the knapsack,
some items in the knapsack are removed with no cost if the sum of the size of ei and the
total size in the current knapsack exceeds the capacity of the knapsack. Our goal is to
maximize the profit, i.e., the sum of the values of items in the last knapsack.

We present a simple randomized 2-competitive algorithm for the unweighted non-removable
case and show that it is the best possible, where knapsack problem is called unweighted if
the value of each item is equal to its size. For the removable case, we propose a randomized
2-competitive algorithm despite there is no constant competitive deterministic algorithm.
We also provide a lower bound 1+1/e ≈ 1.368 for the competitive ratio. For the unweighted
removable case, we propose a 10/7-competitive algorithm and provide a lower bound 1.25
for the competitive ratio.

1 Introduction

The knapsack problem is one of the most fundamental problems in combinatorial optimization
and has a lot of applications in the real world [12]. The knapsack problem is that: given a set of
items ei with values v(ei) and sizes s(ei), we are asked to maximize the total value of selected
items in the knapsack satisfying the capacity constraint. Throughout this paper, we assume that
the capacity of knapsack is 1.

In this paper, we study the online version of the knapsack problem. Here, “online” means
that i) the information of the input (i.e., the items) is given gradually, i.e., after a decision is
made on the current item, the next item is given; ii) the decisions we have made are irrevocable,
i.e., once a decision has been made, it cannot be changed. Given the ith item ei, which has a
value v(ei) and a size s(ei), we either accept ei (i.e., put ei into the knapsack) or reject it. In the
removable setting, when ei is put into the knapsack, some items in the knapsack are removed
with no cost if the sum of the sizes of ei and the total size in the current knapsack exceeds 1 (i.e.,
the capacity of the knapsack). Our goal is to maximize the profit, i.e., the sum of the values of
items in the last knapsack.

Related works It is well known that offline knapsack problem is NP-hard but admits an
FPTAS. Ito et al. [9] presented a constant-time randomized approximation algorithm by using
weighted sampling.

An online knapsack problem was first studied on average case analysis by Marchetti-Spaccamela
and Vercellis [14]. They proposed a linear-time algorithm with O(log3/2 n) expected competitive
difference, under the condition that the capacity of the knapsack grows proportionally to the
number of items n. Lueker [13] improved the expected competitive difference to O(log n) under
a fairly general condition on the distribution.

On the worst case analysis, Marchetti-Spaccamela and Vercellis [14] showed that general
online knapsack problem has no constant (deterministic) competitive ratio. Buchbinder and
Naor [4] presented an O(log(U/L))-competitive algorithm based on a general online primal-dual
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framework when the density of every element is in a known range [L,U ], and each size is assumed
to be much smaller than the capacity of the knapsack. They also showed an Ω(log(U/L)) lower
bound on the competitive ratio for the case. Zhou et al. [16] showed Ω(log(U/L)) is also lower
bound for the randomized case, which implies that general online knapsack problem has no
constant randomized competitive ratio.

Iwama and Taketomi [10] studied the removable online knapsack problem. They obtained a
(1 +

√
5)/2 ≈ 1.618-competitive algorithm for the unweighted online knapsack, where knapsack

problem is called unweighted if the value of each item is equal to its size, and showed that this is
the best possible by providing a lower bound (1+

√
5)/2 for the case. We remark that the problem

has unbounded competitive ratio, if at least one of the removal and unweighted conditions is not
satisfied [10,11]. For the randomized competitive ratio of the general removable online knapsack
problem, Babaioff et al. [2] showed a lower bound 5/4.

Removable online knapsack problem with cancellation cost is studied in [1, 2, 7]. When the
cancellation cost is proportional, i.e., it is f times the total value of removed items, Babaioff et
al. [1, 2] showed that if each item has size at most γ, where 0 < γ < 1/2, then the competitive
ratio is at most 1 + 2f + 2

√
f(1 + f) with respect to the optimal solution for the knapsack

problem with capacity (1 − 2γ). They also proposed a randomized 3(1 + 2f + 2
√
f(1 + f))-

competitive algorithm for this problem. Han et al. [7] showed that unweighted version of this

problem is max{2, 1+f+
√

f2+2f+5

2 }-competitive.
For the other models such as knapsack secretary problem, stochastic knapsack problem and

minimization knapsack problem, refer to papers in [3, 5, 6, 7, 8].

Our results

In this paper, we study the worst case analysis of randomized algorithms for online knapsack
problem against an oblivious adversary.

We first provide a randomized 2-competitive algorithm for the unweighted non-removable
online knapsack problem, and show that it is the best possible.

For the unweighted removable case, we propose a randomized 10/7-competitive algorithm.
Our algorithm divides all the items into three groups, small, medium and large. If a large
item comes, our algorithm chooses it and cancels all the items in the knapsack. Otherwise the
algorithm first handles medium items, then apply a greedy algorithm for the small items. For
medium items, it randomly selects the one among two deterministic subroutines. We also show
that there exists no randomized online algorithm with competitive ratio less than 5/4 for the
unweighted removable case.

For the general removable case, we present a simple randomized 2-competitive algorithm,
which is an extension of famous 2-approximation greedy algorithm for offline knapsack problem.
As a lower bound, we show that there exists no randomized online algorithm with competitive
ratio less than 1 + 1/e for the general removable online knapsack problem.

We summarize the current status on competitive ratios for the online knapsack problem in
Table 1, where our results are written in bold letters.

The rest of paper is organized as follows. In Section 2, we provide competitive ratio for the
unweighted non-removable cases. In Sections 3 and 4, we consider the unweighted and general
removable cases, respectively.

2 Unweighted Non-Removable Online Knapsack Problem

In this section we study the non-removable version of the unweighted online knapsack problem.
We show that the problem is randomized 2-competitive.

In order to show the upper bound, we construct the following algorithm called TwoBins.
Algorithm TwoBins virtually keeps two bins, and puts items into either of the bins if possible.
The algorithm outputs the items contained in the one of the two bins, which is randomly chosen
in advance.
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Table 1: The current status on competitive ratios for online knapsack problems, where our
results are written in bold letters.

unweighted general

lower bound upper bound lower bound upper bound

non- deterministic ∞ [10] ∞ [14]

removable randomized 2 ∞ [16]

removable
deterministic 1+

√
5

2 [10] ∞ [11]

randomized 5/4 10/7 1 + 1
e 2

Let ei be the item given in the ith round. Define by Bi the set of selected items at the end
of the ith round by Algorithm TwoBins. For r = 1, 2, define by Br

i the set of selected items at
the end of the ith round in bin r. Then our algorithm TwoBins is represented as follows.

Algorithm TwoBins

1: B0, B
1
0 , B

2
0 := ∅

2: choose r uniformly at random from {1, 2}
3: for each item ei in order of arrival do
4: if s(B1

i ) + s(ei) ≤ 1 then B1
i := B1

i−1 ∪ {ei}, B2
i := B2

i−1
5: else if s(B2

i ) + s(ei) ≤ 1 then B1
i := B1

i−1, B2
i := B2

i−1 ∪ {ei}
6: else B1

i := B1
i−1, B2

i := B2
i−1

7: if r = 1 then Bi := B1
i

8: if r = 2 then Bi := B2
i

9: end for

Theorem 1. Algorithm TwoBins is 2-competitive for the unweighted online knapsack problem.

Proof. Let T be a set of items, and OPT (T ) be the (offline) optimal value for T . If s(T ) ≤ 1, then
we have s(B1

n) = OPT (T ) = s(T ) and s(B2
n) = 0, where s(A) =

∑
e∈A s(e) for A ⊆ T . Thus

the competitive ratio is OPT (T )/(s(B1
n) + s(B2

n))/2) = 2. Otherwise (i.e., s(T ) > 1), we have

s(B1
n) + s(B2

n) > 1, which immediately implies that the competitive ratio is OPT(T )
(s(B1

n)+s(B2
n))/2

< 2.

Then the algorithm is at most 2-competitive. Moreover, by considering the case in which s(T ) ≤
1, we can conclude that the algorithm is at least 2-competitive.

We next show that the ratio in Theorem 1 is tight.

Theorem 2. There exists no randomized online algorithm with competitive ratio less than 2 for
the unweighted online knapsack problem.

Proof. We use Yao’s principle [15]. We construct the following family of input distributions
parametrized by a positive integer n.

For a given n, the probability distribution of the input sequence is as follows:

1

2
+ ε,

1

2
+
ε

2
, . . . ,

1

2
+
ε

k
,

1

2
− ε

k
with probability 1/n (k = 1, . . . , n), (1)

where we identify the items by their sizes (i.e., values), and ε is a sufficiently small positive
number. Then, we note that the optimal expected profit is 1 since the optimal profit of each
sequence is ( 1

2 + ε
k ) + ( 1

2 −
ε
k ) = 1.

For a positive integer l, let A denote an deterministic online algorithm that accepts the lth
item (i.e., the item with size 1

2 + ε
l ) if it is contained in the input sequence. Then Algorithm
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A rejects all the items with size 1
2 + ε

i for positive integer i 6= l. We can see that the expected
profit of Algorithm A is at most

1

2
· l − 1

n
+ 1 · 1

n
+

(
1

2
+
ε

l

)
· n− l

n
≤
(

1

2
+ ε

)
· n+ 1

n
.

Therefore, the competitive ratio is at least

1(
1
2 + ε

)
· n+1

n

,

which goes to 2 as n and ε respectively approach to ∞ and 0.

3 Unweighted Removable Online Knapsack Problem

In this section, we consider removable knapsack problem when the value of each item is equal
to its size.

3.1 Upper bound for randomized competitive ratio

In this subsection, we propose a randomized 10/7-competitive online algorithm for unweighted

removable online knapsack problem. Recall that the problem is deterministic 1+
√
5

2 -competitive,
and hence it does not admit deterministic 10/7-competitive algorithm. For example, consider two
input sequences (0.69, 0.4) and (0.69, 0.4, 0.6), where we identify items with size (i.e., (0.69, 0.4)
denotes that input sequence consists of two items such that the first and the second items
respectively have size 0.69 and 0.4). Then in order to obtain deterministic 10/7-competitive
algorithm, we must reject 0.4 for the input sequence (0.69, 0.4), since 0.69/0.4 > 10/7 and
moreover, we must reject 0.69 for the input sequence (0.69, 0.4, 0.6), since (0.6+0.4)/0.69 > 10/7.
They are impossible for any deterministic algorithm. On the other hand, our (randomized)
algorithm randomly chooses the one among two deterministic algorithms, where the one rejects
0.4 and the other rejects 0.69.

Our algorithm partitions all the items into three groups, small, medium and large where
an item e is called small, medium, and large if s(e) ≤ 0.3, 0.3 < s(e) < 0.7, and s(e) ≥ 0.7,
respectively. Let S, M , and L respectively denote the sets of small, medium, and large items. M
is further partitioned into four subsets Mi for 1 ≤ i ≤ 4, where M1, M2, M3, and M4 respectively
denote the set of the items e with size 0.3 < s(e) ≤ 0.4, 0.4 < s(e) ≤ 0.5, 0.5 < s(e) < 0.6, and
0.6 ≤ s(e) < 0.7 (see Fig. 1). An item e is also called an Mi-item if e ∈Mi.

Figure 1: Item partition for our randomized 10/7-competitive online algorithm.

Our algorithm A is briefly described as follows. If a large item comes, A keeps it in the
knapsack (by removing all the items we have chosen), since it ensures 10/7-competitivity of the
algorithm. Otherwise, we simulate two deterministic subroutines A1 and A2, where we keep the
items in the knapsack by following the one of A1 and A2 chosen randomly in advance. Both
subroutines first handle medium items (differently) and then choose small items from the largest
to the smallest.

Subroutine A1 first chooses the smallest M4-item if it exists. Otherwise, it chooses the
smallest M3-item. It then chooses the other items from the largest to the smallest. On the other
hand, Subroutine A2 keeps a set of items I with sufficiently large profit, namely, if either (i) I
satisfies 0.9 ≤ s(I) ≤ 1 or (ii) some M4-item has already come and I satisfies 0.8 ≤ s(I) ≤ 1.
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Otherwise, A2 first chooses the smallest M2- and M1-items and then choose the medium items
from the smallest to the largest, and the small items from the largest to the smallest in the
current knapsack.

Let ei be the item given in the ith round. Define by Bi the set of selected items at the end
of the ith round by Algorithm A. For r = 1, 2, define by Br

i the set of selected items at the end
of the ith round by Subroutine Ar. Let fi denote a flag such that fi = 1 if some M4-item has
come by the end of the ith round, and fi = 0, otherwise. Then our algorithm A is represented
as follows.

Algorithm A

1: B0, B
1
0 , B

2
0 := ∅, f0 := 0

2: choose r uniformly at random from {1, 2}
3: for each item ei in order of arrival do
4: if ei in L then
5: choose it by cancelling all the items in the knapsack, and stop handling the future items.
6: end if
7: if ei ∈M4 then
8: fi := 1
9: else

10: fi := fi−1
11: end if
12: simulate two subroutines A1(fi, B

1
i−1, ei) and A2(fi, B

2
i−1, ei);

13: if r = 1 then Bi := B1
i

14: if r = 2 then Bi := B2
i

15: if the expected profit (s(B1
i ) + s(B2

i ))/2 is at least 0.7 then stop handling the future
items.

16: end for

Subroutine A1

1: if fi = 0 then choose the smallest M3-item from B1
i−1 ∪ {ei};

2: else (i.e., fi = 1): choose the smallest M4-item from B1
i−1 ∪ {ei}.

3: choose the items among B1
i−1 ∪ {ei} from the largest to the smallest.

Then we have the following theorem.

Theorem 3. Algorithm A is 10/7-competitive for the unweighted removable online knapsack
problem.

Due to space limitation, we omit the proof of the above theorem.

3.2 Lower bound for randomized competitive ratio

Babaioff et al. [2] provided a lower bound 5/4 for the randomized competitive ratio of the general
removable online knapsack problem. In this subsection, we show that 5/4 is also a lower bound
even for the unweighted case. The proof is based on Yao’s principle. We consider the following
input distribution: {

2/3 + ε, 1/3, 2/3 (with probability 1/2),

2/3 + ε, 1/3, (with probability 1/2)
(2)

where we identify the items with their size (value) and ε is a sufficiently small positive number.

Theorem 4. There exists no randomized online algorithm with competitive ratio less than 5/4
for the unweighted removable online knapsack problem.
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Subroutine A2

1: if fi = 0 and B2
i−1 ∪ {ei} contains a set of items I with 0.9 ≤ s(I) ≤ 1 then

2: B2
i := I

3: else if fi = 1 and B2
i−1 ∪ {ei} contains a set of items I with 0.8 ≤ s(I) ≤ 1 then

4: B2
i := I

5: else
6: choose the smallest M2-item from B2

i−1 ∪ {ei}.
7: choose the smallest M1-item from B2

i−1 ∪ {ei}.
8: choose the rest of medium items among B2

i−1 ∪ {ei} from the smallest to the largest.
9: choose the small items among B2

i−1 ∪ {ei} from the largest to the smallest.
10: end if

Proof. We consider the input distribution in (2). Then, the optimal expected profit is 1 · 12 +(
2
3 + ε

)
· 12 = 5

6 + ε
2 .

Let A be a deterministic online algorithm. If A rejects the second item, the expected profit
is at most 2/3 + ε. Otherwise (i.e., A takes the second item after removing the first item), the
expected profit is at most 1 · 12 + 1

3 ·
1
2 = 2

3 .
Therefore, the competitive ratio is at least (5/6 + ε/2)/(2/3 + ε) which approaches 5/4 as

ε→ 0.

4 General Removable Online Knapsack Problem

In this section, we consider the general removable online knapsack problem.

4.1 Upper bound for randomized competitive ratio

We propose a randomized 2-competitive algorithm for the removable online knapsack problem.
Our algorithm can be regarded as randomized and online implementation of the well known
2-approximation algorithm [12] for offline problem, which makes use of algorithms Max and
Greedy as follows.

Algorithm Max

1: B0 := ∅
2: for each item ei in order of arrival do
3: Bi := argmax{v(e) : e ∈ Bi−1 ∪ {ei}}
4: end for

In the algorithms, let ei be the item given in the ith round, and let Bi be the set of selected
items at the end of the ith round. We denote by s(Bi) the total size of items in Bi.

For a set of items T = {e1, e2, . . . , en}, let OPT (T ) denote the optimal (offline) profit, and
let Max(T ) and Greedy(T ) respectively denote the profits obtained by Algorithms Max and
Greedy.

Theorem 5. The algorithm that runs Max and Greedy uniformly at random is at most 2-
competitive.

Proof. By the definitions of Algorithms Max and Greedy, we have OPT (T ) ≤ Max(T ) +
Greedy(T ), since the optimal profit of the (integral) knapsack problem is at most the one of
the fractional knapsack problem, which is again at most Max(T ) +Greedy(T ). Therefore, the
competitive ratio is at most

OPT (T )
Max(T )+Greedy(T )

2

≤ 2.
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Algorithm Greedy

1: B0 := ∅
2: for each item ei in order of arrival do
3: Let Bi−1 ∪ {ei} = {b1, . . . , bk} s.t. v(b1)

s(b1)
≥ v(b2)

s(b2)
≥ · · · ≥ v(bk)

s(bk)

4: Bi := ∅
5: for j = 1 to k do
6: if s(Bi) + s(bj) ≤ 1 then Bi := Bi ∪ {bj}
7: end for
8: end for

4.2 Lower bound for randomized competitive ratio

We prove the lower bound 1 + 1/e on the competitive ratio of the general removable online
knapsack problem by using Yao’s principle [15]. We consider the following family of input
distributions parametrized by a positive integer n. Let (s, v) denote an item whose size and value
are s and v, respectively. For a given n, the probabilistic distribution of the input sequence is

(1, 1), (1/n2, 1/n), . . . , (1/n2, 1/n)︸ ︷︷ ︸
k items

with probability pk (k = 1, 2, . . . , n2) (3)

where pk = 1−e−1/n

1−e−n · e−(k−1)/n.

Theorem 6. There exists no randomized online algorithm with competitive ratio less than 1+1/e
for the removable online knapsack problem.

Proof. We consider the input distribution given in (3). Then we have the optimal expected
profit

n∑
k=1

1 · pk +
n2∑

k=n+1

k

n
· pk ≥

1− e−1/n

1− e−n
· n
(∫ 1

0

e−tdt+

∫ n

1

te−tdt

)
.

Let A be a deterministic algorithm for the online knapsack problem. Then it is not difficult
to see that A takes the first item (1, 1) to have the constant competitive ratio. Let l denote the
number of items ( 1

n2 ,
1
n ) that A rejects before item (1, 1) is cancelled. Then, the expected profit

of the algorithm A is at most

l∑
k=1

pk +

n2∑
k=l+1

k − l
n
· pk ≤

1− e−1/n

1− e−n
· ne2/n.

Therefore, by using Yao’s principle, the competitive ratio is at least

1−e−1/n

1−e−n · n
(∫ 1

0
e−tdt+

∫ n

1
t · e−tdt

)
1−e−1/n

1−e−n · ne2/n
→ 1 + 1/e (n→∞)

for any randomized online algorithm.
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