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Abstract: We consider the transmission of confidential data over a wireless quasi-static fading wiretap channel when
the main and eavesdropper channels are correlated there. Under the assumption that before transmission the transmitter
only knows the channel state information (CSI) of the main channel but has no idea about the CSI of the eavesdropper
channel, we derive the asymptotic outage probability and also asymptotic outage secrecy capacity as the transmission
power goes to infinity, which cover the corresponding results when the main and eavesdropper channels are indepen-
dent as special cases. Based on the theoretical results, the effects of channel correlation on the asymptotic outage
probability and asymptotic outage secrecy capacity are explored. Remarkably, our results reveal that the correlation
between the main and eavesdropper channels has a significant impact on both the asymptotic outage probability and
asymptotic outage secrecy capacity and that such an impact can be helpful or harmful depending on the relative channel
condition between the main and eavesdropper channels.

Keywords: physical layer security, outage secrecy capacity, Rayleigh fading channel, channel state information, chan-
nel correlation

1. Introduction

As is well known, the broadcast nature of wireless medium
makes information security one of the most important and dif-
ficult problems in wireless networks. Traditionally, information
security is ensured by applying cryptographic methods (e.g., RSA
and AES), which are implemented above the physical layer with
the assumption that an error-free physical link has already been
established. Recently, there has been a considerable attention on
the fundamental ability of the physical layer to provide wireless
communication security. This emerging paradigm is called physi-
cal layer security, which relies on channel coding techniques that
exploit the inherent randomness of propagation channels to en-
sure the transmitted messages cannot be decoded by malicious
eavesdroppers. Within this new security method, secrecy capac-
ity is used to measure the maximum information transmission rate
that can be achieved without information leakage.

The secrecy capacity of wireless networks has been stud-
ied under various channel models. Based on Shannon’s notion
of perfect secrecy [1], Wyner first proposed a wiretap channel,
where the source node transmits a message to the destination
node through a discrete memoryless channel and another mali-
cious node called wire-tapper eavesdrops this message through
another degraded version of the discrete memoryless channel,
then studied the tradeoff between the information transmission
rate and the achievable secrecy level of such channel model [2]. A
natural extension of Wyner’s problem to a Gaussian channel was
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provided by Cheong and Hellman, where the secrecy capacity is
shown to be the difference between the capacities of the main and
eavesdropper channels [3]. Csiszar and Korner then generalized
Wyner’s result to a broadcast channel, where the source node also
has a common message for both receivers in addition to a confi-
dential message for only one of them, and moreover, the eaves-
dropper channel is not a degraded version of the main channel
there [4]. It is noticed that the results in the above early works
showed that a positive secrecy capacity can be achieved if the
intended receiver has a better channel than the eavesdropper. Re-
cently, the secrecy capacity has also been studied under other
channel models, such as fading channel, multiple access chan-
nel, multi-antenna channel, relay channel and cognitive interfer-
ence channel [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19].

It is notable that the fading channel model is able to capture
the basic time-varying property of wireless channels, and hence
understanding such a channel model is critical for solving se-
curity issues in wireless applications [20]. There are many in-
tervals when the main channel’s instantaneous channel gain is
worse than the eavesdropper channel’s because of the fading phe-
nomenon. Thus, an interesting question is what is the perfor-
mance of secure communication under the fading wiretap chan-
nel. The secrecy capacity of fading channels was recently ex-
plored [5], [6], [7], [8], [9], [10]. Specifically, Refs. [5] and [6]
focused on the fading broadcast channels with only two receivers
and multiple receivers, respectively. In Ref. [7], the authors ex-
tended Wyner’s work to the case of the single-input multiple-
outputs (SIMO) fading channel and showed that the use of mul-
tiple receive antennas provides an advantage with respect to a
single-antenna one. Bloch et al. [9] studied the average secrecy
capacity under the fading wiretap channel when the transmitter
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knows the channel state information (CSI) of both the main and
eavesdropper channels*1, while [10] explored the ergodic secrecy
capacity of a slow fading wiretap channel based on an optimal
power allocation strategy, which is optimized based on the avail-
able amount of CSI. Remarkably, they showed that fading alone
guarantees that information-theoretic security is achievable, even
when the main channel has a worse average channel gain than
the eavesdropper channel. However, all the above results were
derived under the assumption of independent channels, thus the
possible correlations among channels were neglected there.

In real radio communication scenarios, correlations between
channels from a transmitter to different receivers have been fre-
quently observed [21], [22], [23]. Such correlation levels de-
pend on many factors in communication environments, such
as the presence or absence of scatters around the transmitter
and receivers, the clearance of the signal path, and the phys-
ical deployment of receiver antennas, etc. Moreover, it is
possible that eavesdroppers intentionally induce the correlation,
e.g., by approaching legitimate receivers. It is also known that
channel correlations degrade the performance of multi antenna
systems [24]. Although channel correlation is a very important
factor determining the similarity of fading behaviors of different
channels, there are only a few works that consider the effect of
channel correlation on secrecy capacity.

Some works have been done on the secrecy capacity of cor-
related fading channels [11], [12]. The paper [11] explored the
asymptotic ergodic secrecy capacity of correlated fading chan-
nels when the signal-to-noise ratio (SNR) is infinite, while the
paper [12] studied the secrecy capacity over a correlated Rayleigh
fading channel with limited SNR, under the assumption that the
transmitter knows the full CSI (channel gains of both main and
eavesdropper channels) before transmission. Notice that wire-
less channels are always fluctuating and it is very difficult (if not
impossible) to acquire the real time CSI of channels. Thus the
full CSI assumption is not really realistic with current technolo-
gies. For the more realistic scenarios where the transmitter only
knows the CSI of the main channel, a better performance measure
is the outage secrecy capacity, which is defined as the maximum
information rate that can be maintained such that the maximum
secrecy outage probability is no more than the specified value.
Also, for delay sensitive applications, where we need to ensure
a high data rate by allowing a certain probability of outage, the
outage secrecy capacity is of greater interest [7], [8], [9], [25]. To
the best of our knowledge, however, no work is available on the
outage secrecy capacity study under the more realistic correlated
fading wiretap channel.

Motivated by the above observations, this paper explores the
outage secrecy capacity over the correlated fading wiretap chan-
nel without knowing the real time CSI of the eavesdropper chan-
nel. Our main contributions are summarized as follows: (a) We
consider the general problem of confidential transmission under
the scenario that the transmitter does not know the real time CSI
of the eavesdropper channel and characterize the asymptotic out-
age probability and asymptotic outage secrecy capacity for the

*1 For more details about CSI, please refer to Section 2.1.

correlated fading wiretap channel as the transmission power goes
to infinite, which cover the corresponding results under the inde-
pendent channel scenario [8] as special cases and (b) We analyse
the impact of the correlation on the asymptotic outage probability
and asymptotic outage secrecy capacity, and reveal that channel
correlation can be helpful in certain conditions, which is a very
inspiring result and has never been exposed, as far as we know.
We also investigate the tradeoff between the outage probability
and outage secrecy capacity of the correlated fading channels.

The remainder of this paper is organized as follows. In Sec-
tion 2, we formally describe the system model including the basic
secure communication channel model and the correlated chan-
nel model. Then Section 3 analyzes the secrecy capacity of the
correlated Rayleigh fading wiretap channel and derives the theo-
retic results of the asymptotic outage probability and asymptotic
outage secrecy capacity. In Section 4, the implications of the
above results are discussed, such as the impact of channel corre-
lations on outage secrecy capacity. Finally, concluding remarks
are given in Section 5.

2. System Model

We consider the wireless system setup illustrated in Fig. 1,
where the legitimate user (Alice) sends confidential messages
to another user (Bob) over a wireless fading channel, while an
eavesdropper (Eve) eavesdrops the messages through another
wireless fading channel. Alice encodes a message block, rep-
resented by random variable (RV) W ∈ W, into a codeword,
represented by RV Xn ∈ Xn. The codeword Xn is then trans-
mitted over the wireless channel. The signal received at Bob is
denoted by RV Yn ∈ Yn, while the signal received at Eve is de-
noted by RV Zn ∈ Zn. The message estimated by Bob is de-
noted by Ŵ = φ(Yn). Here,W, X, Y and Z are the finite sets of
source, the channel input alphabet, the channel output alphabet of
main channel and the channel output alphabet of the eavesdrop-
per channel, respectively. Moreover, the members of Xn will be
written as Xn = (X(1), X(2), . . . , X(n)), and a similar convention
applies to other vectors, like Yn, Zn, Gn

m, Gn
e , Hn

m, Hn
e , Nn

m, Nn
e .

The signal Y(i) received by Bob and the signal Z(i) received by
Eve can be determined as

Y(i) = Gm(i)X(i) + Nm(i)

Z(i) = Ge(i)X(i) + Ne(i), i = 1, 2, ..., n

where n is the length of the transmitted signal, Gm(i) and Ge(i) de-
note the circularly symmetric complex Gaussian RVs with zero-
mean representing the channel gains of the main and eavesdrop-
per channels, respectively, and Nm(i) and Ne(i) represent the in-
dependent and identically distributed (i.i.d.) Gaussian noise with

Fig. 1 System model.
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zero mean and unit variance at the legitimate receiver and eaves-
dropper, respectively. The fading channel power gains of the
main and eavesdropper channels are denoted by Hm(i) = |Gm(i)|2
and He(i) = |Ge(i)|2, respectively.

It is assumed that both the main channel (the channel from
Alice to Bob) and the eavesdropper channel (the channel from
Alice to Eve) are quasi-static fading channels. In other words, the
fading coefficients, albeit random, are constant during the trans-
mission of an entire codeword and independent from codeword
to codeword. Moreover, the fading coefficients of the main and
eavesdropper channels in any coherence interval are assumed to
have correlation between them.

In this paper, a (2nRs , n) code is adopted. A (2nRs , n) code con-
sists of the following elements: 1) a message setW whose car-
dinality is |W| = 2nRs ; 2) a stochastic encoder fn(·) at Alice that
maps message W ∈ W to codeword Xn ∈ Xn; 3) a decoder φ(·)
at Bob that maps the received sequence Yn ∈ Yn to the message
Ŵ ∈ W. The performance of the coding scheme will be quanti-
fied by the following measures. The average error probability is
defined as

Pe = Pr(Ŵ � W). (1)

This probability is used to measure the level of reliable commu-
nication between Alice and Bob. The measure for eavesdropper’s
uncertainty about w, which is called the equivocation rate, is de-
fined as

Req =
1
n

H(W |Zn), (2)

where H(W |Zn) is the remaining entropy of W given that the value
of Zn is known. It indicates the secrecy level of confidential mes-
sages against the eavesdropper.

In this paper we consider only perfect secrecy which requires
the equivocation rate Req to be as large as the secured informa-
tion rate Rs = H(W)/n. The perfect secrecy rate Rs is said to be
achievable if there exists a (2nRs , n) code such that Req ≥ Rs − ε
and Pe ≤ ε for any given ε > 0. The secrecy capacity Cs is
defined as the maximum achievable perfect secrecy rate [9], i.e.,

Cs � sup
Pe≤ε

Rs. (3)

Notice that the condition for perfect secrecy used here (and also
in Refs. [2], [9], [11]) is weaker than the one proposed by Maurer
and Wolf in Ref. [26], where the information leaked to the eaves-
dropper is negligibly small not just in terms of rate but in absolute
terms. Maurer and Wolf showed that the notions could be used
interchangeably for discrete memoryless channels, but this result
was then extended to the Gaussian case in Ref. [27].

2.1 Channel State Information
In wireless communication, channel state information (CSI)

refers to channel properties of a communication link, including
channel gain, fading distribution, noise strength, and spatial cor-
relation, which can be used to describe how a signal propagates
from the transmitter to the receiver. There are basically two levels
of CSI, namely instantaneous CSI and statistical CSI. The in-
stantaneous CSI means the current channel conditions are known,

while the statistical CSI refers to a statistical characterization of
the channel is known, which can be in turn determined if the in-
stantaneous CSI is known. The instantaneous CSI makes it pos-
sible to adapt transmissions to the current channel conditions,
which is crucial for reliable communication, while the statisti-
cal CSI has no such advantage. In this work, we focus on the
CSI assumption that the instantaneous CSI (i.e., the real time
channel gains in particular) of the eavesdropper channel cannot
be achieved but the CSI of the main channel and the statistical
CSI of eavesdropper channel are known. These assumptions are
realistic for the quasi-static fading wireless environment under
consideration: both receivers can always obtain close to perfect
channel estimates, and Bob feeds back the channel estimates to
Alice while Eve is a purely passive and malicious node who does
not feed back any information to Alice [9]. In this work, the full
CSI assumption means the CSIs of both the main and eavesdrop-
per channels are known.

2.2 Correlated Channel Model
In this subsection, we emphasize how to calculate the correla-

tion coefficient between the channels, for which the similar cor-
related channel model as in Ref. [11] is adopted. Since*2 Gm and
Ge are circularly symmetric complex Gaussian RVs, the joint dis-
tribution of their envelops becomes the bivariate Rayleigh dis-
tribution [28]. Such assumption is indeed suitable to the chan-
nel model of a narrow-band system under a rich scattering en-
vironment which produces multiple propagation waves, where
the in-phase and quadrature components of Gm and Ge can be
considered as Gaussian processes by the central limit theorem.

We denote the random variables Gm and Ge as Gm = Gmc+ jGms

and Ge = Gec + jGes, respectively. For the spatial fading corre-
lation between the main and eavesdropper channels, we consider
the following situations:
• The in-phase component of Gm is spatially correlated with

the in-phase component of Ge, while it is independent of
quadrature components of Gm and Ge. In the same man-
ner, the quadrature components of Gm and Ge are spatially
correlated to each other.

• The level of spatial fading correlation between the in-phase
components is identical to that between the quadrature com-
ponents.

In this setting, we denote the correlation coefficient between Gm

and Ge as ρGmGe , and we have

ρGmGe =
cov(Gmc,Gec)√
var(Gmc)var(Gec)

=
cov(Gms,Ges)√
var(Gms)var(Ges)

.

Denoting the correlation coefficient between the power gains Hm

and He as ρ, we have

ρ =
cov(Hm,He)√
var(Hm)var(He)

,

and 0 ≤ ρ < 1 here [11]. ρ is also related to the channel corre-
lation coefficient by ρ = |ρGmGe |2. Moreover, simple and intuitive

*2 For simplicity, we omit here the component identification in Gm(i) and
Ge(i) and simply use Gm and Ge to denote the channel gains for the main
and eavesdropper channels. A similar convention applies to the power
gains Hm(i) and He(i).
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geometrical interpretations of the fading statistics are suggested
in Ref. [29] where the spatial fading correlation is effectively de-
scribed by several spatial parameters: the angular spread, the an-
gular constriction, and the azimuthal direction of maximum fad-
ing.

3. Outage Secrecy Capacity of Correlated
Fading Channels

This section characterizes the asymptotic outage probability
and corresponding asymptotic outage secrecy capacity when the
main channel is correlated with the eavesdropper channel. We
first establish the secrecy capacity in a single realization of
the fading coefficients, and then derive the asymptotic secrecy
capacity as the transmission power goes to infinity. Finally, we
characterize the asymptotic outage probability and asymptotic
outage secrecy capacity based on the above results.

3.1 Preliminaries
We begin with the secrecy capacity for one realization of the

fading channels at a coherence interval during which the channel
gains are assumed to be constant. It is assumed that the transmis-
sion power is P. As stated in Ref. [9], it is reasonable to view the
main channel in this scenario as a complex additive white gaus-
sian noise (AWGN) channel with its SNR PHm and capacity

Cm = log(1 + PHm). (4)

Similarly, the eavesdropper channel is a complex AWGN chan-
nel with its SNR PHe and capacity

Ce = log(1 + PHe). (5)

It is known that the secrecy capacity of a complex AWGN wire-
tap channel is just the difference between the main and eaves-
dropper channels there [9]. Thus, the secrecy capacity for one
realization of the fading coefficients is derived as

Cs =

⎧⎪⎪⎨⎪⎪⎩
log(1 + PHm) − log(1 + PHe), if Hm > He;
0, if Hm ≤ He.

(6)

3.2 High SNR Regime
It is easy to deduce from Eq. (4) that the channel capacity with-

out secrecy constraint grows nearly logarithmically with the SNR.
However, the secrecy capacity shows a different behavior as the
SNR increases.

From Eq. (6), when the main channel gain is better than the
eavesdropper channel gain (e.g., Hm > He), the asymptotic se-
crecy capacity for one pair of channel gains is given by

Cs = log(1 + PHm) − log(1 + PHe)

= log

⎛⎜⎜⎜⎜⎝
1
P + Hm

1
P + He

⎞⎟⎟⎟⎟⎠
(a)≤ log

(
Hm

He

)
� Clim

s , (7)

where the equality in (a) holds as P goes to infinity (i.e., high
SNR), and the asymptotic secrecy capacity is denoted as Clim

s .
Thus, the asymptotic secrecy capacity is controlled by the chan-
nel power gain ratio.

3.3 Outage Probability and Outage Secrecy Capacity
We say outage happens when the instantaneous secrecy

capacity*3 is less than a target secrecy rate Rst > 0. Thus, the
outage probability is defined as

Pout(Rst) = P(Cs < Rst). (8)

The operational significance of this definition of outage proba-
bility is threefold. First, it provides the fraction of fading realiza-
tions for which a secrecy rate of Rst cannot be supported. Second,
it provides a security metric for the situation where Alice is not
sure about the real time CSI of eavesdropper channel, which is
more realistic compared with the full CSI assumption. In this
case, Alice has no choice but to set the secret transmission rate
to a constant Rst based on the channel statistical properties. By
doing so, Alice is assuming that the capacity of the eavesdropper
channel is given by C

′
e = Cm−Rst. As long as Rst < Cs, the eaves-

dropper channel is worse than Alice’s estimate, i.e., Ce < C
′
e,

and the wiretap codes used by Alice can ensure perfect secrecy.
Otherwise, if Rst > Cs, then Ce > C

′
e and the physical layer se-

curity is compromised. Third, for a delay-sensitive application,
we can achieve much higher communication rates by allowing
some outage probability. If no outage is allowed, we can hardly
transmit any information in poor channel conditions.

Adopting the same notations as that in Ref. [11], we let U =

Hm/He. The average Channel power Gain Ratio (CGR) is de-
noted as κ = E[Hm]/E[He], and the channel Power Correlation
Coefficient (PCC) between Hm and He is ρ. Under the Rayleigh
fading assumption, the probability density function (PDF) of the
channel power gain ratio U is derived as Ref. [11]

fU (u) = κ
(1 − ρ)(u + κ)

[(u + κ)2 − 4ρκu]3/2
, u ≥ 0. (9)

Thus, we have the following lemma.
Lemma 1: If the main channel is correlated with the eaves-
dropper channel, and the joint PDF of them follows the bivariate
Rayleigh distribution, as the SNR increases, the probability that
the instantaneous secrecy capacity is larger than τ (τ ≥ 0) is upper
bounded by

P
(
Clim

s > τ
)
=

1
2
− 2τ − κ

2
√

(2τ + κ)2 − 4ρκ2τ
. (10)

Proof.

P
(
Clim

s > τ
)
= P

(
log

(
Hm

He

)
> τ

)
= P(log u > τ)

=

∫ ∞

2τ
fU (u)du

=

⎡⎢⎢⎢⎢⎢⎣ u − κ
2
√

(u + κ)2 − 4ρκu

⎤⎥⎥⎥⎥⎥⎦
∞

2τ

=
1
2
− 2τ − κ

2
√

(2τ + κ)2 − 4ρκ2τ

�

*3 The instantaneous secrecy capacity is used to denote the secrecy capacity
determined by the instantaneous channel gains of both main and eaves-
dropper channels. This notation is also used in Ref. [9].
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Remarks: When the main and eavesdropper channels are not
correlated, that is ρ = 0, the probability that the instantaneous
secrecy capacity is larger than τ (τ ≥ 0) is upper bounded by

P
(
Clim

s > τ
)
=

κ

2τ + κ
,

which is just the upper bound of the similar probability in Ref. [9]
when the main channel SNR goes to infinity.

Notice that the outage secrecy capacity is the maximum se-
crecy rate that can be maintained under any fading condition
during nonoutage such that the allowed average transmission out-
age probability is satisfied. In other words, if the target transmis-
sion rate is Rst, and the secrecy outage probability correspond-
ing to Rst is ε, then Rst is called the ε-outage secrecy capacity,
[8], [30], i.e.,

Cout(ε) � max
Pout(Rst)≤ε

(Rst). (11)

Since the upper bound of the probability that the instantaneous
secrecy capacity is larger than a specified value is derived in
Lemma 1, we can obtain the lower bound of the outage prob-
ability for a target secrecy rate Rst and also the corresponding
upper bound of the outage secrecy capacity in a closed-form, as
summarized in Theorem 1. Notice that the bounds of the outage
probability and outage secrecy capacity are denoted as Plim

out(Rst)
and Clim

out(ε), since they are derived based on the asymptotic se-
crecy capacity as the transmitting power P goes to infinity (i.e.,
high SNR).
Theorem 1: If the main channel is correlated with the eaves-
dropper channel and the joint PDF of them follows the bivariate
Rayleigh distribution, as the transmission power P increases, the
outage probability for a target secrecy rate Rst is lower bounded
by

Plim
out(Rst) = P

(
Clim

s � Rst

)

=
1
2
+

2Rst − κ
2
√

(2Rst + κ)2 − 4ρκ2Rst

; (12)

and the outage secrecy capacity is upper bounded by

Clim
out(ε)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
log

(
−κ(√ϕ2−1 + ϕ

))]+
, if 0<ε≤ 1

2 ;[
log

(
κ
( √
ϕ2−1 − ϕ))]+, if 1

2 <ε<1.
(13)

where ϕ = (2ε−1)2(1−2ρ)+1
(2ε−1)2−1 , [x]+ = max{0, x} and ε is the specified

outage probability.

Proof.

Plim
out(Rst) = P

(
Clim

s � Rst

)
= 1 − P

(
Clim

s > Rst

)
.

By substituting Eq. (10) into the above equation, the result
Eq. (12) then follows. Based on Eqs. (11) and (12), Eq. (13) can
be proved by simple mathematical inversion operations, which is
presented in Appendix A.1. �

Remarks:
1) From Eq. (12), when Rst → 0 and ρ→ 0, it follows that,

Plim
out →

1
1 + κ

,

which corresponds to the independent channel case in Ref. [8].
2) When the main and eavesdropper channels are completely

correlated, i.e., ρ→ 1, the outage probability for a target secrecy
rate Rst becomes

lim
ρ→1
Plim

out(Rst) =

⎧⎪⎪⎨⎪⎪⎩
0, if Rst < log κ;
1, if Rst ≥ log κ.

(14)

On one hand, Eq. (14) shows that outage must happen when the
target secrecy rate Rst is greater than the asymptotic secrecy ca-
pacity at the average channel power gain ratio (i.e., Rst ≥ log κ).
On the other hand, if the main and eavesdropper channels are
completely correlated, the information outage can be avoided by
choosing a target secrecy rate Rst less than the asymptotic secrecy
capacity at the average channel power gain ratio (i.e., Rst < log κ).

3) Regardless of the correlation coefficient, the outage
probability goes to 0 if the target secrecy rate is far below the
asymptotic secrecy capacity at the average channel power gain
ratio (e.g., Rst 
 log κ), and goes to 1 if the target secrecy rate is
far above the asymptotic secrecy capacity at the average channel
power gain ratio (e.g., Rst � log κ).

About the impact of correlation on the asymptotic outage se-
crecy capacity, we have the following lemma.
Lemma 2: When 0 < ε ≤ 1

2 , Clim
out(ε) increases as the correlation

coefficient ρ grows; when 1
2 < ε < 1, it decreases as ρ grows.

Proof. First, since ε ∈ (0, 1) and ρ ∈ [0, 1), it is easy to derive
that ϕ = (2ε−1)2(1−2ρ)+1

(2ε−1)2−1 is monotonically increasing with respect

to ρ and ϕ < 0. Second, let f1(ϕ) = −κ( √ϕ2 − 1 + ϕ) and
f2(ϕ) = κ(

√
ϕ2 − 1 − ϕ). Then, the derivatives of them are given

by

f
′

1 (ϕ) = −κ
⎛⎜⎜⎜⎜⎜⎝1 + ϕ√

ϕ2 − 1

⎞⎟⎟⎟⎟⎟⎠ (15)

and

f
′

2 (ϕ) = κ

⎛⎜⎜⎜⎜⎜⎝−1 +
ϕ√
ϕ2 − 1

⎞⎟⎟⎟⎟⎟⎠ , (16)

respectively. Since κ > 0 and ϕ < 0, we can find that f
′

1 (ϕ) > 0,
which indicates that f1(ϕ) monotonically increases with ϕ <
0, and f

′
2 (ϕ) < 0, which indicates that f2(ϕ) monotonically

decreases with ϕ < 0. Finally, combined with the fact that the
logarithm does not change the monotonicity, the above lemma
can be proved. �

4. Numerical Results and Discussion

Based on the theoretical models derived in this paper, this sec-
tion provides some numerical values to explore the potential im-
pact of channel correlation on the outage performances and also
some inherent performance tradeoffs.

4.1 Impact of Correlation on Outage Probability
From Eq. (12), it is easy to find that when the target secrecy

rate Rst is less than the asymptotic secrecy capacity at CGR κ
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Fig. 2 Outage probability versus channel power gain ratio (CGR), for some
selected values of channel power correlation coefficient (PCC) and
for the target secrecy rate Rst equal to 0.1 bits.

(i.e., Rst < log κ), the outage probability that can be achieved is
less than 1/2. When the target secrecy rate Rst is greater than the
asymptotic secrecy capacity at CGR κ (i.e., Rst > log κ), we can
still transmit a secret message but with outage probability greater
than 1/2.

To examine the impact of CGR and PCC on the outage
probability, Fig. 2 depicts the asymptotic outage probability ver-
sus CGR, for some selected values of PCC and for the target se-
crecy rate Rst equal to 0.1 bits. It is noticed that the asymptotic
outage probability decreases as the CGR grows, which is rea-
sonable since the outage probability decreases as the main chan-
nel gets better. Moreover, if the asymptotic secrecy capacity at
CGR log κ is larger than the target secrecy rate Rst = 0.1 bits (i.e.,
κ > 0.3 dB), then the asymptotic outage probability is less than
1/2; otherwise the outage probability becomes greater than 1/2.
It is also important to observe that the impact of correlation on
the asymptotic outage probability has different behaviors in the
low and high CGR regimes. In the low CGR regime, the outage
probability increases as the correlation grows. However, in the
high CGR regime, the outage probability decreases as the corre-
lation grows. Thus, the possible correlation should be considered
to determine the target secrecy rate or the outage probability in
real applications. Notice that channel correlation becomes help-
ful only when κ > 0 dB and Rst < log κ (i.e., Pout < 1/2). If
the main channel’s average gain is worse than the eavesdropper’s
(i.e., κ < 0 dB), a positive secrecy rate can still be achieved,
though the corresponding outage probability will be over 1/2.
The above phenomenon is reasonable since if κ > 0 dB, then the
larger the correlation level, the higher the probability of having
Hm > He.

4.2 Impact of Correlation on Outage Secrecy Capacity
Now, we investigate the impact of correlation on the outage

secrecy capacity at the low and high outage probabilities, respec-
tively*4.

Figures 3 and 4 depict the asymptotic outage secrecy capac-

*4 Although the high outage probability is not pursued in real applications,
it is desirable for us to understand the impact of correlation under this
scenario.

Fig. 3 The asymptotic outage secrecy capacity versus channel power gain
ratio (CGR), for some selected values of channel power correlation
coefficients (PCC) and for the outage probability equal to 0.1.

Fig. 4 The asymptotic outage secrecy capacity versus channel power gain
ratio (CGR), for some selected values of channel power correlation
coefficients (PCC) and for the outage probability equal to 0.75.

ity versus CGR, for some selected values of PCC and for the
case that the asymptotic outage probability is less than 1/2 (0.1
here) and the case that the asymptotic outage probability is larger
than 1/2 (0.75 here), respectively. We can see that the asymp-
totic outage secrecy capacity grows as the CGR increases for
both outage probability requirements there. For the same CGR
and the same PCC, it is also noticed that the asymptotic outage
secrecy capacity grows as the outage probability increases. Fur-
thermore, the asymptotic outage secrecy capacity increases as the
PCC grows when the outage probability is less than 1/2, while it
degrades as the PCC grows when the outage probability is greater
than 1/2, which indicates that the correlation is helpful when
ε < 1/2 but becomes harmful when ε > 1/2. Notice that the
numerical results agree with the theoretical analysis in Lemma 2
well. The physical reason of such phenomenon is given as fol-
lows. Let Ust denote the target channel power gain ratio (i.e.,
Ust = 2Rst ). From Eq. (12), it is obvious that Ust < κ when
ε < 1/2 and Ust > κ when ε > 1/2. As the PCC ρ grows, the
power gain of the main channel Hm and that of the eavesdropper
channel He vary much more similarly for any coherence inter-
val, which indicates that the probability of having the real time
channel power gain ratio U = Hm/He close to the average one
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κ = E[Hm]/E[He] increases (i.e., the variance of U decreases in
statistics). Thus, the value of the target channel power gain ratio
Ust for a specified ε increases as ρ grows when Ust < κ, and de-
creases as ρ grows when Ust > κ. Therefore, the target secrecy
rate Rst and thus the asymptotic outage secrecy capacity increases
as the PCC grows when ε < 1/2, but decreases when ε > 1/2.

4.3 Outage Probability vs. Outage Secrecy Capacity
In this subsection, we examine the relation between the asymp-

totic outage probability and asymptotic outage secrecy capacity
under the following three cases: 1) the main channel’s condition
is better than the eavesdropper’s; 2) the main channel’s condition
is the same as the eavesdropper’s; 3) the main channel’s condition
is worse than the eavesdropper’s.

Figures 5, 6 and 7 show the asymptotic outage secrecy capac-
ity versus outage probability for some selected values of PCC and
for the three scenarios that the main channel’s condition is better
than the eavesdropper’s (κ = 10 dB), the main channel’s condition
is the same as the eavesdropper’s (κ = 0 dB) and the main chan-
nel’s condition is worse than the eavesdropper’s (κ = −10 dB).
In Fig. 6, it is noticed that the outage secrecy capacity is 0 when
the outage probability is less than 0.5. In Fig. 7, it is also no-
ticed that the positive outage secrecy capacity can be achieved
even when the main channel’s condition is much worse than the
eavesdropper’s, even though the outage probability is greater than
0.9. This is due to the reason that, although E[Hm] < E[He]
(i.e., κ < 0 dB), it is possible to have coherence intervals during
which Hm is larger than He since both the main and eavesdrop-
per channels are fading and not perfectly correlated there. From
the three figures, we can find that for a given outage probabil-
ity the asymptotic outage secrecy capacity at κ = 10 dB is the
largest in comparison with the other two cases, which indicates
that the main channel’s condition should be maintained as good
as possible. Moreover, one can observe from Fig. 5 that the corre-
lation between the main and eavesdropper channels is construc-
tive when the outage probability is less than 1/2, and becomes
destructive when the outage probability is greater than 1/2. It is
also observed that the outage secrecy capacity can be enlarged by
allowing a larger outage probability.

4.4 PCC vs. CGR
It is noticed from the above discussions that channel correlation

becomes helpful when the target transmission rate is less than the
asymptotic secrecy capacity at the CGR. So, it is desirable to
make the PCC as high as possible while keeping the CGR high in
a practical design of wireless communication. However, in real
wireless networks, an active eavesdropper can not only increase
the PCC but also decrease the CGR by approaching the legiti-
mate receiver on purpose. Two natural questions are: What is
the tradeoff between the CGR and PCC? Is it necessary to keep
a guard zone, defined as the region around the receiver in which
the eavesdroppers are not allowed?

Figures 8 and 9 show examples of the tradeoff between CGR
and PCC for some selected target secrecy rates and for the cases
that outage probability is less than 1/2 (0.1 here) and larger than
1/2 (0.75 here), respectively. It is observed that the CGR de-

Fig. 5 The asymptotic outage secrecy capacity versus outage probability,
for some selected values of channel power correlation coefficients
(PCC) and for the channel scenario of κ = 10 dB.

Fig. 6 The asymptotic outage secrecy capacity versus outage probability,
for some selected values of channel power correlation coefficients
(PCC) and for the channel scenario of κ = 0 dB.

Fig. 7 The asymptotic outage secrecy capacity versus outage probability,
for some selected values of channel power correlation coefficients
(PCC) and for the channel scenario of κ = −10 dB.

creases as the PCC grows for the case when the outage probability
is less than 1/2, while the CGR increases as the PCC grows for
the case when the outage probability is greater than 1/2, which
confirms our previous result that channel correlation becomes
helpful if the target transmission rate is less than the asymptotic
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Fig. 8 Channel power gain ratio (CGR) versus channel power correlation
coefficient (PCC), for some selected values of target secrecy rates
with the outage probability ε = 0.1.

Fig. 9 Channel power gain ratio (CGR) versus channel power correlation
coefficient (PCC), for some selected values of target secrecy rates
with the outage probability ε = 0.75.

secrecy capacity at the CGR. Moreover, a more exact tradeoff be-
tween CGR and PCC is needed so that it can provide a baseline
to determine if an eavesdropper’s approaching is harmful or not.
We draw lines κ = 12 dB and κ = 2 dB in Figs. 8 and 9, respec-
tively, and find that to increase one bit in the target transmission
rate, a more than fifty percent improvement of correlation level
is needed for a fixed CGR, or about 3 dB improvement of CGR
is needed for a specified PCC. Thus, in practical network design,
if an eavesdropper is approaching the main receiver to eavesdrop
messages, the situation for the eavesdropper does not become bet-
ter if the PCC is increased more than fifty percent when the CGR
is decreased less than about a 3 dB, which is a very impressive re-
sult for current studies which always assume the eavesdropper’s
approach is destructive.

4.5 Ergodic Secrecy Capacity vs. Outage Secrecy Capacity
In this subsection, we show the differences between the results

in this paper and the previous results in Ref. [11] which con-
sider the asymptotic ergodic secrecy capacity of the correlated
Rayleigh fading wiretap channel.

Figures 10 and 11 compare the asymptotic ergodic secrecy
capacity (i.e., Eq. (5) in Ref. [11]) with the asymptotic outage se-

Fig. 10 Asymptotic ergodic secrecy capacity and asymptotic outage secrecy
capacity versus channel power gain ratio (CGR) when the channels
are independent.

Fig. 11 Asymptotic ergodic secrecy capacity and asymptotic outage secrecy
capacity versus channel power gain ratio (CGR) when the channels
are highly correlated.

crecy capacity (i.e., Eq. (13) in this paper) under the assumption
that the channels are independent and correlated, respectively.
It is noticed that the asymptotic outage secrecy capacity is no
larger than the asymptotic ergodic secrecy capacity when the al-
lowed outage probability is small (0.1 here). However, if the
allowed outage probability can be larger (0.75 here), the corre-
sponding asymptotic outage secrecy capacity is much larger than
the asymptotic ergodic secrecy capacity. Moreover, it is also ob-
served that the difference between the asymptotic ergodic secrecy
capacity and asymptotic outage secrecy capacity becomes less as
the correlation level grows irrespective of outage probability. It
is important to notice that the above ergodic secrecy capacity is
achieved under the assumption that the CSIs of both the main and
eavesdropper channels are available. For situations when full CSI
cannot be achieved before transmission or when the delay-limited
transmission is required, the transmitter has to transmit the infor-
mation with some probability of outage and the outage secrecy
capacity becomes the main performance measure to refer to.

5. Conclusion

In this paper, we derived the closed-form expression of the
asymptotic outage probability and asymptotic outage secrecy ca-
pacity under the correlated Rayleigh fading wiretap channel,
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which cover the special cases when the main and eavesdrop-
per channels are independent. We then analyzed the impact of
correlation on the asymptotic outage probability and asymptotic
outage secrecy capacity, and observed that the asymptotic out-
age probability decreases as the channel correlation grows in the
high CGR regime, and the asymptotic outage secrecy capacity in-
creases as the channel correlation grows when the outage proba-
bility is less than 1/2. Then, we analyzed the tradeoff between
the asymptotic outage secrecy capacity and outage probability
which showed that the asymptotic outage secrecy capacity can
be increased by sacrificing the outage probability. Furthermore,
the tradeoff between the PCC and CGR is discussed, from which
we find that the situation for the eavesdropper does not become
better if the PCC is increased more than fifty percent while the
CGR is decreased less than about 3 dB. This represents the sce-
nario that the eavesdropper is approaching the main receiver on
purpose. Remarkably, our results reveal that the correlation be-
tween the main and eavesdropper channels becomes helpful when
the main channel’s average channel gain is better than the eaves-
dropper channel’s and the outage probability is less than 1/2, and
becomes harmful otherwise.

References

[1] Shannon, C.E.: Communication theory of secrecy systems, Bell Sys-
tem Technical Journal, Vol.28, No.4, pp.656–715 (1949).

[2] Wyner, A.D.: The wire-tap channel, Bell System Technical Journal,
Vol.54, No.8, pp.1355–1387 (1975).

[3] Leung-Yan-Cheong, S.K. and Hellman, M.E.: The Gaussian wire-tap
channel, IEEE Trans. Inf. Theory, Vol.24, No.4, pp.451–456 (1978).

[4] Csiszar, I. and Korner, J.: Broadcast channels with confidential mes-
sages, IEEE Trans. Inf. Theory, Vol.24, No.3, pp.339–348 (1978).

[5] Liang, Y., Poor, H.V. and Shitz, S.S.: Secure communication over fad-
ing channels, IEEE Trans. Inf. Theory, Vol.54, No.6, pp.2470–2492
(2008).

[6] Khisti, A., Tchamkerten, A. and Wornell, G.: Secure broadcasting
over fading channels, IEEE Trans. Inf. Theory, Vol.54, No.6, pp.2453–
2469 (2008).

[7] Parada, P. and Blahut, R.: Secrecy capacity of SIMO and slow fading
channels, IEEE Int. Symp. Information Theory (ISIT), pp.2152–2155,
IEEE (2005).

[8] Barros, J. and Rodrigues, M.R.D.: Secrecy Capacity of Wireless
Channels, IEEE Int. Symp. Information Theory (ISIT), Seattle, WA,
pp.356–360 (2006).

[9] Bloch, M., Barros, J., Rodrigues, M.R.D. and McLaughlin, S.W.:
Wireless Information-Theoretic Security, IEEE Trans. Inf. Theory,
Vol.54, No.6, pp.2515–2534 (2008).

[10] Gopala, P.K., Lai, L. and Gamal, H.E.: On the Secrecy Capacity of
Fading Channels, IEEE Trans. Inf. Theory, Vol.54, No.10, pp.4687–
4698 (2008).

[11] Jeon, H., Kim, N., Choi, J., Lee, H. and Ha, J.: Bounds on Secrecy Ca-
pacity Over Correlated Ergodic Fading Channels at High SNR, IEEE
Trans. Inf. Theory, Vol.57, No.4, pp.1975–1983 (2011).

[12] Sun, X., Zhao, C. and Jiang, M.: Closed-Form Expressions for Se-
crecy Capacity over Correlated Rayleigh Fading Channels (2010),
available from 〈http://arxiv.org/ftp/arxiv/papers/0712/0712.3896.pdf〉.

[13] Debbah, M., El-Gamal, H., Poor, H. and Shamai, S.: Wireless physi-
cal layer security, EURASIP Journal on Wireless Communications and
Networking, Vol.2009, p.150 (2009).

[14] Liang, Y. and Poor, H.V.: Multiple-access channels with confiden-
tial messages, IEEE Trans. Inf. Theory, Vol.54, No.3, pp.976–1002
(2008).

[15] Liu, R. and Poor, H.: Multi-antenna Gaussian broadcast channels with
confidential messages, IEEE Int. Symp. Information Theory (ISIT),
Toronto, ON, Canada, IEEE, pp.2202–2206 (2008).

[16] Ekrem, E. and Ulukus, S.: Secrecy in cooperative relay broadcast
channels, IEEE Trans. Inf. Theory, Vol.57, No.1, pp.137–155 (2011).

[17] Lai, L. and El Gamal, H.: The relay–eavesdropper channel: Coopera-
tion for secrecy, IEEE Trans. Inf. Theory, Vol.54, No.9, pp.4005–4019
(2008).

[18] Liang, Y., Somekh-Baruch, A., Poor, H., Shamai, S. and Verdu, S.:

Capacity of cognitive interference channels with and without secrecy,
IEEE Trans. Inf. Theory, Vol.55, No.2, pp.604–619 (2009).

[19] Liu, R., Liang, Y. and Poor, H.: Fading cognitive multiple-access
channels with confidential messages, IEEE Trans. Inf. Theory, Vol.57,
No.8, pp.4992–5005 (2011).

[20] Sklar, B.: Rayleigh fading channels in mobile digital communication
systems. I. Characterization, IEEE Commun. Magazine, Vol.35, No.7,
pp.90–100 (1997).

[21] Lee, W.C.-Y.: Effects on correlation between two mobile radio base-
station antennas, IEEE Trans. Commun., Vol.21, No.11, pp.1214–
1224 (1973).

[22] Rhee, S.B. and Zysman, G.I.: Results of Suburban Base Station Spa-
tial Diversity Measurements in the UHF Band, IEEE Trans. Commun.,
Vol.22, No.10, pp.1630–1636 (1974).

[23] Shiu, D., Foschini, G., Gans, M. and Kahn, J.: Fading correlation
and its effect on the capacity of multielement antenna systems, IEEE
Trans. Commun., Vol.48, No.3, pp.502–513 (2000).

[24] Tulino, A.M., Lozano, A. and Verdu, S.: Impact of antenna correlation
on the capacity of multiantenna channels, IEEE Trans. Inf. Theory,
Vol.51, No.7, pp.2491–2509 (2005).

[25] Zhou, X., McKay, M., Maham, B. and Hjorungnes, A.: Rethinking the
secrecy outage formulation: A secure transmission design perspective,
IEEE Commun. Lett., Vol.15, No.3, pp.302–304 (2011).

[26] Maurer, U. and Wolf, S.: Information-theoretic key agreement:
From weak to strong secrecy for free, Advances in Cryptology-
Eurocrypt 2000 (Lecture Notes in Computer Science), Vol.1807,
Berlin, Germany, Springer, pp.351–368 (2000).

[27] Nitinawarat, S.: Secret key generation for correlated Gaussian sources,
IEEE Int. Symp. Information Theory (ISIT), pp.702–706 (2008).

[28] Davenport, W. and Root, W.: An introduction to the theory of random
signals and noise, Vol.11, No.6, McGraw-Hill, New York (1958).

[29] Durgin, G. and Rappaport, T.: Theory of multipath shape factors
for small-scale fading wireless channels, IEEE Trans. Antennas and
Propag., Vol.48, No.5, pp.682–693 (2000).

[30] Li, L., Jindal, N. and Goldsmith, A.: Outage Capacities and Optimal
Power Allocation for Fading Multiple-Access Channels, IEEE Trans.
Inf. Theory, Vol.51, No.4, pp.1326–1347 (2005).

Appendix

A.1 Proof of Eq. (13)

In this proof, we will first show that Clim
out(ε) equals the target

secrecy rate Rst under the condition that Plim
out(Rst) = ε, and then

determine the actual value of Clim
out(ε) based on the monotonicity

of Plim
out(Rst) with respect to Rst.

Based on Eq. (12), the derivative of Plim
out(Rst) is given by

(
Plim

out(Rst)
)′
=

2Rstκ(1 − ρ)(2Rst + κ) ln 2[(
2Rst + κ

)2 − 4κρ2Rst

]3/2
. (A.1)

Since Rst > 0, κ > 0 and 0 ≤ ρ < 1, it is easy to see that
2Rstκ(1 − ρ)(2Rst + κ) ln 2 > 0. Moreover, we have (2Rst + κ)2 −
4κρ2Rst > 0 due to that 22Rst + κ2 ≥ 2κ2Rst > 2κρ2Rst . Therefore,
we have

(
Plim

out(Rst)
)′
> 0, which indicatesPlim

out(Rst) monotonically
increases with Rst. In other words, Rst monotonically increases
with the outage probability. Thus, according to the definition of
ε-outage secrecy capacity in Eq. (11), we find that Clim

out(ε) = Rst

with condition that Plim
out(Rst) = ε.

By letting Plim
out(Rst) = ε, we get

(2Rst + κϕ)2 = κ2(ϕ2 − 1), (A.2)

where ϕ = (2ε−1)2(1−2ρ)+1
(2ε−1)2−1 . The derivative of ϕ with respect to ε

can be derived by

ϕ′ = −8(2ε − 1)(1 − ρ)[
(2ε − 1)2 − 1

]2
. (A.3)

From Eq. (A.3), we find the fact that ϕ monotonically increases
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with ε in the region ε ∈ (0, 1/2] and strictly decreases with ε
in the region ε ∈ (1/2, 1), and the maximum value is achieved as
ϕ = −1 at the point ε = 1/2. We then let f1(ϕ) = −κ( √ϕ2 − 1+ϕ)
and f2(ϕ) = κ(

√
ϕ2 − 1−ϕ). We find the fact that f1(ϕ) monoton-

ically increases with ϕ and f2(ϕ) monotonically decreases with
ϕ in the region ϕ ∈ (−∞,−1). Combining the above two facts
and also the fact that Clim

out(ε) monotonically increases with ε, the
result Eq. (13) then follows. �
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