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Abstract: Gaining complete understanding of the active services and open communication paths is often difficult
because of the rapidly expanding complexity of those services and their wide-ranging functions. Furthermore, the IT
administrators of hand-designed systems often lack ways to identify and close unnecessary services and communica-
tion pathways. In this paper, firstly we propose an automated approach to discover all active services and the permitted
communications paths in networked system. Secondly, we propose a method to detect all unexpected services and
communication paths in networked system for IT system administrators. We then show how hand-designed networked
systems containing such devices are prone to contain numerous unnecessary active services and communication paths,
which are exploited by malicious actions such a service denial, information theft, and/or cyber espionage. The evalua-
tion result shows the effectiveness of our proposed approach.
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1. Introduction

The evolving services available on the Internet are causing nu-
merous systems to become increasingly complex. As a result,
many systems are now composed of multiple small networks that
often consist of multiple servers and network devices. We call
such systems “networked systems.”

The management of vulnerabilities and the prevention of attack
damage on a networked system are both achieved through the
proper configuration of multiple components, including servers,
routers, switches, firewalls, and load balancers. Even though a
networked system consisting of tens of servers and devices may
not be considered a large system, its complexity in terms of se-
curity can be quite high. Security is achieved by considering the
interactions among each server and network device. Single-point
security is insufficient for achieving safety on an entire system,
and so the creation of compound points over multiple layers is
required.

It is crucial to design networked systems that ensure essential
communications are always available to its primary service users.
To achieve system security, unnecessary communication paths
and services on each server and network device in a networked
system should be closed. To close unnecessary communication
paths and services against the ever-increasing number of threats,
a complete understanding of the functions and vulnerabilities of
each server and network device is required. In reality, though, the
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realization of security during the design phase cannot be achieved
without a thorough understanding of all functions and vulnerabil-
ities.

Gaining a complete understanding of the active services and
communications on every server and network device in present
operating systems is difficult, because these servers and network
devices typically include a wide variety of complex functions.
This means unexpected and unnecessary communication paths
probably exist in such networked systems. Furthermore, it is es-
pecially difficult to close all unnecessary services and communi-
cation paths in hand-designed networked systems. If we allow
unnecessary open communication paths and services to exist in a
networked system, we make it possible for sophisticated attack-
ers to access the system for malicious purposes, such as service
denial, information theft, and/or cyber espionage. For example,
Poison Ivy is a backdoor program that allows attackers to access
infected hosts from outside the networked system and steal im-
portant information from other devices inside the networked sys-
tem.

To prevent these threats, it is necessary to detect all active ser-
vices and communication paths. Typically, active services that
operate without the knowledge of IT system administrators are
found in software products that have not been updated to the lat-
est version, even if those vulnerabilities are found and reported
by the manufacturer. Thus, unnecessary services cause service
denial, information theft, and/or cyber espionage.

Nevertheless, several tools are available for assessing the vul-
nerabilities of a host. Vulnerability assessment tools include
Network Mapper (NMAP) [9], which can assess a target host
in detail. However, such tools cannot merge information gath-
ered from a number of assessed hosts in a coordinated fash-
ion. Several studies are aimed at discovering networked topolo-
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gies [4], [5], [6], [7], but these studies have discovered only single
or double layers.

To achieve system security, just discovering all active services
and communication paths is not enough. We also need to de-
tect unexpected services and communication paths. We propose
a method for topology discovery in multi-layer and a method
for detection of unexpected services and communication paths.
By combining these methods, we can automatically detect unex-
pected services and communication paths on servers and network
devices. We then show how many hand-designed systems are
likely to possess numerous unnecessary services and communi-
cation paths that expose the systems to threats, such as service
denial, information theft, and/or cyber espionage.

The topology discovery method consists of two stages. In the
first stage, configuration information is gathered from all servers
and network devices in a networked system. In the second stage,
we connect and estimate the available communication paths be-
tween the servers and network devices in a multi-layer man-
ner. As a proof of concept, we developed a script for gather-
ing configuration information from servers and devices, as well
as a tool for connecting to and estimating the available commu-
nication paths identified from the information gathered by our
script. To discover multi-layered network topology, we use in-
formation obtained from a management information base (MIB)
of objects [1] and estimate the missing information. Additionally,
the networked system security quantification (NSQ) model pro-
posed by Kanaoka et al. [8] is used to evaluate the information
from multi-layered systems.

The method of detection of unexpected services and commu-
nication paths identifies all services and communication paths
discovered by the topology discovery method and determines
whether they are unexpected. To detect the unexpected services
and communication paths, we need to prepare input data, which
we compare with the results of the topology discovery.

To evaluate our proposed two-method approach, we apply our
developed script and tool to a networked system with a three-
tiered architecture and also a networked system with a demili-
tarized zone (DMZ) architecture. The results of our evaluations
indicate the level of understanding of services and communica-
tion paths, as well as the execution performance of our proposed
approach.

This paper is organized as follows. In Section 2, we present a
network model and related topology discovery studies. Topology
discovery algorithm is shown in Section 3 and we mention the
method to detect unexpected services and communication paths
in Section 4. Section 5 describes development of our method and
experimental results. We then consider our method in Section 6.
In Section 7, we discuss the limitations of our current method and
network model. Finally, we conclude the paper in Section 8.

2. Related Works

2.1 Networked System Security Quantification Model
The NSQ model was proposed by Kanaoka et al. [8] as a new

multifunctional networked system representation model for quan-
tifying networked system reliability. The NSQ model contains the
“layer” concept and classifies various network device functions

Fig. 1 Layer definition.

Fig. 2 Example of a networked system.

into five layers (Fig. 1).
In the NSQ model, network devices and services are repre-

sented by module. Modules are constructed by nodes, and links
corresponded to the vertex and edge in graph theory. The nodes
represent communication endpoints or relay points in each layer
and contain information such as a MAC address, IP address, or
port number which are used as an ID. The relay nodes pass on
communication data from endpoint (source) to endpoint (destina-
tion). The links represent dependency, relay, or communications
between nodes.

There are seven module types: Internet (I), Service (S), Layer 1

Relay (L1R), Layer 2 Relay (L2R), Layer 3 Relay (L3R), Layer 4

Relay (L4R), and Layer 5 Relay (L5R). The Internet module rep-
resents the Internet and is the source of communication with the
networked system. A service module provides services such as
World Wide Web (WWW), Secure Shell (SSH), or domain name
service (DNS). Relay modules represent network devices and
network functions. For example, L1R is a hub, L2R is a switch,
L3R is a router, L4R is a firewall and L5R is a proxy.

The NSQ model was improved to achieve more flexible and de-
tailed expression of modules [10]. Moreover, an XML data model
is also proposed using the modified NSQ model. The method of
evaluating impact of vulnerabilities in a networked system is also
proposed.

Figure 2 shows an example of a networked system. Use of
the NSQ model allows us to explain various networked systems
components as modules without losing sight of their functional
characteristics.

2.2 Topology Discovery
2.2.1 Method of Breitbart et al. [4]

A method for layer 2 and layer 3 topology discovery in hetero-
geneous IP networks has been proposed by Breitbart et al. [4].
This method exploits the simple network management proto-
col (SNMP) [2], MIB objects, and the address forwarding table
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(AFT). The basic idea behind this algorithm is as follows: First,
the neighboring routers of a known router are discovered using
routing information in MIB-II [3], and the connectivity between
routers is mapped. Next, they discover the connectivity between
switches, and between routers and switches, using AFTs. They
then implemented their algorithm and demonstrated its ability to
fully discover all paths on the target network.
2.2.2 Method of Black et al. [6]

A method for layer 2 topology discovery that does not required
assistance from network devices has been proposed by Black et
al. [6]. This method exploits the network behavior. More specif-
ically, the main host instructs the other hosts in sequence to send
packets and then observes whether or not the packets are deliv-
ered to each host. Utilizing this method, it is possible to obtain
a layer 2 topology using an NSQ model. However, the problem
is that all hosts in a network must be controlled by network man-
agers. In order to implement this software, it is necessary for
the method to install it on all hosts and to set those hosts to the
promiscuous mode.
2.2.3 Method of Chen et al. [7]

A method for application dependency discovery in a networked
system has been proposed by Chen et al. [7]. This method ex-
ploits the packet header and traffic delay distribution between de-
pendent services. The basic idea behind this method is that if
service A depends on service B, the delay distribution between
their messages should not be random. If we use this method, we
can discover topology in layer 5 of the NSQ model. However, the
problem with this method is that it takes too much time to collect
packets.

3. Topology Discovery Algorithm

In this section, we describe a topology discovery algorithm in
a multi-layered network.

3.1 Relationship between MIB and NSQ Model
Since our approach is primarily based on SNMP, we first show

how MIB objects are used to build a discovery algorithm in a
multi-layered network. Table 1 shows the relationship between
the NSQ model and MIB objects. As can be seen in the table, we
are unable to obtain MIB information that corresponds to portion
of the nodes of layers 4 and 5, or the links of layers 1, 2, 4 and
5. Such information deficits can be resolved via MIB estimations
in the next step. Details on that process will be provided in the

Table 1 Relationship between the NSQ model and the MIB object.

NSQ model MIB object
L1 Node sysName
L2 Node ifPhysAddress
L3 Node ipAdEntAddr

L4 Node (listen port) tcplocalport, udplocalport
L4 Node (transmit port) -

L5 Node -
L1 Link not required
L2 Link ipNetToNediaPhysAddress
L3 Link ipRouteNextHop
L4 Link -
L5 Link -

Module Type sysServices
Routing Information ipForwarding

following sections.
Even though we were unable to obtain the information of layer

1 links from the MIB object, layer 1 links are basically decided
by layer 2 links. Therefore, we do not need to obtain information
on layer 1 links directly.

3.2 Overview
In this section, we describe a topology discovery algorithm that

operates under the following assumptions:
( 1 ) All devices support SNMP.
( 2 ) There is no hub in a networked system.
( 3 ) There is no Virtual Local Area Networks (VLANs) in a net-

worked system.
( 4 ) The AFTs are complete.

Our topology discovery algorithm is divided into two phases,
Phase 1: Information Extraction and Phase 2: Nodes and Links

Estimation. In phase 1, we discover the connectivity between
devices using the work of Breitbart et al. [4] to obtain the con-
figuration information of all devices. With this information, we
can construct an overview of the modules and the communication
links between the modules in layers 2 and 3. After information
extraction, we can then estimate any missing nodes and links in
layers 1, 4 and 5 in phase 2 (Fig. 3). As mentioned earlier, since
it is impossible to obtain information on all nodes and links using
MIB, estimations are made instead.

For the remainder of this paper, the word “module” indicates
the data in the NSQ model that is extracted from a real “device.”
We refer to “devices” in phase 1, and “modules” in phase 2.

3.3 Phase 1: Information Extraction
In this phase, we discover the device information and connec-

tivities between devices simultaneously. The basic idea behind
this phase is to repeatedly find the neighboring devices of the cur-
rently known devices until no new devices can be discovered, and
then to obtain configuration information from all known devices.

The initial input in our method is the IP address of a known
gateway router. At the beginning, the device itself decides
whether to be L3R, L4R, L5R or S using sysServices of MIB.
If a device has sysServices (0000100) - its third bit is set, we then
decide the device L3R. Depending on the device type, the rele-
vant MIB objects are retrieved from SNMP. For example, if the
device type is S, we obtain the layer 1 node that corresponds to
sysName, the layer 2 node that corresponds to ifPhyAddress, the
layer 3 node that corresponds to ipAdEntAddr, the layer 4 node
that corresponds to tcplocalport and udplocalport. The services

Fig. 3 Flow of the proposed method.
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of the layer 5 node are determined from the port numbers of the
layer 4 node. However, we cannot determine the layer 4 nodes
that correspond to transmit ports at this juncture, so it is neces-
sary to estimate them.

Second, to discover the neighboring devices from a known de-
vice, we use ipForwarding, which is a routing information used to
discover connectivities between L3R and L3R/L4R and L4R and
L4R. We then scan the subnet to discover connectivities between
L3R and L5R/S, L4R and L5R/S and S and S.

After we discovered all connectivities between devices, which
include L3R, L4R, L5R and S, and have obtained the configura-
tion information of all devices, we can then discover the config-
uration information of the switch that corresponds to L2R, and
the connectivity between switch and router as well as the switch
and switch. To discover this connectivity, we apply the method
of Breitbart et al.

In this way, we can recursively determine the connectivity be-
tween devices and obtain their configuration information.

3.4 Phase 2: Nodes and Links Estimation
In this phase, we estimate further nodes and links in order to

complement the result from phase 1. In phase 1, we obtained de-
vice information and connectivities between the devices in layer
2 and layer 3, after which we constructed an overview of the mod-
ules. However, we were unable to obtain links for layers 1, 4 and
5 links, or the layer 4 node that corresponds to the transmit port.
In phase 2, we estimate links for the links of layers 1 and 4, layer
4 nodes, and layer 5 links, in that order, using modules and layer
3 links.

First, we estimate layer 1 links. Since we have already dis-
covered the connectivities between the devices in layer 2, we are
now able to estimate the layer 1 links between modules. If layer
2 nodes a and b are connected, we can then presume that layer 1
nodes x and y, which are connected to a and b, are connected.

Next, we estimate layer 4 nodes and layer 4 links. The process
used to estimate layer 4 nodes and links differs from the one used
to estimate links for layers 1 because it is necessary to estimate
nodes in addition to links. The basic scheme used to estimate
layer 4 nodes and links is as follows: If module A and module
B, which are either L4R, L5R, S or I are connected with layer 3
links and communicate with each other, those modules will have
a pair of layer 4 nodes that correspond to a listen port and a layer
4 node that corresponds to a transmit port. More specifically, if
module B has a layer 4 node such as 80, module A must also have
a layer 4 node that corresponds to a transmit port.

In the third step, we estimate layer 5 links. If layer 4 nodes a

and b are connected, we can presume that layer 5 nodes x and y,
which are connected to a and b, are connected as well.

In this manner, all missing nodes and links are estimated.

4. Detection of Unexpected Services and Com-
munication Paths

In this section, we propose a method to detect unexpected ser-
vices and communication paths for IT system administrators. To
the best of our knowledge, there is no way existing works to find
both unexpected services and communication paths in the net-

worked system. Hence, the method to detect them is one of our
contributions. If we combine our topology discovery method with
the detection method of unexpected services and communication
paths, we can automatically identify the unexpected services and
communication paths in a networked system.

Our proposed method detects unexpected services, communi-
cation paths, and nodes having a dependency relationship with
unexpected services, and links having a dependency relationship
with communication paths.

In the first step, we detect unexpected services and communi-
cation paths in a layer 5 network by comparing the input data for
an ideal layer 5 network with the extracted results of the topol-
ogy discovery of the real topology of the networked system. For
example, if a web service is not included in the input data but
the service is discovered in the extraction result, the IT system
administrators can identify the web service as an unexpected ser-
vice and unexpected communication paths to the unexpected web
service.

In the second step, we detect unexpected nodes corresponding
to ports and communication paths in layer 4. To detect unex-
pected nodes and communication paths in layer 4, we have to
search all nodes of layer 4 and layer 5 and all communication
paths in layers 4 and 5. Next, we compare the layer 4 commu-
nication paths with the layer 5 communication paths, then detect
the unexpected communication paths in layer 4. If module A and
module B communicate in layer 5, they also communicate in layer
4. In other words, if there is a communication path between mod-
ule A and module B in layer 5, there must be a communication
path between module A and module B in layer 4. Since we have
detected the unexpected communication paths in layer 5 in the
first step, we can detect the unexpected communication paths in
layer 4 using existing communication paths in layer 5. For ex-
ample, if we detect a communication path to the web service in
layer 5 in the first step, we can detect a communication path to
port 80 in layer 4. Comparing the communication paths in layer
4 and layer 5 in this way, we detect unexpected communication
paths. Consequently, we detect unexpected nodes in layer 4. If
node x of module A and node y of module B are connected by
unexpected communication paths in layer 4, we identify node x

corresponding to the transmit port and node y corresponding to
the listen port as unexpected nodes. For example, if we identify
the communication path to web services as unexpected commu-
nication paths in the second step, we also identify the transmit
port and the listen port, such as port 80, as unexpected nodes. We
detect unexpected nodes in layer 4 by comparing layer 4 nodes
and layer 5 nodes.

In the third step, we detect the unexpected nodes corresponding
to an IP address and communication paths in layer 3. The basic
strategy to detect unexpected nodes and communication paths is
the same as in the second step. If an unexpected communication
path exists between module A and module B in layer 4, the IT sys-
tem administrators can identify the communication path between
them in layer 3 as an unexpected communication path. Then, if a
layer 3 node has no communication path, the IT system adminis-
trators know the node is an unexpected node.

Unexpected nodes and communication paths in layer 2 and
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layer 1 are detected in the same way.
In this manner, IT system administrators are able to detect all

unexpected services and communication paths in the networked
system.

5. Implementation and Experimental Results

In this section, we describe the research results of the Simple
Network Management Protocol (SNMP), the implementation of
the two methods, the experimental environment, and the experi-
mental results.

5.1 Research of SNMP
Before attempting to execute our method, we investigated

whether the network devices support the MIB objects necessary
for implementation. In addition, we surveyed the SNMP soft-
ware to determine whether each OS was properly configured to
utilize the MIB objects. Tables 2 and 3 provide a breakdown of
the compatibility of our method with various OSs and network
devices.

5.2 Topology Discovery Algorithm
5.2.1 Implementation

We implemented our information extraction and estimation
methods in a Java 1.6. environment. When implementing the
information extraction method, we cannot use the topology dis-
covery method for discovering switches and the connectivities
between switches and the switch and router because that method
requires complete AFTs. We estimate the switches and connectiv-
ities between the switch and router, then implement the method
to estimate layer 2 links and layer 2 routing (L2R).
5.2.2 Experimental Environment

Prior to testing our proposed method, we constructed two types
of networked systems: three-tiered architecture and DMZ archi-
tecture. Figures 4 and 5 show the two types of networked sys-
tems. These networked systems were constructed in a virtual en-
vironment by using two hosts and virtualization software.

The three-tiered and the DMZ architecture provide three ser-
vices: web service, application service (AP) and database (DB)
service. The web service is redundant on three servers. Table 4
shows the specification of servers and network devices in our vir-
tual environment. Secure Shell (SSH) service was employed to
control the devices. In addition, we also installed the software to
implement our method. However, we did not run any other ser-

Table 2 Implementation of a MIB object.

Device Name NSQ Model MIB
Cisco Systems Catalyst 3560G L2R Available

Cisco Systems CISCO2811 L3R Available
YAMAHA RTX1100 L3R Available

Allied Telesis CentreCOM AR570S L3R Available
Juniper Networks NetScreen-5GT L4R Available

Table 3 SNMP software and OS compatibility.

SNMP Software OS MIB
Fedora 14, Ubuntu 10, CentOS 5,

NET-SNMP FreeBSD 8, Solaris 10, vyatta, Available
Windows 7/Vista/Server 2008

SNMP service Windows 7/Vista/Server 2008 Available

vices, nor did we change the configurations of these networked
systems.

We now show the server specifications used to estimate nodes
and links (Table 5).

The configuration of each server is initially based on installed
OS related services and applications and specific services (e.g.,
Apache HTTPD, Apache Tomcat, MySQL). The initially in-
stalled OS services and applications sometimes run unnecessary
services required for the original purpose of the server. The aim
of the configuration is to expose initially installed services that
cause difficulty in completely understanding a networked system
and can pose a big threat to sophisticated attacks.
5.2.3 Evaluation of the Proposed Method

Table 6 shows the time required to extract information and to
estimate nodes and links. We observe that information extraction
took a significant amount of time; however, we also determine the
reason for the long time. When we obtain MIB objects, we use
the snmpwalk command, which enables us to retrieve all MIB ob-

Fig. 4 Three-tiered architecture.

Fig. 5 DMZ architecture.

Table 4 Phase 1: Experimental environment.

Device Type LB, Web, AP, DB Router, FW
OS CentOS 5.8 Vyatta VC 6.4

CPU Intel(R) Xeon(TM) CPU 5160 @3.00 GHz
Intel(R) Core(TM)2 Duo CPU E7400 @2.80 GHz

Memory 512 MB 256 MB
Software JRE 1.6 JRE 1.6

NET-SNMP 5.3.2.2 NET-SNMP 5.6.1.1

Table 5 Phase 2: Experimental environment.

OS CentOS 5.8
CPU Intel(R) Core(TM) i7-3960X CPU @ 3.30 GHz

Memory 1 GB
Software JRE 1.6

Table 6 Processing time (msec).

Three-tiered DMZ
Information extraction 28,693 37,408
Estimation in layer 2 172 130
Estimation in layer 1 429 316
Estimation in layer 4 5,815 2,986
Estimation in layer 5 53,827 65,921

Total 88,936 106,761
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jects. Even though snmpwalk needs a longer time to execute than
snmpget, snmpwalk can gather whole MIB objects, including net-
work management tools with throughput data, which will be used
in future applications. If we just focus on retrieving MIB objects
required to build the NSQ data model, we can use the snmpget

command and reduce the time required for information extrac-
tion since we do not need to get extra MIB objects. The method
of Chen et al. [7], which is one of the method to discover the de-
pendency of application, shows that their method takes several
weeks or months because they have to collect a lot of packets.
Table 6 shows that our method has the advantage of taking little
time to discover network topology by comparing our method with
the method of Chen.

Table 7 shows the number of nodes and links discovered dur-
ing information extraction along with the estimated nodes and
links. We observe that a significant number of nodes and links
were estimated. Almost all node increments are layer 4 nodes
that corresponded to transmit ports. Similarly, almost all link in-
crements belong to layers 4 and 5, or the links between the layer
4 and layer 5 networks. These node and link increments indicate
that the modules have a significant number of active services, and
that each module can communicate with each of the other mod-
ules.

In this experiment, we constructed two types of networked sys-
tems: three-tiered architecture [11] and DMZ architecture. Both
architectures are typical architectures in e-Business. Our method
can use three-tiered architecture which is a more advanced ver-
sion; therefore, it can discover both one-tiered architecture and
two-tiered architecture.

Finally, we show a visualization of the experimental result
of the three-tiered architecture in phase 1 (Fig. 6) and phase 2
(Fig. 7). Note that in this representation, we only visualize two

Table 7 The number of nodes and links in Phases 1, 2.

phase 1 phase 2
Node Link Node Link

Three-tired 461 454 1,021 31,161
DMZ 315 308 793 11,590

Fig. 6 Phase 1 visualization results: three-tiered architecture.

Fig. 7 Phase 2 visualization results: three-tiered architecture.

nodes in each module, specifically FW, LB, web, AP or DB in
layer 4 and layer 5, even though the method retrieves the infor-
mation of 13 nodes for layer 4 from each module.

5.3 Detection of Unexpected Services and Communication
Paths

5.3.1 Implementation
We implemented our method to detect unexpected services and

communication paths in the Java 1.6. environment.
5.3.2 Experimental Environment

To utilize our detection algorithm, we first have to prepare an
ideal layer 5 network as input data and a target network. The in-
put data can be composed in many ways. For example, one way is
to select the intended services and communication paths from a
graphical user interface, and another way is to get the intended
services and communication paths from the networked system
specification. In this experiment, we prepare a layer 5 network
represented by the NSQ model. The network consists of Apache
HTTPD, Apache Tomcat and MySQL as an ideal layer 5 network
(Fig. 8). Additionally, as a target network, we use the results of
the topology discovery algorithm, that is, the three-tiered archi-
tecture (Fig. 7) and the DMZ architecture.

In the experiment of topology discovery, we recognize SSH
service, snmpd service, web service, Tomcat and MySQL service
as intended services. However, we recognize SSH service and
snmpd service as unnecessary services in this experiment.

Table 8 show the server specifications used to detect unex-
pected services and communication paths.
5.3.3 Evaluation of the Proposed Method

Table 9 shows the time required to detect unexpected services
and communication paths. We observe that detections of the un-
expected services and the communication paths take little time.

Table 10 shows the number of nodes and links detected as the
unexpected services and the communication paths. For example,
we detected 951 nodes and 31,038 links in three-tiered architec-

Fig. 8 Input data: ideal layer 5 network.

Table 8 Detection environment.

OS CentOS 5.8
CPU Intel(R) Core(TM) i7-3960X CPU @ 3.30 GHz

Memory 1 GB
Software JRE 1.6

Table 9 Processing time (msec).

Three-tiered DMZ
Detection in layer 5 28,044 8,134
Detection in layer 4 4,666 4,077
Detection in layer 3 13 82
Detection in layer 2 26 33
Detection in layer 1 13 18

Total 32,762 12,344

Table 10 Number of nodes and links in the detection algorithm.

Intended services and Unexpected services and
communication paths communication paths
Node Link Node Link

Three-tired 70 123 951 31,038
DMZ 111 260 682 11,330
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Fig. 9 Result of removing unexpected nodes and links.

Table 11 Results of web server service detection.

Port Pro Service Port Pro Service
22 TCP sshd 111 UDP portmap
80 TCP httpd 161 UDP snmpd

111 TCP portmap 631 UDP cupsd
932 TCP rpc.stad 926 UDP rpc.statd

32,123 TCP our software 929 UDP rpc.statd
57,911 UDP avahi-daemon 5,353 UDP avahi-daemon

ture. The table also shows that three-tiered architecture generates
more communication paths than DMZ architecture. Since three-
tiered architecture has more communication paths in layer 3 be-
tween servers, servers can communicate with each other in layer
4 and 5, that is, nodes are fully connected.

Figure 9 shows the visualization result of removing unex-
pected nodes and communication paths. Nodes and links in Fig. 9
are intended services and communication paths for IT system ad-
ministrators. By comparing Figs. 7 and 9, we can see there are
many unexpected ones.

6. Discussion

In this section, we analyze the results of our evaluations. We
conclude that the topology discovery method and the method of
detecting unexpected services and communication paths offer the
following advantages.

6.1 Topology Discovery Algorithm
Using the topology discovery method, IT system administra-

tors can detect all active services and communication paths. Re-
cently, various forms of malicious software, including Trojan
horses, backdoors, computer viruses, worms, and other malware,
have been used to steal important information like passwords.
For example, the backdoor program Poison Ivy allows remote
users (attackers) to access infected hosts. Generally speaking,
if any of the devices in a networked system becomes infected
with this malware, the attacker can secretly start/stop services, in-
stall/uninstall applications, remove/rename/execute files and per-
form other operations on that device. Then, using the infected
host as a springboard, the attacker can branch out and steal im-
portant information from other devices in the system.

It is necessary to detect all active services and communication
paths in a networked system to prevent information leakage. Ta-
ble 11 shows the web server services only after executing the
topology discovery method. Therefore, our method enables us to
detect all active services and communication paths.

6.2 Detection Algorithm
To further prevent information leakage, IT system administra-

tors have to detect and stop unexpected services and communi-
cation paths. As a typical problem, active services that operate
without the knowledge of IT system administrators are found in
software products that have not been updated to the latest ver-
sion, even if those vulnerabilities were found and reported by the
manufacturer. Such exposed services degrade the security of net-
worked systems.

Using our method, IT system administrators can detect the un-
expected services and the communication paths, so that they can
stop them. In addition, our method can detect them automatically;
therefore, our method is a suitable algorithm for large networked
systems consisting of hundreds of servers and network devices.
Furthermore, the method can also discover full connected net-
work topology in networked system. It is important for IT system
administrators to discover the network topology, since network
topologies affect the security level of networked systems. Full
connected network topology such as web servers in three-tiered
architecture is the worst case of the network topology, and the
topology generates a lot of communication paths. In particular, if
a server in that topology is infected by malware, the number of
secondary infected servers are increasing by such full connectiv-
ity. Thus, we conclude that our method has a lot of effectiveness
for detection of unexpected services and communication paths.

7. Limitations

In this section, we discuss the limitations of the NSQ model
and our proposed methods.

7.1 Topology Discovery Method
The first limitation to the topology discovery method is re-

lated to the existence of virtual LANs (VLANs), which are very
commonly used in actual networked systems. When we use our
method in an actual environment having VLANs inside the net-
worked system, we can discover layer 3 networks. Sometimes,
layer 1 or 2 nodes and links might be misestimated. However,
since the NSQ model itself can handle VLANs, modification of
the method for VLANs might be possible.

The second limitation is related to the existence of transparent
devices, such as a transparent firewall and a transparent proxy.
When we use our method in an actual environment having a trans-
parent firewall and transparent proxy, we cannot get information
of these devices because the MIBs do not show up. However,
in general, since these devices have administrative interfaces to
manage, we can get device information from the MIB by using
administrative interfaces.

The third limitation to the proposed method is that we did not
conduct experiments for huge networked systems consisting of
hundreds of network devices and servers. Although we are confi-
dent of the capability of our algorithm, we will never know until
we try to conduct a large-scale experiment.

7.2 Multiple Ports in One Service
The limitation of this method that relates to the NSQ model is

that the model cannot describe the relationships between layer 4
nodes of the same service. For example, Tomcat usually opens
multiple ports to communicate with the web server and other
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servers. If the Tomcat server is compromised through one of the
ports opened by Tomcat, other ports might be used for further ma-
licious activities. That means some layer 4 nodes are often related
to one service. However, the current NSQ model does not have
such an expression scheme. A relationship expression is required
to use the results from the proposed method, such as the results
of a vulnerability or a threat analysis of a system.

8. Conclusion

A networked system consists of servers and network devices,
and it is important for IT system administrators to understand all
unexpected services and communication paths operating in their
networked systems. Malware is often employed to steal important
information from networked systems. Active services and com-
munication paths that are operating on networked systems with-
out the knowledge of the administrator can cause such threats to
be carried out. For this reason, discovering unexpected services
and communication paths in a networked system is necessary for
every IT system administrator.

In this paper, we proposed a combined topology discovery
method and detection method of unexpected services and com-
munication paths. The topology discovery method can discover
all services and communication paths on every server and device
in a networked system, and the detection method can identify the
intended services and communication paths. By combining these
methods, we can detect unexpected services and communication
paths in a whole networked system. The experimental results of
our method show how numerous unnecessary services and com-
munication paths are typically left opened in a hand-designed net-
worked system. As a result, system vulnerabilities to threats, such
as service denial, information theft, and/or cyber espionage, in-
crease. The results of the evaluation of our detection approach
demonstrate its effectiveness.
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