ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. JIP
  2. Vol.21
  3. No.4

Privacy-preserving Collaborative Filtering Using Randomized Response

https://ipsj.ixsq.nii.ac.jp/records/95718
https://ipsj.ixsq.nii.ac.jp/records/95718
d2225ef9-fd7a-423d-92c8-2c19bcbc9d3a
名前 / ファイル ライセンス アクション
IPSJ-JIP2104005.pdf IPSJ-JIP2104005.pdf (429.0 kB)
Copyright (c) 2013 by the Information Processing Society of Japan
オープンアクセス
Item type JInfP(1)
公開日 2013-10-15
タイトル
タイトル Privacy-preserving Collaborative Filtering Using Randomized Response
タイトル
言語 en
タイトル Privacy-preserving Collaborative Filtering Using Randomized Response
言語
言語 eng
キーワード
主題Scheme Other
主題 [Special Issue on Computer Security Technology for Enriching the Future] collaborative filtering, privacy-preserving data mining, cryptographic protocol
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Department of Frontier Media Science, School of Interdisciplinary Mathematical Sciences, Meiji University/School of Information and Telecommunication Engineering, Tokai University
著者所属
Graduate School of Science and Technology, Tokai University
著者所属(英)
en
Department of Frontier Media Science, School of Interdisciplinary Mathematical Sciences, Meiji University / School of Information and Telecommunication Engineering, Tokai University
著者所属(英)
en
Graduate School of Science and Technology, Tokai University
著者名 Hiroaki, Kikuchi Anna, Mochizuki

× Hiroaki, Kikuchi Anna, Mochizuki

Hiroaki, Kikuchi
Anna, Mochizuki

Search repository
著者名(英) Hiroaki, Kikuchi Anna, Mochizuki

× Hiroaki, Kikuchi Anna, Mochizuki

en Hiroaki, Kikuchi
Anna, Mochizuki

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper proposes a new privacy-preserving recommendation method classified into a randomized perturbation scheme in which a user adds a random noise to the original rating value and a server provides a disguised data to allow users to predict the rating value for unseen items. The proposed scheme performs a perturbation in a randomized response scheme, which preserves a higher degree of privacy than that of an additive perturbation. To address the accuracy reduction of the randomized response, the proposed scheme uses a posterior probability distribution function, derived from Bayes' estimation for the reconstruction of the original distribution, to revise the similarity between items computed from the disguised matrix. A simple experiment shows the accuracy improvement of the proposed scheme.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper proposes a new privacy-preserving recommendation method classified into a randomized perturbation scheme in which a user adds a random noise to the original rating value and a server provides a disguised data to allow users to predict the rating value for unseen items. The proposed scheme performs a perturbation in a randomized response scheme, which preserves a higher degree of privacy than that of an additive perturbation. To address the accuracy reduction of the randomized response, the proposed scheme uses a posterior probability distribution function, derived from Bayes' estimation for the reconstruction of the original distribution, to revise the similarity between items computed from the disguised matrix. A simple experiment shows the accuracy improvement of the proposed scheme.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00700121
書誌情報 Journal of information processing

巻 21, 号 4, p. 617-623, 発行日 2013-10-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-6652
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 13:37:36.210855
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Anna, Mochizuki, 2013: 情報処理学会, 617–623 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3