WEKO3
-
RootNode
アイテム
Privacy-preserving Collaborative Filtering Using Randomized Response
https://ipsj.ixsq.nii.ac.jp/records/95718
https://ipsj.ixsq.nii.ac.jp/records/95718d2225ef9-fd7a-423d-92c8-2c19bcbc9d3a
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2013 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | JInfP(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2013-10-15 | |||||||
タイトル | ||||||||
タイトル | Privacy-preserving Collaborative Filtering Using Randomized Response | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Privacy-preserving Collaborative Filtering Using Randomized Response | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | [Special Issue on Computer Security Technology for Enriching the Future] collaborative filtering, privacy-preserving data mining, cryptographic protocol | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者所属 | ||||||||
Department of Frontier Media Science, School of Interdisciplinary Mathematical Sciences, Meiji University/School of Information and Telecommunication Engineering, Tokai University | ||||||||
著者所属 | ||||||||
Graduate School of Science and Technology, Tokai University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Frontier Media Science, School of Interdisciplinary Mathematical Sciences, Meiji University / School of Information and Telecommunication Engineering, Tokai University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Graduate School of Science and Technology, Tokai University | ||||||||
著者名 |
Hiroaki, Kikuchi
Anna, Mochizuki
× Hiroaki, Kikuchi Anna, Mochizuki
|
|||||||
著者名(英) |
Hiroaki, Kikuchi
Anna, Mochizuki
× Hiroaki, Kikuchi Anna, Mochizuki
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | This paper proposes a new privacy-preserving recommendation method classified into a randomized perturbation scheme in which a user adds a random noise to the original rating value and a server provides a disguised data to allow users to predict the rating value for unseen items. The proposed scheme performs a perturbation in a randomized response scheme, which preserves a higher degree of privacy than that of an additive perturbation. To address the accuracy reduction of the randomized response, the proposed scheme uses a posterior probability distribution function, derived from Bayes' estimation for the reconstruction of the original distribution, to revise the similarity between items computed from the disguised matrix. A simple experiment shows the accuracy improvement of the proposed scheme. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | This paper proposes a new privacy-preserving recommendation method classified into a randomized perturbation scheme in which a user adds a random noise to the original rating value and a server provides a disguised data to allow users to predict the rating value for unseen items. The proposed scheme performs a perturbation in a randomized response scheme, which preserves a higher degree of privacy than that of an additive perturbation. To address the accuracy reduction of the randomized response, the proposed scheme uses a posterior probability distribution function, derived from Bayes' estimation for the reconstruction of the original distribution, to revise the similarity between items computed from the disguised matrix. A simple experiment shows the accuracy improvement of the proposed scheme. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA00700121 | |||||||
書誌情報 |
Journal of information processing 巻 21, 号 4, p. 617-623, 発行日 2013-10-15 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1882-6652 | |||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |