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Abstract: Conventional flow-level simulators use timescales around the round-trip time when numerically solving
fluid-flow models for network simulations. In large-scale and high-speed network simulations, only understanding
coarser behavior than that achieved with timescales around the round-trip time is sometimes sufficient for performance
evaluation. In this paper, we propose a novel method for accelerating flow-level simulations; it omits timescale finer
than that required by the performance evaluation. Through experiments, we investigate the effectiveness of the pro-
posed method for accelerating flow-level simulations. Our findings show that the proposed method offers 60 times
faster than the conventional flow-level simulator.
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1. Introduction

Because of widespread deployment and advances in network
technologies, the scale (i.e., number of nodes and network band-
width) of networks has been expanding rapidly [1]. Such explo-
sive expansion of networks makes it difficult to understand the
behavior of the entire network. To understand the behavior of
large-scale and high-speed networks, a network simulator with
fast execution is needed. As such fast network simulator com-
pared with the conventional network simulator [2], several flow-
level simulators have been proposed [3], [4], [5], [6].

In Ref. [3], we proposed the flow-level simulator FSIM (Fluid-
based SIMulator) for performance evaluation of large-scale and
high-speed networks. FSIM performs flow-level simulation by
numerically solving ODEs (Ordinary Differential Equations) of
fluid models [7]. For accelerating flow-level simulation, FSIM
adaptively controls the step-size of the numerical solver used to
numerically solve ODEs.

Fluid models [4], [7] used in flow-level simulations describe
the network behavior with timescales around the round-trip time.
In other words, conventional flow-level simulators [3], [4] employ
the same timescale order.

However, in large-scale simulations, only understanding
coarser behavior than that realized with timescales around the
round-trip time is sometimes sufficient (Fig. 1). Depending on
the purpose of the simulation, such an understanding the perfor-
mance of a file transfer protocol or a network routing protocol,
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Fig. 1 An example of behavior at each timescale.

coarse network behavior at the timescales of seconds or minutes
is sometimes sufficient [8], [9]. When designing overlay networks
and communication networks, timescales of minutes or hours are
acceptable in some cases [10], [11]. Since such protocols and
networks behave with larger timescale than round-trip time, it be-
comes important to investigate the coarse network behavior in
performance evaluation. Hence, for performance evaluation of
large-scale networks, it would be sufficient that a flow-level sim-
ulator simulates the coarser behavior, and need not essentially
simulate the finer behavior than that with the timescale required
in performance evaluation.

In this paper, we propose a novel method that accelerates flow-
level simulations by omitting the simulations whose timescales
are finer than that required in the performance evaluation. Specif-
ically, the frequencies higher than the cutoff frequency specified
by the performance evaluator are attenuated by low-pass filtering
the fluid models. By attenuating high frequencies, the change
in network states is smoothened. As a result, the step-size in
the ODE numerical solver can be increased. This will acceler-
ate flow-level simulations.

We conduct experiments to investigate the effectiveness of the
proposed method. We first implement three low-pass filters (Inte-
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gral filter, RC filter, and RLC filter) into our flow-level simulator
FSIM, and use it to evaluate the accuracy, speed, and memory
consumption of the proposed method.

This paper is organized as follows. In Section 2, we introduce
the low-pass filters used in this paper. In Section 3, we explain the
flow-level simulation acceleration method. Section 4 details the
experiments conducted on our FSIM implementation to evaluate
the accuracy, speed, and memory consumption of the proposed
method. Finally, in Section 5, we conclude this paper and discuss
future works.

2. Low-pass Filters

In this section, we introduce the low-pass filters used to attenu-
ate the frequencies higher than the cutoff frequency as defined by
reducing the amplitude of input signals to 1/2. Although many
low-pass filters exist, we select three low-pass filters (integral fil-
ter, RC filter, and RLC filter) [12], [13] since their filters are easy
to implement. Hence, we can confirm the effectiveness of our
basic idea by using easy way.

2.1 Integral Filter
The integral filter [12] smooths the input signals by integrating

input function y(t) over interval [t−T, t]. Output function y0(t) of
the integral filter for input function y(t) is defined by

y0(t) =
1
T

∫ t

t−T
y(τ)d τ. (1)

By differentiating both sides of Eq. (1), we obtain the following
ODE

d y0(t)
d t

=
1
T
{y(t) − y(t − T )} . (2)

To investigate the frequency property of the RLC filter, we con-
vert Eq. (2) from the time domain to the frequency domain. The
converted equation of Eq. (2) in the frequency domain is given by

jωY0( jω) =
1
T

{
1 − e− jωT

}
Y( jω), (3)

where j is imaginary unit, and ω is angular frequency given by
ω = 2π f . Y0( jω) is the output function of the integral filter in
the frequency domain, and Y( jω) is the input function in the fre-
quency domain. From Eq. (3), cutoff frequency fc of the integral
filter is given by

fc =
2
πT
. (4)

The frequency responses (gain G( fc) and phase lag θ( fc)) of the
integral filter with the cutoff frequency fc are given by

G0( fc) =
fc

4 f

√
2

{
1 − cos

(
4 f
fc

)}
, (5)

and

θ0( fc) = − tan−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos
(
1 − 4 f

fc

)
sin
(

4 f
fc

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (6)

2.2 RC Filter
The RC filter [13] smooths the input voltage in an electrical cir-

cuit (RC circuit) consisting of a resistor and a capacitance. In a

RC circuit, the relation of the input voltage (input function), y(t),
and the output voltage (output function), y1(t), is given by

R C
d y1(t)

d t
+ y1(t) = y(t), (7)

where R and C are the resistance and the capacitance, respec-
tively. If R C > 1, the output function y1(t) smoothened input
function y(t) is obtained.

The converted equation of Eq. (7) in the frequency domain is
given by

{ jωR C + 1}Y1( jω) = Y( jω), (8)

where Y1( jω) is the output function of the RC filter in the fre-
quency domain. From Eq. (8), cutoff frequency fc of the RC filter
is given by

fc =

√
3

2 πR C
. (9)

The frequency responses (gain G1( fc) and phase lag θ1( fc)) of the
RC filter with the cutoff frequency fc are given by

G1( fc) =
1√

1 +
( √

3 f
fc

)2 , (10)

and

θ1( fc) = − tan−1

⎛⎜⎜⎜⎜⎝
√

3 f
fc

⎞⎟⎟⎟⎟⎠ . (11)

2.3 RLC Filter
The RLC filter [13] smooths the input voltage in an electrical

circuit (RLC circuit) consisting of a resistor, an inductor, and a
capacitance. In this RLC circuit, the relation of the input volt-
age (input function), y(t), and the output voltage (output func-
tion), y2(t), is given by

L C
d2 y2(t)

d t2
+ R C

d y2(t)
d t

+ y2(t) = y(t), (12)

where L is the inductance. It is well known that the RLC filter
shows a resonating property for k2 < 1 (k2 =

√
L C/(2 R C)) and a

smoothing property for k2 > 1 [14]. Hence, two parameters of the
RLC filter, R C and L C, can be determined for given cutoff fre-
quency fc and k2 > 1. Hereafter, we substitute 2 k2

√
L C(k2 > 1)

for R C to obtain the output function y2(t) smoothened input func-
tion y(t).

The converted equation of Eq. (12) in the frequency domain is
given by{

( jω)2 L C + jωR C + 1
}

Y2( jω) = Y( jω), (13)

where Y2( jω) is the output function of the RLC filter in the fre-
quency domain. From Eq. (13), cutoff frequency fc of the RLC
filter is given by

fc =
1

2 π

√√√
1 − 2 k2

2 +

√
(1 − 2 k2

2)2 + 3

L C
. (14)

The frequency responses (gain G2( fc) and phase lag θ2( fc)) of the
integral filter with the cutoff frequency fc are given by
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Fig. 2 Gains of the integral filter, the RC filter, and the RLC filter for the
cutoff frequency fc = 0.1 [Hz].

Fig. 3 Gains of the integral filter, the RC filter, and the RLC filter for the
cutoff frequency fc = 2 [Hz].

G2( fc) =
f 2
c√{

f 2
c − ( f k′2)2

}2
+ (2 k2 k′2 f fc)2

,

(15)

and

θ2( fc) = − tan−1

{
2 k2 k′2 f fc
f 2
c − ( f k′2)2

}
, (16)

where

k′2 =

√
1 − 2 k2

2 +

√
(1 − 2 k2

2)2 + 3. (17)

The computational complexity of solving Eq. (12) is larger than
that of solving Eq. (7). This is because Eq. (12) is second-order
ODE, but Eq. (7) is first-order ODE.

2.4 Plotting Frequency Response
For illustrating properties of three low-pass filers (i.e., integral

filter, RC filter, and RLC filter), we plot the frequency responses
of the low-pass filters. The effect of phase lags of low-pass fil-
ters on simulation results and accuracy will be discussed in Sec-
tion 3.4. To obtain gains and phase lags of low pass filters, we
use Eqs. (5), (6), (10), (11), (15), and (16) for k2 = 10.

Figures 2 and 3 plot the gains of the integral filter, the RC
filter, and the RLC filter as determined using cutoff frequencies
fc = 0.1 and 2.0 [Hz], respectively. Note that the lines for the RC
filter have an overlap with those for the RLC filter in Figs. 2 and 3.
The RLC filter with k2 = 10 has approximately same frequency
response as the RC filter. In these figures, the frequencies smaller
than the cutoff frequency are somewhat attenuated. Hence, cutoff
frequency fc should be set with considering such attenuation in
the output function.

Figures 4 and 5 plot the phase lags of the integral filter, the
RC filter, and the RLC filter as determined using cutoff frequency

Fig. 4 Phase lags of the integral filter, the RC filter, and the RLC filter for
the cutoff frequency fc = 0.1 [Hz].

Fig. 5 Phase lags of the integral filter, the RC filter, and the RLC filter for
the cutoff frequency fc = 2.0 [Hz].

fc = 0.1 and 2.0 [Hz], respectively. Note that the lines for the RC
filter have an overlap with those for the RLC filter in Fig. 5. From
Figs. 4 and 5, the input function of low-pass filters is somewhat
delayed in the output function according to the phase lags. Hence,
cutoff frequency fc should be set with considering the delay in the
output function.

From these results, the integrate filter obviously has oscillated
frequency response unlike the RC filter and the RLC filter. The
difference of frequency response would affect how well a low-
pass filter attenuates the frequencies higher than the cutoff fre-
quency fc.

3. Accelerating Flow-level Network Simula-
tion Method with Low-pass Filtering

3.1 Basic Idea
To accelerate a flow-level simulation, we omit the network be-

havior at a finer timescale than that required by performance eval-
uation. Specifically, we use low-pass filtering of fluid models to
attenuate the frequencies higher than the cutoff frequency speci-
fied by the performance evaluator. Cutoff frequency fc of the low-
pass filter should be set according to the requirements of the per-
formance evaluator. By attenuating high frequencies, the change
in network states is smoothened. As a result, the step-sizes in
the numerical ODE solver can be increased. This accelerates the
flow-level simulation.

3.2 Numerical Algorithm
The algorithm of the proposed method repeatedly solves the

ODE using the step-size of Δ (Fig. 6). The step-size Δ is de-
termined using the adaptive step-size control explained in Sec-
tion II.4 of Ref. [15]. Please refer to Section II.4 of Ref. [15] for
details. We denote the network state vector and the low-pass fil-
ter’s state vector at time t by y(t) and yl(t), respectively. Net-
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Fig. 6 Block figure of network updates.

work state vector is a set of network variables in fluid models.
Low-pass filter’s state vector is a set of low-pass filter’s output
variables corresponding to network variables in the network state
vector.

First, we obtain network state vector y(t+Δ) from the network
state vector, y(t) by using the numerical ODE solver [16]. Specif-
ically, we numerically solve the following ODEs

d y(t)
d t
= f(y(t)), (18)

where f(y(t)) is the first derivative given by the fluid models.
Next, by using the network state vector y(t + Δ) and the low-

pass filter’s state vector yl(t), we obtain the low-pass filter’s state
vector yl(t + Δ) by numerically solving ODEs of low-pass filters.
Specifically, we numerically solve the following ODEs

d yl(t)
d t

= h(y(t), yl(t)), (19)

where h(y(t), yl(t)) is the first derivative given by Eqs. (2), (7), and
(12). Called low-pass filtering, this procedure attenuates the high
frequencies when evolving the fluid model. With the numerical
ODE solver [16], fourth-order and fifth-order numerical solutions
of yl(t + Δ) can be obtained. We denote fourth-order and fifth-
order numerical solutions yl(t +Δ) by yl

(4)(t +Δ) and yl
(5)(t +Δ),

respectively. The numerical solutions yl
(4)(t + Δ) and yl

(5)(t + Δ)
are utilized to estimate the numerical error in yl(t + Δ).

To guarantee that the numerical error lies within the predeter-
mined tolerance error eT , we estimate the numerical error in the
low-pass filter’s state vector, yl(t + Δ). Note that we do not in-
tend that network state vector y(t + Δ) be used for this purpose.
This is because that the purpose of flow-level simulation with the
proposed method is to simulate the coarse behavior obtained by
low-pass filters, and not to simulate the fine behavior obtained by
fluid models. Specifically, in the adaptive step-size control [15],
the numerical error err in yl(t + Δ) is given by

err =

√√√
1
N

N∑
i=1

⎛⎜⎜⎜⎜⎜⎝ yi
(4)
l (t + Δ) − yi(5)

l (t + Δ)

max(yi(4)
l (t + Δ), yi(5)

l (t + Δ))

⎞⎟⎟⎟⎟⎟⎠
2

, (20)

where yi(4)
l (t + Δ) and yi(5)

l (t + Δ) are the i-th element in fourth-
order and fifth-order numerical solutions yl

(4)(t + Δ) and yl
(5)(t +

Δ). N is the number of variables in the low-pass filter’s state vec-
tor. According to the conventional adaptive step-size control, if
the numerical error is larger than the tolerance error eT set by the
performance evaluator, the step-size in the numerical ODE solver
is decreased, and network state vector y(t+Δ) is recalculated. On
the contrary, if the numerical error is smaller than the tolerance
error eT , the step-size in the numerical ODE solver is increased,

and the flow-level simulation is put forward.
The algorithm does not guarantee the numerical error in the

numerical solution of Eq. (18) but it does guarantee the numer-
ical error in the numerical solution of Eq. (19). Note that nu-
merical error means local error for a single state update. If the
numerical solution of Eq. (19) is obtained in two-steps (i.e., solv-
ing Eqs. (18) and (19) sequentially), the numerical error in both
numerical solutions of Eqs. (18) and (19) must be guaranteed.
However, the algorithm directly solves Eq. (18), which enables
efficient computation of Eq. (19) by compromising the numerical
error in the numerical solution of Eq. (18).

3.3 Notes on Numerical Error
We discuss the numerical error in the algorithm. The algorithm

guarantees the numerical error in a numerical solution of yl(t+Δ)
is smaller than eT .

To obtain the numerical solution yl
(p)(t + Δ), the algorithm

performs the adaptive step-size control after sequentially solv-
ing Eqs. (18) and (19) in two steps. On the other hand, the con-
ventional algorithm used in Ref. [3] performs the adaptive step-
size control after only solving Eq. (18). According to the dis-
cussion on numerical error in two steps explained in Section II.4
of Ref. [15], the numerical error in the p-th order of numerical
solution yl

(p)(t + Δ) obtained by the algorithm is given by

(C +Cl)Δ
p+1 + O(Δp+2), (21)

where C and Cl are the constants related to Eqs. (18) and (19), re-
spectively. From Eq. (20), the numerical error in the fourth order
of numerical solution yl

(4)(t + Δ) given by Eq. (21) can be esti-
mated. Since the algorithm ensures the estimated numerical error
to be less than eT , the numerical error in the numerical solution
of yl(t + Δ) becomes smaller than eT .

3.4 Effect of Phase Lag in Low-pass filter
As we have shown in Section 2.4, low-pass filters have phase

lag properties. Phase lags of low-pass filters bring some delay in
simulation results compared with results of ideal coarse network
behavior, leading to slight degradation of accuracy. Hence, for a
given low-pass filter, the performance evaluator should be aware
of the effect of its phase lag on simulation results and accuracy.
We should emphasize that the phase lag is at most 360 degrees
(i.e., one cycle), which should have little impact on performance
evaluation in practice.

3.5 Setting of Cutoff Frequency
The performance evaluator can intuitively determine the setting

of cutoff frequency fc according to the timescale focused by the
performance evaluator. First, the performance evaluator chooses
a desired timescale value of the network behavior. Then, the cut-
off frequency fc is set to the inverse of the desired timescale value.

By using the above setting of cutoff frequency fc, the perfor-
mance evaluator would be able to maximize the simulation speed
under the condition to acceptable accuracy for the performance
evaluator. The acceptable accuracy is related to acceptance atten-
uation of the obtained network behavior at the desired timescale
value. In the above setting of cutoff frequency fc, we suppose
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that the acceptable attenuation of the obtained network behavior
at the desired timescale value for the performance evaluator is
50% since we define the cutoff frequency fc by reducing the am-
plitude of input signals to 1/2. If the acceptable attenuation for
the performance evaluator is different from 50%, the performance
evaluator needs to further set the LPF parameters (i.e., T , R C and
L C) based on definition of cutoff frequency corresponding to the
acceptable attenuation.

3.6 Parameter Setting in Low-pass Filters
The integral filter and RC filter have essentially one parame-

ter T and R C, respectively. Parameter T in the integral filter can
be determined for a given cutoff frequency fc using Eq. (4). Pa-
rameter R C in the RC filter can be determined for a given cutoff
frequency fc using Eq. (9).

The RLC filter has essentially two parameters R C and L C.
The parameters R C and L C can be determined for a given cutoff
frequency fc and k2 > 1 (k2 =

√
L C/(2 R C)) using Eq. (14).

In practice, k2 should not be set to a value close to 1 since
the resonance of output signals sometimes occurs. For utilizing
the smoothing effect of the RLC filter, a performance evaluator
should use the k2 >> 1.

4. Experiment

Through experiments, we investigate the effectiveness of the
proposed method for accelerating a flow-level simulation. We
implement the numerical algorithm using low-pass filters into our
flow-level simulator FSIM. For the experiment, we use the low-
pass filters (Integral filter, RC filter, and RLC filter). We evaluate
the accuracy, the speed, and the memory consumption of each
combination.

4.1 Experiment Setup
We use a dumbbell topology (Fig. 7) as the network topology.

Table 1 shows the parameter configuration used in experiments.
We purposely set the parameter k2 of the RLC filter to 10 for
fairly comparing the computational efficiency of the RLC filter
with that of the RC filter under the condition that the RLC filter
has the approximately same frequency response of RC filter.

In the experiment, we use two simulation scenarios: a simple
scenario and a complex scenario. The simple scenario is used to
investigate the basic property of the proposed method. On the
other hand, complex scenario is used to investigate the effective-
ness of the proposed method in a network with complex behavior
is used.
• Simple scenario

In the simple scenario, all TCP flows are activated at the start
of simulation, and are deactivated at the termination of sim-
ulation.

• Complex scenario
In the complex scenario, each TCP flow with a given file
size is activated at a given time, and are deactivated at the
time of its file transfer completion. We randomly give the
activation time and file size of each TCP flow according to
specified distributions. More specifically, the distribution of
time intervals between each pair of consecutive TCP flow ac-

Fig. 7 Dumbbell topology.

Table 1 Parameter configuration.

initial value of TCP transmission rate 0.001 [Mbit/s]
packet size 1,000 [byte]

minimum threshold of RED router 500 [packet]
maximum threshold of RED router 2,500 [packet]
maximum packet marking probability of RED router 0.1
weight of the exponential average of RED router 0.04
buffer size of RED router 5,000 [packet]

number of TCP flows 50
bandwidth of bottleneck link 80 [Mbit/s]
link delay of link 10 [ms]

simulation time 200 [s]
initial value of step-size 0.001 [ms]
minimum of step-size 0.001 [ms]
maximum of step-size 10.0 [ms]
tolerance error 10−14

coefficient of RLC filter k2 10

tivations is given by the exponential distribution with mean
1.0 [s]. The distribution of file sizes of TCP flow is given by
the Pareto distribution with the average 20,000 [packet] and
the shape 3.0. The complex scenario simply represents part
of complex behavior in a large-scale network.

In the experiment, we repeated 10 simulations, and measured
the average and 95% confidence interval of measurements (e.g.,
simulation execution time and maximum memory consumption).

All processing was done on an Intel Core i5 2.8 [GHz] proces-
sor with 12 [Gbyte] memory running Mac OS X 10.7 (Lion).

4.2 Accuracy
We investigate the accuracy of the numerical algorithm used in

the proposed method.
We first compare the frequency responses of the low-pass fil-

ters obtained from the equations (Eqs. (5), (6), (10), (11), (15),
and (16)) and the flow-level simulation results yielded by the pro-
posed method, to conform that the low-pass filters are accurately
implemented into the flow-level simulator. In this experiment, we
use the simple scenario.

Figures 8 and 9 plot the gain and phase lag of the integral
filter, the RC filter, and the RLC filter for different cutoff frequen-
cies, fc. In these figures, theory means the frequency responses
yielded by the equations. On the contrary, simulation means the
frequency responses obtained from flow-level simulations with
the proposed method. Since TCP transmission rates have a fre-
quency with approximately 1 [Hz] in the simple scenario, we use
the frequency f = 1 [Hz] in the equations for calculating theory
values. From Figs. 8 and 9, the simulated frequency responses of
the RC filter and the RLC filter coincide with those obtained from
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(a) Integral filter

(b) RC filter

(c) RLC filter

Fig. 8 Gains of the integral filter, the RC filter, and the RLC filter for dif-
ferent cutoff frequencies fc when using the simple scenario; lines in
Figs. (b) and (c) are almost identical.

(a) Integral filter

(b) RC filter

(c) RLC filter

Fig. 9 Phase lag of the integral filter, the RC filter, and the RLC filter for
different cutoff frequencies fc when using the simple scenario; lines
in Figs. (b) and (c) are almost identical.

the equations. On the contrary, the simulated frequency response
of the integral filter do not coincide with that obtained from the
equations. This is because the frequency response the integral
filter exhibits wild fluctuations.

These results confirm that the RC filter and the RLC filter im-
plemented in FSIM have frequency responses consistent with the-
ory regardless of the cutoff frequencies. As we discussed in Sec-
tion 3.4, there is the effect of phase lag on simulation results and
accuracy. The performance evaluator should use the proposed
method with knowledge of the phase lag shown in Fig. 9.

To confirm that the proposed method accurately obtains the

(a) FSIM

(b) Integral filter

(c) RC filter

(d) RLC filter

Fig. 10 Time evolutions of smoothed TCP transmission rates of the inte-
gral filter, the RC filter, and the RLC filter for the cutoff frequency
fc = 0.1 [Hz].

coarse behavior in flow-level simulations, we then compare sim-
ulation results of the original FSIM and FSIM with a low-pass
filter for different cutoff frequencies. In this experiment, we use
the simple and complex scenarios.

Figures 10 and 11 plot the time evolution of smoothed TCP
transmission rates of the integral filter, the RC filter, and the RLC
filter versus the cutoff frequencies fc = 0.1 and 2.0 [Hz] when
using the simple scenario. In these figures, we also show the
time evolution of TCP transmission rate obtained from the orig-
inal FSIM, for comparison. The TCP transmission rate obtained
from the original FSIM oscillates with a frequency of approxi-
mately 1 [Hz]. In this simulation, we generated UDP traffic with
the transmission rate of 8 [Mbit/s] with ON/OFF cycling every
100 [s] as the coarser behavior than the TCP flow in the original
FSIM. From the result for fc = 0.1 [Hz] shown in Fig. 10, we con-
firm that the flow-level simulator with the proposed method simu-
lated only the coarse behavior (i.e., UDP traffic behavior). On the
contrary, the result for fc = 2.0 [Hz] shown in Fig. 11, confirms
that the flow-level simulator with the proposed method simulated
the coarse and fine network behavior (i.e., UDP traffic behavior
and TCP flow behavior). If we carefully look at Fig. 11, the am-
plitudes of the smoothed TCP transmission rate for the low-pass
filters are smaller than that yielded by the original FSIM. Hence,
the cutoff frequency, fc, of the performance evaluator should be
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(a) FSIM

(b) Integral filter

(c) RC filter

(d) RLC filter

Fig. 11 Time evolutions of smoothed TCP transmission rates of the inte-
gral filter, the RC filter, and the RLC filter for the cutoff frequency
fc = 2.0 [Hz].

set considering the theoretical gain, Eqs. (5), (10) and (15), of the
low-pass filter used.

From these results, we confirm that the proposed method yields
the coarse behavior if the cutoff frequency is appropriately set.

Figures 12 and 13 plot the time evolution of the smoothed
RED queue length of the integral filter, the RC filter, and the RLC
filter versus the cutoff frequencies fc = 0.1 and 2.0 [Hz] when
using the complex scenario. In these figures, we also show the
time evolution of RED queue obtained from the original FSIM,
for comparison. From the result for fc = 0.1 [Hz] shown in
Fig. 12, we confirm that the flow-level simulator with the pro-
posed method simulated only the coarse behavior. On the con-
trary, the result for fc = 2.0 [Hz] shown in Fig. 13, confirms that
the flow-level simulator with the proposed method simulated fine
network behavior.

From these results, we confirm that the proposed method also
yields the coarse behavior if the simulation scenario is complex.

4.3 Speed
Next, we investigate the speed of the proposed method by mea-

suring the simulation execution time, which is the time required
to simulate a 1,000 [s] trial, and the average step-size of the nu-
merical solver.

Figures 14 and 15 show simulation execution times and av-

Fig. 12 Time evolution of smoothed RED queue length of the integral filter,
the RC filter, and the RLC filter [Hz] with fc = 0.1 [Hz] when using
the complex scenario.

Fig. 13 Time evolution of smoothed RED queue length of the integral filter,
the RC filter, and the RLC filter [Hz] with fc = 2.0 [Hz] when using
the complex scenario; all lines are almost identical.

Fig. 14 Simulation execution times of the integral filter, the RC filter, and
the RLC filter for different cutoff frequencies fc when using the
simple scenario.

Fig. 15 Average step-size of the integral filter, the RC filter, and the RLC
filter for different cutoff frequencies fc when using the simple sce-
nario.

erage step-sizes of the integral filter, the RC filter, and the RLC
filter for different cutoff frequencies, fc. To obtain these figures,
we use the simple scenario. In Figs. 14 and 15, we also show the
simulation execution time and average step-size obtained from
the original FSIM, for comparison. The figures show that simu-
lation execution times decrease as the cutoff frequency, fc, of the
low-pass filter decreases. This is because decreasing the cutoff
frequency increases the average step-size of the low-pass filter.
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Fig. 16 Execution times of the integral filter, the RC filter, and the RLC fil-
ter for cutoff frequencies fc = 0.1, 2.0 [Hz] when using the complex
scenario.

Fig. 17 Average step-sizes of the integral filter, the RC filter, and the RLC
filter for cut-off frequencies fc = 0.1, 2.0 [Hz] when using the com-
plex scenario.

In this experiment with the simple scenario, the proposed
method was up to 60 times faster than the original FSIM.

Figures 16 and 17 plot the execution times and average step-
sizes corresponding to Figs. 12 and 13 with the complex scenario.
From this figure, we confirm the acceleration effect of the low-
pass filtering of flow-level simulation. In particular, the execution
time with the RC filter with the cutoff frequency fc = 0.1 [Hz] is
approximately 4 times smaller than that for the original FSIM.
Despite the approximately-same frequency response shown in
Figs. 2 and 3, the execution times with the RLC filter are larger
than that with the RC filter. This phenomenon is caused by the
following reason. Since the RLC filter is given by a second order
ODE, the stability of numerical calculation with the RLC filter
is relatively low compared with the RC filter. Hence, the RLC
filter should not drastically increase the step-size for the complex
scenario.

In this experiment with the complex scenario, the RC filter is
suitable for accelerating of flow-level simulation.

4.4 Memory Consumption
Finally, we investigate the memory consumption of the pro-

posed method by measuring the maximum consumption during
simulation execution.

Figure 18 plots maximum memory consumption of the integral
filter, the RC filter, and the RLC filter versus the cutoff frequency,
fc. In Fig. 18, we also show the memory consumption obtained
from the original FSIM, for comparison. From Fig. 18, (a) the
maximum memory consumption of the integral filter increases as
cutoff frequency fc decreases, (b) regardless of cutoff frequency
fc, the RC and RLC filters have almost the same maximum mem-
ory consumption as the simulation with no low-pass filter. We

Fig. 18 Maximum memory consumptions of the integral filter, the RC filter,
and the RLC filter for different cutoff frequencies fc.

Fig. 19 Maximum memory consumptions of the integral filter, the RC fil-
ter, and the RLC filter for cut-off frequency fc = 0.1, 2.0 [Hz] when
using the complex scenario.

can explain the increase in memory consumption triggered by the
integral filter from the ODE defined by Eq. (2). According to
Eq. (2), the integral filter integrates network states over interval
[t − T, t]. Since T increases as cutoff frequency fc decreases, the
integral filter must store the past state for long periods to inte-
grate the network state over [t − T, t]. Storing the past state for
long periods increases memory consumption.

Figure 19 plots maximum memory consumptions correspond-
ing to Figs. 12 and 13 with the complex scenario. From this fig-
ure, we confirm that the low-pass filtering of flow-level simula-
tion can be saved the memory consumption. This is caused by the
large average step-size when using low-pass filters. FSIM stores
the past network state to calculate the ODE of the fluid model. As
the step-size increases, the memory size required by storing the
past network state decreases. This phenomenon does not appear
in Fig. 18. This is because the percentage of memory consump-
tion for past network state is small since the number of TCP flows
is small when using the simple scenario.

From the viewpoint of memory consumption, the RC and RLC
filters are more effective than the integral filter.

5. Conclusion

In this paper, we have proposed a novel method for accelerat-
ing flow-level simulations; it omits simulations whose timescales
are finer than that required by performance evaluation. We imple-
mented three low-pass filters (Integral filter, RC filter, and RLC
filter) into our flow-level simulator FSIM. Through experiments,
we investigated the effectiveness of the proposed method for ac-
celerating a flow-level simulation. Our findings show that the
proposed method is 60 times faster than the conventional flow-
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level simulator when obtaining coarse behavior at timescale of
minutes.

As future work, we are planning to investigate the effectiveness
of the proposed method for large-scale networks, which has many
network nodes.
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