
Journal of Information Processing Vol.21 No.3 450–457 (July 2013)

[DOI: 10.2197/ipsjjip.21.450]

Regular Paper

Jobcast — Parallel and distributed processing framework
Data processing on a cloud style KVS database

Ikuo Nakagawa1,2,a) Kenichi Nagami1

Received: October 22, 2012, Accepted: March 1, 2013

Abstract: In this paper, we propose a new architecture for parallel and distributed processing framework, “Jobcast,”
which enables data processing on a cloud style KVS database. Nowadays, many KVS (as known as Key Value Store)
systems exist which achieve high scalability for data spaces among a huge number of computers. The Jobcast architec-
ture is an extension which has the capability to execute “job” on KVS data nodes so that it can also achieve scalability
of processing space. In this paper, we introduce the Jobcast architecture and describe how Jobcast improves perfor-
mance of some KVS applications especially by reducing data transmission cost. We evaluate and discuss performance
improvement for some example applications as well.

Keywords: parallel and distributed processing, cloud database, NoSQL, KVS

1. Introduction

Recently, there are many cloud style databases, as known as
“NoSQL.” One of major goals of such cloud style databases is
achieving scalability. All of such databases consist of a large
number of computers as data nodes, and it is easy to add a data
node to the existing computer cluster, to increase data space or
improve access performance. This type of computing style is
called as “scale-out style computing” or “scalable computing.”

KVS, as known as Key Value Store, is a mechanism to store
key and value pairs. KVS systems provide interfaces to access
such pairs. For example, SET, GET and DELETE (or similar
to such commands) are major interfaces to handle key and value
pairs in KVS systems. Cloud style KVS systems have a large
number of computers as data nodes to store many key and value
pairs. Such KVS systems are designed to be scalable and it is
easy to increase data spaces or to improve performance to ac-
cess data objects. Consistent hash [1], [2] is a major algorithm to
achieve scalability for data spaces. Some KVS implementations
use consistent hash algorithm as a distribution strategy and use
the hashed value of the key, to identify the data node among a
large number of computers to store the key and value pair. These
KVS systems are also categorized as “NoSQL” databases.

In this paper, we propose “Jobcast,” which is a new architec-
ture for parallel and distributed processing on a cloud style KVS
database. Jobcast uses consistent hash as its distribution strategy
and has a capability to store key and value pairs in a distributed
manner, as a KVS system. Jobcast also has a capability to deliver
“jobs,” where jobs are processing logic for key value pairs stored
in data nodes. In Jobcast architecture, application programmers
may define jobs as simple Java programs, that is, simple class def-

1 Intec, Inc., Koto, Tokyo 136–8637, Japan
2 Osaka University, Suita, Osaka 565–0871, Japan
a) ikuo@inetcore.com

initions. Jobcast distributes such jobs into data nodes for remote
processing, using the same distribution strategy. When a data
node receives such jobs, the node executes jobs in its processing
engine and returns the result.

Jobcast provides a new processing model for some KVS appli-
cations, and it improves data transmission behavior by migrating
the processing mechanism into backend data nodes. Note that
Jobcast is processing framework inside a cloud system, and pro-
gramming interface will be discussed in future researches.

In this paper, we survey some related works about KVS im-
plementations at first, in Section 2. We describe assumptions and
objectives of Jobcast in Section 3 and introduce basic concept of
Jobcast in Section 4. We also describe features of Jobcast, in-
cluding distributing jobs into data nodes and its processing mod-
els. We describe benefits of Jobcast, as parallel and distributed
processing, in Section 5. We summarize the evaluation result of
a typical example for parallel and distributing processing, in Sec-
tion 6 and discuss further considerations in Section 7. Finally, we
conclude our proposal in Section 8.

2. Related Works

Nowadays, many KVS style databases exist. There are some
KVS models. At first, we survey such KVS technologies by cat-
egorizing them into 3 models.

2.1 Historical Model
Historically, memcached [3] has been used to improve perfor-

mance of relational database access. In this model, an application
system has many memcached servers which are located in front
of SQL database, and those servers will have many key and value
pairs in its memory space (as cache), while applications will write
such pairs into SQL database, directly. Memcashed is designed
to enhance read access performance for such key-value pairs with
existing relational databases. Note that, there is no significant

c© 2013 Information Processing Society of Japan 450

Journal of Information Processing Vol.21 No.3 450–457 (July 2013)

change of processing model in this case.

2.2 Standard KVS
Cassandra [4] is a standard KVS system, which provides sim-

ple and basic feature to store, get or delete key value pairs into
distributed data store. It supports not only read operation but also
write operation, that is it provides data persistency of its data ob-
jects, so that any data will survive after write operation. Cassan-
dra supports both synchronous and asynchronous replication on
data updates.

Tokyo Cabinet [5] and Kyoto Cabinet [6] are also standard
KVS systems, which are simple and high performance implemen-
tations provided by FA labs. Standard KVS systems do not have a
processing mechanism in backend data nodes, and programmers
have to develop processing mechanism in application servers.

2.3 Extendable KVS
ROMA [7] is a KVS implementation written in Ruby, which

support not only standard KVS features but also a module ex-
tension to execute some functions in backend KVS data nodes.
Modules can be written in specific language and provides some
simple routines. It is still under development and we need future
research to understand its characteristics.

Okuyama [8] is also an extendable KVS system, which is writ-
ten in Java. It uses HashMap (standard class in Java SDK) to
store key value pairs in data nodes, and it also writes operational
log and serialized HashMap objects into persistent disk, periodi-
cally. Okuyama has the idea to implement a mechanism for server
side processing, i.e., processing in data nodes. It will recognize
JavaScript code in data nodes, and processes in a distributed way,
but we need further research about its use cases and its evaluation.

3. Assumptions and Objectives

Nowadays, high scalability is a critical requirement for some
cloud style applications, such as mail, chat, blog, address book,
network storage, etc. provided by big service providers. For ex-
ample, Apple, Google, and Facebook have billions of consumer
users in the world. Big mobile carriers also have tens of millions
customers, as well (China Mobile for example has a half billion
users). Such applications require high scalability for both data
space and the number of simultaneous accesses since there are a
huge number of small and well distributed data objects and pro-
cess executions.

KVS systems are one of solutions to achieve scalability as
backend data store for such applications. KVS provides scala-
bility of data space and many developers have been tried to im-
plement their applications with KVS systems.

On the other hand, defining and selecting data schema is a diffi-
cult problem in developing KVS applications. For example, con-
sidering SNS (Social Network Service) like application. A user
of the application has his profiles and blog entries. From an ap-
plication view point, each user has user data consisted with some
items. We assign a unique user-id for each user, and each item is
identified by user-id and item-id.

To simplify the discussion, we denote two major design pat-
terns to define data schema for such KVS applications (Table 1).

Table 1 Data schemas for KVS applications.

Pros. Cons.

Item base Easy to access
an item,

individually

of data transmission
might be large

to access entire contents

User base Easy to access
entire contents
in a same time

Data transmission volume
might be large

to access individual item

(1) Item base;
Assigning “user-id+item-id” as keys of the KVS ID space,
and store values for each item as KVS values.

(2) User base;
Assigning “user-id” as keys of the KVS ID space and store
the entire associated contents as KVS values.

Note that choosing data schema has some difficulties, because
there is trade-off issue of data transmission cost, which is serious
in some situations. In this section, we summarize about the trade-
off, briefly (We describe more detail in Section 5 and Section 6).

Item base data schema is suitable for accessing each item in-
dividually. Instead, it may require a large number of data trans-
missions between the application server and backend KVS data
store, to get the entire contents (or, set of items).

User base data schema is suitable for accessing entire contents
(or, set of items). Instead, if the size of the entire contents is big
enough, data transmission volume (bytes) might be large only for
accessing individual small item.

In following discussions, we focus into KVS applications,
which have the following characteristics.
Assumption 1.

There are a large number of users. For example, millions or
more users exists.
Assumption 2.

Each user may have several numbers of items. For example,
there are 10 or more items in user data.
Assumption 3.

Some of item values may be big enough to transmit. For ex-
ample 1 MB data takes 8 ms via 1 Gbps NIC.
Assumption 4.

The application accesses user data in several ways. At least, it
accesses individual items and entire contents.

There might be many such applications, for example, mail, ad-
dress book, network storage, etc. SNS provided on the Internet is
also suitable for assumptions.

The main objective of this paper is, introducing a new dis-
tributed processing architecture for KVS applications. The ar-
chitecture enables to migrate processing mechanism into KVS
data nodes, and provides effective processing models. Especially,
we describe that the architecture reduces data transmission cost,
to access key and value pairs stored in KVS systems. In other
words, we can avoid trade-off issues about data transmission cost
of KVS applications described in the assumptions.

4. Jobcast - Data Processing Framework

Jobcast is a new parallel and distributed processing framework,

c© 2013 Information Processing Society of Japan 451

Journal of Information Processing Vol.21 No.3 450–457 (July 2013)

based on KVS (Key Value Store) data store. It supports not only
storing key and value pairs but also processing jobs for such pairs
in data nodes. Since KVS data stores achieve high scalability
for data space, the Jobcast architecture attains high scalability for
processing space, as well.

In this section, we introduce the Jobcast architecture, briefly.

4.1 Distribution Strategy
Jobcast provides high scalability for data space based on con-

sistent hash algorithm. A Jobcast node, which is a data node on
which a Jobcast system is running, maintains information about
neighboring data nodes by p2p technology. As the result, a set of
Jobcast nodes consist a ring topology, called Jobcast ring. This is
similar to the Chord [2] algorithm (Fig. 1).

Jobcast nodes in a Jobcast ring exchange associated key and
successors information between each other, so that Jobcast nodes
could maintain their key space information, which denotes the
authorized key range for the node. In fact, a Jobcast node does
any operation for a certain key and value pair, if and only if the
target key is in the authorized key range for that node.

When a Jobcast client wants to store data objects or to deliver
jobs, it determines distribution keys for the target data objects.
Distribution key is hash value (SHA-1, for example) of original
keys, in usual cases. Once the client gets the distribution key, it
delivers requests for such key to the associated Jobcast node.

Successors information is also useful to maintain master and
slave information for replication and redundancy. These mecha-
nism are not essential in this paper, and discussed in Section 7 for
future researches.

4.2 Distributing Data Objects, i.e., Key and Value Pairs
Jobcast stores key and value pairs in its data storage, as a KVS

system. Any of the standard KVS commands, such as GET, SET,
DELETE is also supported by Jobcast. Depending on the distri-
bution key of data object, Jobcast clients transmit such requests to
the Jobcast node, based on distribution strategy describe above.

A mechanism of storing a pair of key and value is that of stan-
dard KVS systems, and it provides high scalability for distribut-
ing key space, of course.

Fig. 1 Distribution strategy.

4.3 Distributing “Jobs” for Processing
As the most characterized feature of Jobcast architecture, it de-

livers “jobs” into Jobcast nodes for processing. Here, jobs are
simple programs. In current Jobcast implementation, application
developers may write their own jobs as simple Java classes, which
implement specific “Job” interface.

Similar to distributing key and value pairs, a Jobcast client de-
livers “jobs” based on the same distribution strategy, as well. It
transmits only the information about the job definition and then
receiving Jobcast node processes the job and returns the result.
There is no need to transmit the value itself.

4.4 Processing Model
By definition, each Jobcast node has its own key space for Job-

cast operation, such as, storing key and value pairs or processing
jobs. It is obviously that there is no interference between Jobcast
operations on different Jobcast nodes since each Jobcast node has
its own key space, which are separated from the others. That is,
we can achieve linear scalability about Jobcast operations, with
respect to the number of Jobcast nodes.

In addition, in order to guarantee the consistency of data up-
dates while increasing the parallel processing efficiency, we pro-
vide two important features;
(1) Multiple jobs for different keys.

If a Jobcast node has two or more requested jobs for differ-
ent keys, it executes those jobs simultaneously, in different
threads.

(2) Multiple jobs for a same key.
If a Jobcast node has two or more jobs for a same key, the
node executes such jobs in concurrent model, that is, it holds
shared lock for read operation, and exclusive lock for write
(edit) operation, for that key.

5. Benefit of Distributed Processing

As introduced in the previous section, the motivation of dis-
tributing “jobs” is achieving a new processing model for KVS
applications. The processing model provides parallel and dis-
tributed processing environment for key and value pairs, and
achieves several benefits for KVS applications. In this section,
we describe benefits of the Jobcast architecture.

5.1 Scale-out Both Data Space and Processing Resources
As a KVS system to store key and value pairs, Jobcast provides

scale-out data space. In addition, it also provides scale-out pro-
cessing resources. In the Jobcast processing architecture, a Job-
cast client delivers “jobs” which are application functions, and all
data nodes can execute the jobs, with their own CPU and memory
spaces. So, we can use many CPU power and memory resources
on Jobcast nodes, instead of front-end client environment.

We show that the conceptual difference of distribution mod-
els of normal KVS and Jobcast in Figs. 2 and 3. As shown in
Fig. 2, in normal KVS model, we distribute data objects, i.e., key
and value pairs into a huge amount of data nodes, but there is no
scalable mechanism of application logic. In other words, a KVS
client must process application functions in it.

On the other hand, in the Jobcast architecture, a Jobcast client

c© 2013 Information Processing Society of Japan 452

Journal of Information Processing Vol.21 No.3 450–457 (July 2013)

Fig. 2 Distributing key and value pairs in KVS.

Fig. 3 Distributing both data objects and processing.

may define a job and deliver it into a huge amount of Jobcast
nodes to execute application logic for key and value pairs on
backend data nodes. That means, we can execute application
logic with server side computing resources, such as CPU, mem-
ory and so on.

5.2 Minimize Data Transmission Cost
As described in Section 3, there are trade-off issues about data

transmission cost to develop applications with standard KVS data
store. Jobcast provides a mechanism to reduce data transmission
overhead for such applications, by migrating processing mecha-
nism into backend KVS data nodes.

The basic idea is to use user base data schema to store user data
and implementing “jobs” to access individual item, instead. By
using user base data schema, it’s easy to access entire content of
user data, of course, as described before. In addition, implement-
ing “jobs” to get a small portion of the content reduces total bytes
of data transmission when we need to access small item value.
We do not need to transmit entire contents, any more.

Jobcast provides more flexible mechanism to reduce data trans-
mission cost for other situations. For example, think about
searching a keyword from entire contents of a given user. Us-
ing standard KVS with item base data schema causes many data
transmission between application server and KVS data nodes. By
using standard KVS with user based data schema, an application
server needs to get entire contents from backend KVS data store
at first to process search function. On the other hand, Jobcast pro-
vides a mechanism to execute search function in backend KVS
data nodes where we need to transmit only “jobs” and “result”
via the network.

Jobcast dramatically improves network usage for the cases
where we need update content stored in backend KVS data store,
in some situations, as well. By standard KVS with user base data
schema, we need 3 steps, that is, retrieving entire content, update
the content in application server and storing entire content, again.
It causes transmitting entire content twice on the network. In-
stead, using Jobcast model, we only need to send “job” to update
the content and receive ACK as an answer. There is no need of
transmit redundant content.

One of major purposes of this paper is to show the benefits of
reducing data transmission cost by the Jobcast architecture, and
we evaluate such applications, in Section 6.

5.3 Data Integrity during Data Updates
In standard KVS systems, if an application server wants to up-

date data objects stored in KVS system, it must retrieve such data
objects from backend nodes first, modify or edit them, and store
them into the backend nodes, again. In this model, there is an
issue about data integrity. For example, assume that two client
nodes, say client-A and client-B exist and they want to update
the same data objects. If client-A retrieves the object for updates,
when client-B retrieves, edits and stores the same object, there
might be a data corruption.

In the Jobcast processing model, we can define a job to update
the data object, and the associated Jobcast node will execute the
job with concurrent processing model (described in Section 4).
There is no data corruption and we can assure the data integrity
during data update. Shared and exclusive lock mechanism in pro-
cessing jobs also enables us to ensure that there is neither data
change nor modification when someone is reading such data ob-
ject.

5.4 Data Privacy
Jobcast data processing model improves privacy of stored data

objects. Let’s think about using KVS system to store account in-
formation for some network services. By user base data schema,
keys are assigned as user-id and values contain account informa-
tion such as, password, age, sex, address, phone number, and so
on. If a user wants to log in to such service and give the pass-
word, a KVS client retrieves the entire account information from
a backend data node and verify the password against such infor-
mation. This may not be safe because some personal information
is transmitted via network and accessible in a processing node.

In the Jobcast architecture, we can define a job to verify pass-
word. The job contains a password given from the user, and a job-
cast client transmits the job toward the associated Jobcast node.
The Jobcast node executes the job to verify the given password
against the stored one. This is safer since any job execution would
be done inside the Jobcast node.

6. Evaluation

In this section, we evaluate the proposed architecture, espe-
cially, about improvement of data transmission cost. We intro-
duce a mailbox service as an example, to figure out behavior of
not only simple data access, like PUT or GET, but also extendable
operation such as SEARCH. We also introduce an address book
service, to evaluate REPLACE function, which needs to update
stored data.

We describe implementation overview, evaluation environment
and two evaluations, in following subsections.

6.1 Implementation Overview
We implemented 3 major subsystems for the evaluation

(Fig. 4). We describe these subsystems briefly.
(1) Jobcast nodes

Jobcast nodes are backend KVS data nodes in which we run
JavaVM to execute “jobs.” Note that, we implemented data
storage in memory space to simplify following evaluation.
This is because we’d like to avoid any of HDD overheads.

c© 2013 Information Processing Society of Japan 453

Journal of Information Processing Vol.21 No.3 450–457 (July 2013)

Fig. 4 Overview of Jobcast evaluation system.

Table 2 Spec. of environment for evaluation.

Type CPU Memory Network #
client Core 2 Quad 2 GHz 4 GB 1 Gbps 1
node Core 2 Quad 2 GHz 4 GB 1 Gbps 8

(In general, HDD overhead is larger than network).
(2) Jobcast client

Jobcast client is a frontend of the Jobcase system. It works as
an application server, in 3 layers application service model.
That is, it gets requests from user devices via HTTP and pro-
vides services. If it needs to access stored key valur pairs, or
wants to process “jobs,” the Jobcast client also communi-
cates with Jobcast nodes via HTTP.

(3) User devices
We also implemented pseudo user devices as clients. In fol-
lowing evaluation, we emulate 100 simultaneous accesses
from user devices at the same time.

6.2 Evaluation Environment
Table 2 shows the specifications of the Jobcast client and Job-

cast nodes for the evaluation. We have 8 Jobcast nodes and 1
Jobcast client,

6.3 Evaluation & Result #1
At first, we introduce mailbox application. We assume that a

large number of users have mailboxes in the service. Each user
may have several numbers of messages in his mailbox, of course.
As defined in Assumption 4 in Section 3, the application pro-
vides several ways to access his mailbox, for example, a user can
put/get a message into/from his mailbox, or he can access entire
messages. We also introduce an additional feature of searching
keyword in users’ mailbox, which also requires accessing entire
contents of user data.

Each figure (of Figs. 5–16) contains the result of standard KVS
with item base data schema, standard KVS with user base data
schema and Jobcast with user based data schema. We emulate
100 simultaneous accesses and measure an average of 1,000 times
of requests for each exam.
6.3.1 Put or Get a Message

At first, we evaluate performance to put/get a message
into/from a mailbox. Note that, we assume each mailbox has 10
messages, in each exam. Results are shown in Figs. 5–8, where
Figs. 5 and 6 are the result of PUT operation, and Figs. 7 and
8 are that of GET operation. Y-axis of Figs. 5 and 7 shows la-
tency (average response time of requests, in milliseconds). Y-axis
of Figs. 6 and 8 shows number of processed request in a second

Fig. 5 PUT a message: performance (latency).

Fig. 6 PUT: performance (# of req.).

Fig. 7 GET a message: performance (latency).

Fig. 8 GET a message: performance (# of req.).

Fig. 9 GET entire contents: performance by size (latency).

[rps]. X-axis in all figures means average message size as param-
eter.

c© 2013 Information Processing Society of Japan 454

Journal of Information Processing Vol.21 No.3 450–457 (July 2013)

Fig. 10 GET entire contents: performance by size (# of req.).

Fig. 11 GET entire contents: performance by # of msg. (latency).

Fig. 12 GET entire contents: performance by # of msg. (# of req.).

Fig. 13 SEARCH: performance by msg. size (latency).

Fig. 14 SEARCH: performance by msg. size (# of req.).

As described in Section 3, item base data schema has benefit
to access each item, since it only need to put/get the related key

Fig. 15 SEARCH: performance by # of msg. (latency).

Fig. 16 SEARCH: performance by # of msg. (# of req.).

value pair, while the user base data schema causes transmitting
entire contents.

Note that, by the Jobcast processing model, we achieved al-
most same performance with item base data schema. That means,
by processing job for put/get a message in Jobcast node instead
of getting entire contents, we achieved better performance even if
we use user base data schema.
6.3.2 Get Entire Content

Figures 9 and 10 are similar graphs for getting entire content of
user mailbox, instead. In this case, item base data schema causes
10 times of data transmissions since there are 10 messages in each
mailbox, in this exam. It is relatively larger communication cost.
User base data schema is beneficial for accessing entire contents,
since it can retrieve the entire content by single transmission. Job-
cast also takes same advantage since it has same data schema.

In Figs. 11 and 12, we fix average message size as 40 KB, and
we change the number of messages (shown X axis) in each mail-
box. Note that, increasing number of messages causes serious
problem of transmission cost in item base data schema. Both
standard KVS with user base data schema and Jobcast model
achieve maximum performance for given network bandwidth.
(e.g., Receiving 4 MB, e.g., 100 messages of 40 KB, takes 32 ms
via 1 Gbps).
6.3.3 Search Keyword from Entire Contents

Search is an extensive feature of mailbox application. There
are many cases to search messages that contain some keyword.
We provide search mechanism in server side, that is, user devices
send keywords to the mailbox application and the application tries
to search such keywords in stored messages. Figures 13 and 14
shows the result of searching keyword from 10 messages in a
mailbox.

Standard KVS with item base and user base data schema be-
have similar as GET ENTIRE CONTENT exam. Instead, by Job-
cast model, we achieve better performance. This is because Job-
cast only needs to send “jobs” for SEARCH and to receive a list

c© 2013 Information Processing Society of Japan 455

Journal of Information Processing Vol.21 No.3 450–457 (July 2013)

Fig. 17 REPLACE: performance by content size (latency).

Fig. 18 REPLACE: performance by content size (# of req.).

of message identifiers as “answers.” As the result, it requires less
data transmission volume.

Figures 15 and 16 also shows the result for when we change the
number of messages with fixed average message size of 40 KB. It
also shows the Jobcast achieves better performance than both of
standard KVS models.

6.4 Evaluation & Result #2
To evaluate performance of updating content, we also intro-

duce an address book application. We assume there are many
users for the application and each user has tens or hundreds of
items in his address book.
6.4.1 Replace Keywords (Update Content)

As the exam, we evaluate performance of “replacing” key-
words. There are several cases where we need to update items
in address book. In practice, postal zip code or name of city,
town, village (by migration) or a number of digits in phone num-
ber were changed several times in Japan.

Results of mailbox applications tell us that it is obviously in-
efficient to use item base data schema to access entire contents if
there are many items in an address book.

So, we evaluated standard KVS with user base data schema
and Jobcast model. In Figs. 17 and 18, X-axis is average total
content size of each address book. Y-axis of Figs. 17 and 18 are
latency and number of processed requests, in respectively. In this
exam, standard KVS with user base data schema causes 2 times of
data transmission for entire contents, since it needs 3 steps of re-
trieving entire contents, replacing keywords and storing updated
contents, again. As shown in these figures, while performance
of standard KVS case is limited by network bandwidth (sending
2 times of 1 MB content takes 16 ms by 1 Gbps), Jobcast model
dramatically improves performance.

7. Considerations

In this section, we provide an expanded discussion to promote

further understanding.

7.1 Additional Evaluation
In the previous section, we evaluated and discussed about data

transmission behavior in simplified situations. We need more de-
tailed evaluation for operational applications.
7.1.1 More Parameters

To evaluate data transmission behavior, we simplified condi-
tions, e.g., simple cases of data sizes, number of items, and so
on. We also implement data store mechanism in memory space
to avoid HDD overhead. As the result, bottleneck of each exam
was network and performance was limited by 1 Gbps bandwidth
(NIC of Jobcast client). If we use HDD instead, HDD might be
another bottleneck. In addition, CPU or memory management,
network conditions may be also bottleneck, depend on evalua-
tion environment. These kind of production level evaluation and
tuning should be studied in future researches.
7.1.2 Processing Complexity and CPU Load

PUT, GET, SEARCH and REPLACE functions in the evalu-
ation are very simple and we had no significant impact in CPU
or memory in both Jobcast client and Jobcast nodes. When we
define more complex “job,” yet another bottleneck may appear
in CPU or memory. We should also evaluate and discuss about
complexity of jobs.

7.2 Implementation for Operational Use
For making the Jobcast mechanism to be operational, we need

more implementation about reliability or resiliency.
7.2.1 Persistency of Data Objects

We need to store data objects into persistent storage, like HDD.
We should implement and evaluate mechanisms to store key and
value pairs, for example, B+tree or similar mechanism is better
to read, while journal style logging mechanism provides better
performance to write data objects.
7.2.2 Failover and Recovery

We also need to maintain copies of key value pairs to achieve
reliability. Failover and recovery mechanisms should be designed
and evaluated.

8. Conclusion

In this paper, we propose “Jobcast” architecture which is a new
processing model for KVS data store. Jobcast distributes not only
key and value pairs, but also “jobs” for such pairs, in parallel and
distributed processing model. By p2p based consistent hash algo-
rithm, Jobcast architecture achieves high scalability for both data
space and processing space.

We also evaluated the Jobcast mechanism in particular regard-
ing reduction of data transmission cost. We introduced two ap-
plications, such as mailbox application and address book appli-
cation to compare performance of processing requests. As the
result we showed that the Jobcast achieved equal or better per-
formance rather than standard KVS with item base and user base
data schemas, in any case.

Acknowledgments We wish to thank the members of RICC-
WG (Regional Inter-Cloud sub-Committee) of ITRC (Internet
Technology Research Committee) for their discussion of require-

c© 2013 Information Processing Society of Japan 456

Journal of Information Processing Vol.21 No.3 450–457 (July 2013)

ments and technologies for scalable computing. We also thank
the EXAGE members in Intec, Inc., for cutting-edge implemen-
tation of the Jobcast.

References

[1] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M. and
Lewin, D.: Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web, Proc. 29th
Annual ACM Symposium on Theory of Computing, STOC ’97, El Paso,
Texas, United States, pp.654–663, ACM Press, New York, NY (May
1997).

[2] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F. and Balakrishnan,
H.: Chord: A scalable peer-to-peer lookup service for internet applica-
tions, Proc. 2001 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, SIGCOMM ’01,
San Diego, California, United States, pp.149–160, ACM Press, New
York, NY (2001).

[3] Memcached project: memcached — A distributed memory object
caching system, available from 〈http://memcached.org/〉.

[4] Cassandra project: The Apache Cassandra Project, available from
〈http://cassandra.apache.org/〉.

[5] FA Labs: Tokyo Cabinet: A modern implementation of DBM, available
from 〈http://fallabs.com/tokyocabinet/index.html〉.

[6] FA Labs: Kyoto Cabinet: A straightforward implementation of DBM,
available from 〈http://fallabs.com/kyotocabinet/〉.

[7] ROMA project: A Distributed Key Value Store in Ruby, available from
〈http://code.google.com/p/roma-prj/〉.

[8] Okuyama: Distributed Key Value Store, available from
〈http://sourceforge.jp/projects/okuyama/〉.

Ikuo Nakagawa received a M.S. degree
from Tokyo Institute of Technology in
1993, and a Ph.D. from the University of
Tokyo in 2005. He joined to Intec, Inc.,
in 1993 where he has been researching on
network technology. He established Intec
NetCore, Inc., in 2002. He works for In-
tec, Inc., as the Executive Chief Engineer,

since 2011. He serves concurrently as an associated professor of
Osaka University since 2012.

Kenichi Nagami received a M.S. de-
gree from Tokyo Institute of Technology,
Japan, in 1992. He received a Ph.D. from
Tokyo Institute of Technology, Japan, in
2001. In 1992, he joined Research and
Development Center, Toshiba Corpora-
tion where he has been working on com-
munication system. From 2002, he works

for Intec NetCore as CTO. He currently works for the Research
and Development Department at Intec.

c© 2013 Information Processing Society of Japan 457

