
Journal of Information Processing Vol.21 No.3 423–432 (July 2013)

[DOI: 10.2197/ipsjjip.21.423]

Regular Paper

Automatic Parallelism Tuning Mechanism
for Heterogeneous IP-SAN Protocols

in Long-fat Networks

Takamichi Nishijima1,a) Hiroyuki Ohsaki1,b) Makoto Imase1,c)

Received: October 22, 2012, Accepted: March 1, 2013

Abstract: In this paper we propose Block Device Layer with Automatic Parallelism Tuning (BDL-APT), a mecha-
nism that maximizes the goodput of heterogeneous IP-based Storage Area Network (IP-SAN) protocols in long-fat
networks. BDL-APT parallelizes data transfer using multiple IP-SAN sessions at a block device layer on an IP-SAN
client, automatically optimizing the number of active IP-SAN sessions according to network status. A block device
layer is a layer that receives read/write requests from an application or a file system, and relays those requests to a stor-
age device. BDL-APT parallelizes data transfer by dividing aggregated read/write requests into multiple chunks, then
transferring a chunk of requests on every IP-SAN session in parallel. BDL-APT automatically optimizes the number of
active IP-SAN sessions based on the monitored network status using our parallelism tuning mechanism. We evaluate
the performance of BDL-APT with heterogeneous IP-SAN protocols (NBD, GNBD and iSCSI) in a long-fat network.
We implement BDL-APT as a layer of the Multiple Device driver, one of major software RAID implementations in-
cluded in the Linux kernel. Through experiments, we demonstrate the effectiveness of BDL-APT with heterogeneous
IP-SAN protocols in long-fat networks regardless of protocol specifics.

Keywords: Automatic Parallelism Tuning (APT), IP-based Storage Area Network (IP-SAN), Block Device Layer,
long-fat networks

1. Introduction

In recent years, IP-based Storage Area Networks (IP-SANs)
have attracted attention for building SANs on IP networks, owing
to the low cost and high compatibility of IP-SANs with existing
network infrastructures [1], [2], [3], [4].

Several IP-SAN protocols such as NBD (Network Block De-
vice) [5], GNBD (Global Network Block Device) [6], iSCSI (In-
ternet Small Computer System Interface) [7], FCIP (Fibre Chan-
nel over TCP/IP) [8], and iFCP (Internet Fibre Channel Pro-
tocol) [9] have been widely utilized and deployed for building
SANs on IP networks. IP-SAN protocols allow interconnection
between clients and remote storage via a TCP/IP network.

IP-SAN protocols realize connectivity to remote storage de-
vices over conventional TCP/IP networks, but still have unre-
solved issues, performance in particular Refs. [3], [10], [11]. Sev-
eral factors affect the performance of IP-SAN protocols in a long-
fat network. One significant factor is TCP performance degrada-
tion in long-fat networks [12]; IP-SAN protocols generally uti-
lize TCP for data delivery, which performs poorly in long-fat net-
works.

In this paper, we propose Block Device Layer with Automatic

Parallelism Tuning (BDL-APT), a mechanism that maximizes

1 The Graduate School of Information Science and Technology, Osaka
University, Suita, Osaka 565–0871, Japan

a) t-nisijm@ist.osaka-u.ac.jp
b) oosaki@ist.osaka-u.ac.jp
c) imase@ist.osaka-u.ac.jp

the goodput of heterogeneous IP-SAN protocols in long-fat net-
works and that requires no modification to IP-SAN storage de-
vices. BDL-APT parallelizes data transfer using multiple IP-SAN

sessions at a block device layer on an IP-SAN client, automati-
cally optimizing the number of active IP-SAN sessions according
to network status. A block device layer is a layer that receives
read/write requests from an application or a file system, and re-
lays those requests to a storage device. BDL-APT parallelizes
data transfer by dividing aggregated read/write requests into mul-
tiple chunks, then transferring a chunk of requests on every IP-
SAN session in parallel. BDL-APT automatically optimizes the
number of active IP-SAN sessions based on the monitored net-
work status by means of our APT mechanism [13], [14].

We evaluate the performance of BDL-APT with heterogeneous
IP-SAN protocols (NBD, GNBD and iSCSI) in a long-fat net-
work. We implement BDL-APT as a layer of the Multiple De-
vice (MD) driver [15], one of the major software RAID imple-
mentations included in the Linux kernel. Through experiments,
we demonstrate the effectiveness of BDL-APT with heteroge-
neous IP-SAN protocols in long-fat networks regardless of proto-
col specifics.

This paper is organized as follows. Section 2 summarizes re-
lated works. Section 3 introduces the IP-SAN protocols used in
our BDL-APT experiments. Section 4 describes the overview and
the main features of our BDL-APT. Section 5 explains our BDL-
APT implementation. Section 6 gives a performance evaluation
of our BDL-APT implementation in heterogeneous IP-SAN pro-

c© 2013 Information Processing Society of Japan 423



Journal of Information Processing Vol.21 No.3 423–432 (July 2013)

tocols. Finally, Section 7 summarizes this paper and discusses
areas for future work.

2. Related Work

Several solutions for preventing IP-SAN performance degra-
dation in long-fat networks have been proposed [12], [13], [16],
[17]. For instance, solutions utilizing multiple links [16] or paral-
lel TCP connections [13] have been proposed to prevent through-
put degradation of the iSCSI protocol.

Yang [16] improves iSCSI throughput by using multiple con-
nections, each of which traverses a different path using multi-
ple LAN ports and dedicated routers. However, LAN ports and
dedicated routers are not always available, forcing significant re-
strictions on the network environment. Inoue et al. [13] improve
iSCSI throughput by adjusting the number of parallel TCP con-
nections using the iSCSI protocol’s parallel data transfer feature.
However, this solution cannot be used in IP-SAN protocols with-
out that feature. Changes to the TCP congestion control algorithm
for improving fairness and throughput of the iSCSI protocol have
also been proposed [12]. Oguchi et al. analyze iSCSI with the
proposed monitoring tool, and improve the throughput of iSCSI
by adjustment of TCP socket buffer, or the correction inside a
Linux kernel [17]. However, solutions that replace or modify the
transport protocol are unrealistic because they require changes in
all IP-SAN targets (storage devices) and initiators (clients).

While these and other solutions for specific IP-SAN protocols
have been proposed, many heterogeneous IP-SAN devices have
already been deployed, so it is desirable to improve IP-SAN per-
formance independent of protocol and without need for device
modifications.

In this paper, we propose an initiator-side solution, which re-
quires no modification to IP-SAN storage devices, to the perfor-
mance degradation of heterogeneous IP-SAN protocols in long-
fat networks.

3. IP-SAN Protocols

In this section, we briefly introduces three IP-SAN protocols
used in our BDL-APT experiments.
• NBD (Network Block Device)

The NBD protocol, initially developed by Pavel Machek in
1997 [5], is a lightweight IP-SAN protocol for accessing
remote block devices over a TCP/IP network. The NBD
protocol allows transparent access of remote block devices
via a TCP/IP network, and supports primitive block-level
operations such as read/write/disconnect and several other
I/O controls. All communication between NBD clients and
servers occurs using the TCP protocol.

• GNBD (Global Network Block Device)
The GNBD protocol is another lightweight IP-SAN protocol
for accessing remote block devices over a TCP/IP network.
The GNBD protocol was developed at the University of Min-
nesota as part of the GFS (Global File System) [6], [18]. As
in the NBD protocol, the GNBD protocol allows transpar-
ent access to remote block devices via a TCP/IP network.
All communication between a GNBD client and server are
transferred via TCP. A notable difference between GNBD

and NBD is that GNBD allows simultaneous connections be-
tween multiple clients and a single server (a block device).

• iSCSI (Internet Small Computer System Interface)
The Internet Engineering Task Force standardized the iSCSI
protocol in 2004 [7]. iSCSI protocol encapsulates a stream
of SCSI command descriptor blocks (CDBs) in IP packets,
allowing communication between a SCSI initiator (a client)
and its target (a storage device) via a TCP/IP network. When
a SCSI initiator receives read/write requests from an appli-
cation or a file system, it generates SCSI CDBs and transfers
those CDBs to the SCSI storage through a TCP connection.
It is known that iSCSI performance is significantly degraded
when the end-to-end delay (the delay between the iSCSI ini-
tiator and its target) is large [11], [13], [19], [20].

4. Block Device Layer with Automatic Paral-
lelism Tuning (BDL-APT)

4.1 Overview
We propose BDL-APT, a mechanism that maximizes the good-

put of heterogeneous IP-SAN protocols in long-fat networks.
BDL-APT realizes the data delivery over multiple TCP connec-
tions by using multiple IP-SAN sessions, and optimizes the num-
ber of parallel TCP connections automatically based on the IP-
SAN goodput. BDL-APT is a mechanism that operates as a block
device layer in an IP-SAN initiator (the client) (see Fig. 1). BDL-
APT parallelizes data transfer by dividing aggregated read/write
requests into multiple chunks, then transferring a chunk of re-
quests on every IP-SAN session in parallel. BDL-APT automat-
ically optimizes the number of active IP-SAN sessions based on
the monitored network status using our parallelism tuning mech-
anism APT [13], which is based on a numerical computation al-
gorithm called the Golden Section Search method.

The main advantage of BDL-APT is its independence from
the underlying IP-SAN protocol. Namely, BDL-APT can operate
with any IP-SAN protocol since it works as a block device layer
without reliance on features specific to the underlying block de-
vice or protocol. BDL-APT realizes both parallel data transfer
and network status monitoring independently from the underly-
ing block device or protocol.

Another advantage of BDL-APT is its initiator-side implemen-
tation. Namely, BDL-APT works within an IP-SAN initiator (a

Fig. 1 Overview of BDL-APT. BDL-APT realizes the data delivery over
multiple TCP connections by using multiple IP-SAN sessions, mon-
itors the incoming/outgoing goodput, and optimizes the number of
active IP-SAN sessions automatically.

c© 2013 Information Processing Society of Japan 424



Journal of Information Processing Vol.21 No.3 423–432 (July 2013)

client), so modification to IP-SAN targets (storage devices) are
unnecessary. Thus, BDL-APT can be easily deployed in various
IP-SAN environments.

BDL-APT is primarily designed for bulk data transfer appli-
cations such as remote backup. It is because the problem of
throughput degradation in long-fat networks is problematic when
a large amount of data is transfered continuously.

In what follows, we explain the design and the implementation
of our BDL-APT.

4.2 Block Device Layer
A block device layer is a layer that receives read/write requests

from an application or a file system, and relays those requests to
a storage device. In IP-SAN, a storage device driver handles data
delivery to and from an IP-SAN storage device using an IP-SAN
protocol (see Fig. 1).

Block device layers are not new; they are adopted, for instance,
in the MD driver, a software RAID implementation in Linux, and
Violin [21], a framework for extensible block-level storage. The
block device layer can perform various types of processing, such
as mirroring, striping, and encryption. Such block device layers
can be stacked to build new types of block device, for example to
improve reliability, access speed, and security.

The following describes the main features of BDL-APT, data

transfer parallelization, optimization of the number of parallel

TCP connections, and goodput monitoring.

4.3 Data Transfer Parallelization
BDL-APT realizes parallel data transfer by establishing multi-

ple IP-SAN sessions to a single storage device. Note that BDL-
APT intentionally establishes multiple IP-SAN sessions, instead
of multiple connections within a single IP-SAN session. Gener-
ally, one or more TCP connections carry a single IP-SAN ses-
sion, meaning that using multiple IP-SAN sessions is equivalent
to using multiple TCP connections. BDL-APT splits read/write
requests, then transfers split requests in parallel over multiple IP-
SAN sessions, making it possible to perform parallel data transfer
with any IP-SAN protocol, which does not support parallel data
transfer.

BDL-APT maintains multiple IP-SAN sessions to a single IP-
SAN storage device. When BDL-APT receives read/write re-
quests (hereafter called block I/O requests) from an application or
a file system, BDL-APT splits those block I/O requests into mul-
tiple chunks and generates multiple block I/O requests for each
chunk. BDL-APT parallelizes data transfer by assigning those
generated block I/O requests to multiple IP-SAN sessions.

This realizes parallel data transfer in a block device layer, with-
out modification to underlying devices or IP-SAN protocols.

4.4 Optimization of the Number of Parallel TCP Connec-
tions

BDL-APT optimizes the number of parallel TCP connections
by optimizing the number of active IP-SAN sessions. An IP-SAN
protocol utilizing TCP for data delivery establishes at least one
TCP connection per IP-SAN session.

BDL-APT maintains multiple IP-SAN sessions. BDL-APT de-

termines the required number of parallel TCP connections, and
dynamically changes the number of active IP-SAN sessions. By
assigning generated block I/O requests to a subset of established
IP-SAN sessions, BDL-APT optimizes the number of active IP-
SAN sessions used for parallel data transfer. BDL-APT deter-
mines the required number of IP-SAN sessions using our Auto-
matic Parallelism Tuning mechanism, APT.

We explain the overview of APT mechanism. Refer to
Ref. [13] for the details of APT mechanism. The basic idea of
APT is that a client splits data to transfer into blocks called chunk,
and adjusts the number of parallel TCP connections at the end of
every chunk transfer.

In what follows, N is the number of parallel TCP connections
used for a chunk transfer, and G(N) the IP-SAN goodput mea-
sured at the chunk transfer.
• Searching the range of the number of parallel TCP connec-

tions covering the optimal value that maximizes the IP-SAN

goodput

First, BDL-APT searches the bracket. BDL-APT starts from
a small number of parallel TCP connections, and multiplica-
tively increases the number of parallel TCP connections at
every chunk transfer until IP-SAN goodput decreases. BDL-
APT determines the bracket — the range of the number of
parallel TCP connections covering the optimal value that
maximizes the IP-SAN goodput.
We illustrate an example operation of BDL-APT. Figure 2
shows an example operation of BDL-APT when searching
for a bracket. BDL-APT searches for a bracket. The number
k shown in a circle indicates the k-th chunk transfer. First,
BDL-APT initializes the number N of parallel TCP connec-
tions to N0 (= 1). BDL-APT multiplicatively increases the
number of parallel TCP connections as 1 → 2 → 4 → 8 at
every chunk transfer until the IP-SAN goodput starts to de-
crease. Since the IP-SAN goodput decreases when the num-
ber N of parallel TCP connections changes as 4 → 8, the
bracket is determined as (2, 4, 8).

• Using the GSS algorithm for maximizing the IP-SAN good-

put within the bracket

Next, using the GSS algorithm which is one of numerical
computation algorithm for a maximization problem, BDL-
APT searches the number of parallel TCP connections that
maximizes the IP-SAN goodput within the bracket (l,m, r)
during succeeding chunk transfers.

Fig. 2 Example of BDL-APT operation when searching for a bracket.

c© 2013 Information Processing Society of Japan 425



Journal of Information Processing Vol.21 No.3 423–432 (July 2013)

Fig. 3 Example of BDL-APT operation when searching for the optimal
number of TCP connections.

BDL-APT searches the optimal number N of parallel TCP
connections as follows.
( 1 ) Update the number N of parallel TCP connections:

N ←
⎧
⎪⎪⎨
⎪⎪⎩

int(l + (m − l)ν) if m − l > r − m

int(m + (r − m)ν) otherwise
(1)

where ν is the golden ratio (= (3 − √5)/2) and int(x) is
the nearest integer of x.

( 2 ) Transfer a chunk while measuring the IP-SAN goodput
G(N).

( 3 ) If the following inequality is satisfied, proceed to the
step 4.

G(N) > G(m) (2)

If the above inequality is not satisfied, change the
bracket as follows and return to the step 1.

(l,m, r)←
⎧
⎪⎪⎨
⎪⎪⎩

(l,m,N) if m < N

(N,m, r) otherwise
(3)

( 4 ) Change the bracket as follows, and return to the step 1.

(l,m, r)←
⎧
⎪⎪⎨
⎪⎪⎩

(m,N, r) if m < N

(l,N,m) otherwise
(4)

Figure 3 shows an example operation of BDL-APT when
searching for the optimal number of parallel TCP connec-
tions. Since the bracket is (2, 4, 8), the number of parallel
TCP connections at the 5-th chunk transfer N is determined
as N = 6 from Eq. (1). The IP-SAN goodput in the 5-th
chunk transfer is G(6), and since G(4) < G(6) is satisfied,
the bracket is updated as (4, 6, 8) from Eq. (4). Hereafter,
in a similar way, BDL-APT changes the number of parallel
TCP connections N as 6 → 7 → 5, and updates the bracket
as (4, 6, 8)→ (4, 6, 7)→ (5, 6, 7). Finally, when the bracket
is (5, 6, 7), the number of parallel TCP connections is fixed
at N = 6, which maximizes the IP-SAN goodput.

4.5 Goodput Monitoring
During parallel data transfer, BDL-APT monitors the good-

put at every goodput measurement interval Δ in the block device
layer. Δ is one of APT parameters [13].

We measure the incoming/outgoing goodput as follows, re-
spectively. BDL-APT calculates goodput by dividing total of

Fig. 4 Evolution of the total incoming/outgoing data size transferred
through active IP-SAN sessions.

the incoming/outgoing data size through all active IP-SAN ses-
sions among Δ by Δ that is a measurement interval. Data are
incoming from a storage device or outgoing to a storage device
through multiple IP-SAN sessions during parallel data transfer.
BDL-APT gathers those incoming/outgoing data and calculates
goodput for them as a “chunk” of APT.

Figure 4 shows evolution of total incoming/outgoing data size
transferred through active IP-SAN sessions. We calculate the
goodput G between Tr1 and Tr2. Tr2 has passed Δ times since
Tr1. Xr1 and Xr2 are the total data size transferred at Tr1 and Tr2,
respectively. X is the total data size transferred between Tr1 and
Tr2, and is the difference of Xr1 and Xr2. Goodput G is calculated
by G = X

Δ
.

When BDL-APT assigns generated block I/O requests to mul-
tiple IP-SAN sessions, BDL-APT records the size of each data
transfer request. Then, BDL-APT calculates the total data size
transferred.

5. Implementation

We implemented BDL-APT as a block device layer in the MD
driver, a popular software RAID implementation included in the
Linux kernel. The MD driver enables creation of a virtual block
device composed of one or more underlying block devices.

The BDL-APT module in the MD driver is implemented based
on the RAID-0 module with several added functions required for
BDL-APT: data transfer parallelization, optimization of the num-
ber of parallel TCP connections, and goodput monitoring.

The structure of the RAID-0 module is shown in Fig. 5. The
RAID-0 module (a) creates the RAID device, (b) manages striped
storage devices, (c) splits block I/O requests, and (d) assigns split
block I/O requests to multiple storage devices. The block device
layer in the Linux kernel handles block I/O requests from/to an
application or a file system as bio structure objects. The RAID-0
module splits bio structure objects into multiple smaller bio struc-
ture objects. It then assigns multiple bio structure objects to the
striped storage devices by changing the bio bdev field in each
bio structure object.

The BDL-APT module utilizes RAID-0 module features
mostly as-is (see Fig. 6). Data transfer parallelization is natu-
rally realized by the RAID-0 module, which provides striping
over multiple disks. The optimization of the number of parallel

c© 2013 Information Processing Society of Japan 426



Journal of Information Processing Vol.21 No.3 423–432 (July 2013)

Fig. 5 Structure of the RAID-0 module in the MD driver. The RAID-0 mod-
ule (a) creates the RAID device, (b) manages striped storage devices,
(c) splits block I/O requests (bio structure objects), and (d) assigns
split block I/O requests to multiple storage devices.

Fig. 6 Structure of the BDL-APT module, which is based on the RAID-0
module. The BDL-APT module has several added functions to the
RAID-0 module. Namely, the BDL-APT module (d) dynamically
assigns divided bio structure objects to a subset of storage devices,
(e) optimizes the number of active IP-SAN sessions, and (f) contin-
uously measures the goodput of block I/O requests.

TCP connections is realized by dynamically changing the number
of active IP-SAN sessions module. Goodput monitoring is real-
ized by recording the total data size of all read/write block I/O
requests and calculating the goodput at regular intervals.

In what follows, we describe how three functions required
for BDL-APT, data transfer parallelization, optimization of the
number of parallel TCP connections, and goodput monitoring,
are realized in the BDL-APT module. Refer to, for example,
Refs. [15], [21] for details of the MD driver internal and the Linux
block device layer.
• Data transfer parallelization

Data transfer is parallelized by splitting bio structure objects
passed from the application or the file system and assigning
split bio structure objects to the storage devices correspond-
ing to the multiple IP-SAN sessions (see Fig. 6).
At the IP-SAN client, the BDL-APT module maintains one
storage device per IP-SAN session. Data transfer over multi-
ple IP-SAN sessions is thus realized because the BDL-APT

module assigns bio structure objects to each storage device.
Note that BDL-APT does not utilize all established IP-SAN
sessions, but rather parallelizes data transfer for only a num-
ber of sessions determined by the network status. Thus, the
BDL-APT module is modified from the RAID-0 module so
that it dynamically assigns split bio structure objects to a
subset of storage devices (see Fig. 6).

• Optimization of the number of parallel TCP connections
The APT algorithm [13], [14] is implemented in the BDL-
APT module. The APT algorithm automatically determines
the optimal number of parallel TCP connections according
to the network status. More specifically, the APT algorithm
periodically determines the optimal number of parallel TCP
connections based on the goodput measurement. The BDL-
APT module then changes the number of storage devices
used for data transfer parallelization, thereby adjusting the
degree of multiplexing. Refer to Refs. [13], [14] for the de-
tails of the APT algorithm.

• Goodput monitoring
For monitoring the goodput, the BDL-APT module records
the total block I/O response size using a callback function
of the block device layer in the Linux kernel. In the Linux
kernel, a callback function endio() can be used to invoke
any function immediately after the block I/O request is com-
pleted. For every bio structure object, the pointer to a call-
back function can be specified in the filed bio end io of the
bio structure object.
structure objects so that the total block I/O response size can
be The BDL-APT module overrides the filed bio end io
of all bio calculated. The BDL-APT module calculates the
goodput of data transfer at a given point in time by divid-
ing the total block I/O response size by elapsed time. Then,
the BDL-APT module resets the recorded total block I/O re-
sponse size.

Note that proposed BDL-APT does not need an additional data
copy. However, the block device layer needs an additional data
copy between buffers. Moreover, BDL-APT does not ensure
atomicity and consistency. Instead, users need to ensure atom-
icity and consistency, they should utilize a block device layer or
a file system that ensure atomicity and consistency such as Linux
journaling file system.

6. Experiment

6.1 Experiment Design
We evaluated the performance of BDL-APT with several het-

erogeneous IP-SAN protocols (NBD, GNBD and iSCSI) in a
long-fat network. To show the effectiveness of BDL-APT in a
realistic environment, we conducted experiments with a network
emulator while varying its bandwidth and delay settings.

The network environment comprised an IP-SAN client and
storage device, and a network emulator (see Fig. 7). We continu-
ously transferred data from the IP-SAN storage device to the IP-
SAN client. We measured the goodput for continuous read from
a storage to an application. The application repeatedly requests
data of 10 [Mbyte] to the storage. We conducted ten experiments
and measured the average and 95% confidence interval of mea-

c© 2013 Information Processing Society of Japan 427



Journal of Information Processing Vol.21 No.3 423–432 (July 2013)

Fig. 7 Network configuration used in experiments. IP-SAN client and stor-
age device are connected via the network emulator to simulate a
long-fat network.

surements.
We used computers with Intel Xeon 3.06 [GHz] processors

(SL72G) based on NetBurst microarchitecture, 2 [Gbyte] ECC
PC266 DDR SDRAM (266 MHz) memory and ServerWorks GC-
LE chipsets. The IP-SAN client and storage device run on Debian
GNU/Linux 5.0.2 (lenny) with Linux kernel 2.6.26. The network
emulator [22] runs on FreeBSD 6.4.

We used several open-source IP-SAN implementations: NBD
version 2.9.11 [5], GNBD version 2.03.09 [6], Open iSCSI ver-
sion 2.6-869 [23], and iSCSI enterprise target version 1.4.20 [24].
The maximum number of IP-SAN sessions in NBD, GNBD, and
iSCSI are increased to 128 from their default values.

To avoid the disk drives on IP-SAN client and storage to be-
come the bottleneck, we implemented a virtual storage device in
the Linux kernel. When the network bandwidth is high enough,
the access speed of the disk drives on either IP-SAN client or
storage might become the performance bottleneck. In our ex-
periments, we used our implementation of a virtual storage de-
vice, which is a virtual disk drive of an arbitrary size. The virtual
storage device does not perform any physical disk drive access.
Namely, reading from the virtual storage device simply returns
a dummy data, and writing to the virtual storage device always
succeeds but all data are simply discarded. In all experiments,
we created 128 virtual storage devices with 500 [Gbyte] size. We
should note that the goodput of the virtual storage device was
approximately 3.2 [Gbit/s], which is sufficiently faster than the
network bandwidth in our experiments (i.e., 1 [Gbit/s] at maxi-
mum).

We note that the parameter, read-ahead size of the MD driver
(/sys/block/md0/bdi/read ahead kb), in the block device
must be configured appropriately in long-fat networks. The de-
fault value of read-ahead size of the MD driver in Linux 2.6.26 is
the value that multiplied the number of striped storage devices by
128 [KByte], which is not large enough in long-fat networks.

Table 1 shows the parameter configuration used in the experi-
ments.

6.2 Evolution of IP-SAN Goodput
First, we investigate the optimization of the number of parallel

TCP connections in realistic network configurations with NBD
protocol. Figure 8 shows the aggregated NBD goodput (the to-
tal goodput of all active NBD sessions) when the bandwidth of
the network emulator was fixed at 900 [Mbit/s] and the delay of
the network emulator was fixed at 40 [ms]. For comparison pur-
poses, NBD goodput in steady state when fixing the number of

Table 1 Default parameters used in experiments; see Ref. [13] for the mean-
ing of BDL-APT parameters.

BDL-APT parameters
chunk size 128 [Kbyte]
initial number of IP-SAN sessions N0 4
maximum number of IP-SAN sessions 128
multiplicative increase factor α 2
target value of chunk transfer time Δ 100 [s]

Block device parameter
read-ahead size of the MD driver 128 [Mbyte]

NBD parameter
block size 1,024 [Kbyte]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

GNBD parameters
No parameter
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

iSCSI parameters
MaxBurstLength 16 [Mbyte]
ImmediateData no
InitialR2T yes

TCP parameter
TCP socket buffer size 512 [Kbyte]
TCP version NewReno
TCP SACK enable

NIC parameter
MTU 1,500 [Byte]

Network emulator
bandwidth 900 [Mbit/s]
delay 10 [ms]
packet loss rate 0
buffer size 5,000 [packet]

Fig. 8 Evolution of NBD goodput. the number of active NBD sessions is
optimized at approximately 1,200 [s], and the NBD goodput con-
verges to 828 [Mbit/s].

active NBD sessions at 16, 32, 64 and 128 are also plotted in the
figure. One can find that the optimal number of active NBD ses-
sions seems to exist between 16–64 from the NBD goodput with
the fixed number of active NBD sessions. Moreover, this fig-
ure shows that the number of active NBD sessions is optimized
at approximately 1,200 [s], and the NBD goodput converges to
828 [Mbit/s].

The evolution of the number of active NBD sessions in this
scenario is shown in Fig. 9. This figure shows that the number
of active NBD sessions converges to 33 in 12 steps (i.e., approx-
imately 1,200 [s] with Δ = 100 [s]). This agrees with the result
in Fig. 8 where the optimal number of active NBD sessions exists
between 16–64. From these observations, we find that BDL-APT
optimizes the number of active NBD sessions at approximately
1,200 [s], and utilizes the network resource quite effectively.

In our experiments, the number of active IP-SAN sessions con-
verged in 6–17 steps (i.e., 615–1,740 [s] with Δ = 100 [s]),

c© 2013 Information Processing Society of Japan 428



Journal of Information Processing Vol.21 No.3 423–432 (July 2013)

and the average steps to converge was 12.1 (i.e., 1,240 [s] with
Δ = 100 [s]).

6.3 Effect of Network Bandwidth
First, the goodput of the IP-SAN protocols with and without

BDL-APT in steady state was measured by changing the bottle-
neck link bandwidth (the bandwidth throttling at the network em-
ulator). Figure 10 shows the aggregated IP-SAN goodput (the
total goodput of all active IP-SAN sessions after the number of
active IP-SAN sessions is optimized) when the bandwidth of the
network emulator was varied between 200–1,000 [Mbit/s] while
the delay of the network emulator was fixed at 10 [ms]. For com-
parison, the steady-state IP-SAN goodput with 2, 8, 32, and 128
fixed IP-SAN sessions are also plotted. In order to fix the number
of active IP-SAN sessions at 2 or more, we used IP-SAN proto-
cols with our data transfer parallelization in the BDL (see Sec-
tion 4.3). Figure 10 (a) shows the aggregated NBD goodput when
the bottleneck link bandwidth is changed. Similarly, Fig. 10 (b)
shows the aggregated GNBD goodput, and Fig. 10 (c) shows the
aggregated iSCSI goodput.

Fig. 9 Evolution of the number of active NBD sessions. the number of
active NBD sessions converges to 33 at approximately 1,200 [s].

(a) NBD (b) GNBD (c) iSCSI

Fig. 10 Bottleneck link bandwidth vs. IP-SAN goodput.

(a) NBD (b) GNBD (c) iSCSI

Fig. 11 Bottleneck link delay vs. IP-SAN goodput.

Figure 10 shows that the IP-SAN protocols without BDL-APT
cannot fully utilize the network bandwidth when the number of
active IP-SAN sessions is fixed at a small value or BDL-APT
is not utilized. In particular, when BDL-APT is not used, the
IP-SAN protocol cannot fully utilize the network bandwidth re-
gardless of IP-SAN protocol. This is because the bandwidth de-
lay product increases as the network bandwidth becomes large.
Therefore, the number of parallel TCP connections required for
fully utilizing the network resources increases. Figure 10 shows
that BDL-APT fully utilizes the bottleneck link bandwidth, re-
gardless of IP-SAN protocols.

6.4 Effect of Network Delay
We next measured the goodput of the IP-SAN protocols with

and without BDL-APT in steady state by changing the network
delay (the delay at the network emulator). Figure 11 shows the
aggregated IP-SAN goodput when the network emulator delay
was varied between 20–100 [ms] while the bandwidth of the net-
work emulator was fixed at 900 [Mbit/s]. For comparison, the
steady-state IP-SAN goodput with 32, 64, and 128 fixed IP-SAN
sessions are also plotted. Figure 11 (a) shows the aggregated
NBD goodput when the bottleneck link delay varies. Similarly,
Fig. 11 (b) shows the aggregated GNBD goodput, and Fig. 11 (c)
shows the aggregated iSCSI goodput.

Figure 11 shows that the IP-SAN goodput drops rapidly as the
delay increases when the number of active IP-SAN sessions is not
fixed at an optimal value. This result shows that NBD goodput is
the highest when the number of NBD sessions is fixed at 32 with
20–40 [ms] delay, at 64 with 60–80 [ms] delay, and at 128 with
100 [ms] delay. This result also shows that GNBD goodput and
iSCSI goodput are the highest when the numbers of GNBD ses-
sions and iSCSI sessions are fixed at 64 with 20–40 [ms] delay
and at 128 with large delay. In particular, when BDL-APT is not

c© 2013 Information Processing Society of Japan 429



Journal of Information Processing Vol.21 No.3 423–432 (July 2013)

(a) NBD (b) GNBD (c) iSCSI

Fig. 12 The average CPU load of the IP-SAN client.

(a) NBD (b) GNBD (c) iSCSI

Fig. 13 The average CPU load of the IP-SAN storage.

used, the aggregated IP-SAN goodput was less than 20 [Mbit/s]
regardless of IP-SAN protocol with 100 [ms] delay, despite the
900 [Mbit/s] network bandwidth.

Figure 11 shows that BDL-APT improves goodput regardless
of bottleneck-link delay and IP-SAN protocol. We found that
BDL-APT resolves TCP performance degradation which causes
IP-SAN performance degradation and improves goodput in a
long-fat network. In particular, when the NBD and GNBD proto-
cols are used, the network bandwidth can be mostly used up re-
gardless of bottleneck link delay. Conversely, goodput degrades
as the bottleneck link delay increases when the iSCSI protocol is
used. This is because in long-fat networks there are other factors
that degrade the performance of the iSCSI protocol besides the
performance degradation of TCP. When the bottleneck link de-
lay is large and the iSCSI protocol is used, goodput also degrades
even more than with fixed values. When parallel data transfer
was performed using the iSCSI protocol, goodput was unstable
in some cases. This may have caused failed adjustments, and
requires further investigation. However, goodput significantly in-
creased even when BDL-APT was used with iSCSI, and we think
that practical applications will perform satisfactorily. To realize
further goodput gains, custom iSCSI protocol tuning is required.

6.5 CPU Processing Load
As we have explained In Section 4, BDL-APT parallelizes data

transfer at IP-SAN session level, rather than at TCP connection
level. Establishing multiple (and sometimes many) IP-SAN ses-
sions may cause a significant amount of CPU processing over-
head. In this section, we therefore evaluate the amour of CPU
processing overhead caused by the introduction of BDL-APT
compared with vanilla NBD, GNBD, and iSCSI. The average
CPU processing load during data transfer was measured by mon-
itoring /proc/stat in the Linux kernel. Numbers that can be ob-

tained through /proc/stat are cumulative number of ticks, each
of which corresponds to the amount of time, measured in units of
USER HZ, that the system spent in idle, running, I/O-request, or
interrupt states of the Linux kernel [25].

Figures 12 and 13 show the average CPU load of the IP-SAN
client (i.e., receiver) and the IP-SAN storage (i.e., sender), re-
spectively. In both figures, the average CPU loads with and with-
out BDL-APT are plotted for NBD, GNBD, and iSCSI protocols.
Similar to Section 6.4, the bandwidth of the network emulator
was set to 900 [Mbit/s] and the bottleneck ilk delay was varied
from 20 to 100 [ms]. For comparison, the average CPU loads with
32, 64, and 128 fixed IP-SAN sessions are also plotted. Not sur-
prisingly, these figures show that the average CPU loads of both
the IP-SAN client and the IP-SAN storage with BDL-APT are
significantly higher than that without BDL-APT and those with
BDL-APT with the fixed number of active IP-SAN sessions. This
is simply because the goodput with BDL-APT is much higher
than that without BDL-APT or those with BDL-APT with the
fixed number of active IP-SAN sessions (see Fig. 11). As can be
seen from Fig. 11, the goodputs with and without BDL-APT are
comparable when the bottleneck link delay is very small. For
instance, when the bottleneck link delay is 20 [ms] and NBD pro-
tocol is used, the goodputs with BDL-APT and with BDL-APT
(N = 32) are approximately 800 [Mbit/s] (see Fig. 11). In this
case, the average CPU load with BDL-APT and with BDL-APT
(N = 32) are almost identical, which indicates that multiple IP-
SAN sessions causes non-negligible CPU processing overhead
but the effect of APT (Automatic Parallelism Tuning) algorithm
in BDL-APT on the CPU processing load is negligible.

It is not surprising that aggregating multiple IP-SAN sessions
results in higher goodput than a single IP-SAN session at the cost
of non-negligible CPU processing overhead. But it is still un-
clear how efficient the aggregation of multiple IP-SAN sessions

c© 2013 Information Processing Society of Japan 430



Journal of Information Processing Vol.21 No.3 423–432 (July 2013)

(a) NBD (b) GNBD (c) iSCSI

Fig. 14 The number of CPU ticks consumed for a successful bit transfer on the IP-SAN client.

(a) NBD (b) GNBD (c) iSCSI

Fig. 15 The number of CPU ticks consumed for a successful bit transfer on the IP-SAN storage.

is compared with a single IP-SAN session in terms of the amount

of CPU processings per a successful bit transfer.
We therefore calculated the number of CPU ticks consumed for

a successful bit transfer (see Figs. 14 and 15). These figures show
the number of CPU ticks consumed for a successful bit transfer,
which is defined as the total number of CPU ticks consumed dur-
ing a file transfer divided by the size of the transferred file, with
NBD, GNBD, and iSCSI, respectively.

These figures show introduction of multiple IP-SAN sessions
increases the amount of CPU processing per a successful bit
transfer. Note that different protocols, NBD, GNBD, and iSCSI,
show different tendencies. Namely, the overhead of multiple IP-
SAN sessions in NBD is minimal (i.e., approximately 20–30%
in both the IP-SAN client and the IP-SAN storage). On the con-
trary, the overhead of multiple IP-SAN sessions in iSCSI reaches
approximately 100% in both the IP-SAN client and the IP-SAN
storage. Such a difference should be caused by the difference
in IP-SAN protocol implementations (in particular, multiple IP-
SAN sessions management), which implies that current IP-SAN
protocol implementations could be improved to make it more
scalable to the number of active IP-SAN sessions.

7. Conclusion

In this paper, we proposed BDL-APT, a mechanism that maxi-
mizes the goodput of heterogeneous IP-SAN protocols in long-fat
networks and that requires no modification to IP-SAN storage de-
vices. We implemented BDL-APT as a layer of the MD driver,
one of the major software RAID implementations included in the
Linux kernel. We evaluated the performance of BDL-APT with
heterogeneous IP-SAN protocols (NBD, GNBD and iSCSI) in a
long-fat network.

We found that BDL-APT improved IP-SAN goodput regard-
less of the IP-SAN protocol used. We showed that network band-

width could be mostly used up in long-fat networks when the
NBD and GNBD protocols were used. In long-fat networks,
we found that BDL-APT resolves TCP performance degrada-
tion which causes IP-SAN performance degradation but does not
maximize IP-SAN goodput under the iSCSI protocol. This is be-
cause in long-fat networks there are other factors that degrade
the performance of the iSCSI protocol besides the performance
degradation of TCP.

In the network environment with little traffic changes, such as
the leased line, our BDL-APT accelerates a data transfer suffi-
ciently. Since storage networks are mainly used on leased lines
now, we believe that increase in the speed of storage networks
using the leased line is sufficient. However, we expect that the fu-
ture storage networks might be used on the networks with intense
traffic changes, such as the Internet. High speed data transfer for
such a network is also required.

Therefore, investigation of the high speed data transfer technol-
ogy for networks where traffic changes dynamically is one of our
future research directions. Specifically, we show clearly robust-
ness of BDL-APT to traffic changes. Moreover, to achieve high
goodput constantly against changes in traffic, we will develop the
fast adjustment of the number of sessions.

References

[1] Sarkar, P. and Voruganti, K.: IP storage: The challenge ahead, Proc.
19th IEEE Symposium on Mass Storage Systems, pp.35–42 (2002).

[2] Wang, P., Gilligan, R.E., Green, H. and Raubitschek, J.: IP SAN –
from iSCSI to IP-addressable Ethernet disks, Proc. 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems and Technolo-
gies, pp.189–193 (2003).

[3] Yang, H.: Fibre channel and IP SAN integration, Proc. 12th NASA
Goddard/21st IEEE Conference on Mass Storage Systems and Tech-
nologies, pp.101–115 (2004).

[4] Aiken, S., Grunwald, D., Pleszkun, A.R. and Willeke, J.: A perfor-
mance analysis of the iSCSI protocol, Proc. 20th IEEE/11th NASA
Goddard Conference on Mass Storage Systems and Technologies,
pp.123–134 (2003).

c© 2013 Information Processing Society of Japan 431



Journal of Information Processing Vol.21 No.3 423–432 (July 2013)

[5] Breuer, P.T., Lopez, A.M. and Ares, A.G.: The network block device,
Linux Journal, Vol.73 (2000).

[6] GNBD Project Page, available from 〈http://sourceware.org/cluster/
gnbd/〉.

[7] Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M. and Zeidner,
E.: Internet Small Computer Systems Interface (iSCSI), Request for
Comments (RFC) 3720 (2004).

[8] Rajagopal, M., Rodriguez, E. and Weber, R.: Fibre Channel over
TCP/IP (FCIP), Request for Comments (RFC) 3821 (2004).

[9] Monia, C. et al.: iFCP - A Protocol for Internet Fibre Channel Storage
Networking, Request for Comments (RFC) 4172 (2005).

[10] Ng, W. et al.: Obtaining high performance for storage outsourc-
ing, Proc. 1st USENIX Conference on File and Storage Technologies,
pp.145–158 (2002).

[11] Lu, Y., Farrukh, N. and Du, D.H.C.: Simulation study of iSCSI-based
storage system, Proc. 12th NASA Goddard/21st IEEE Conference of
Mass Storage Systems and Technologies, pp.101–110 (2004).

[12] Kancherla, B.K., Narayan, G.M. and Gopinath, K.: Performance
evaluation of multiple TCP connections in iSCSI, Proc. 24th IEEE
Conference on Mass Storage Systems and Technologies, pp.239–244
(2007).

[13] Inoue, F., Ohsaki, H., Nomoto, Y. and Imase, M.: On maximizing
iSCSI throughput using multiple connections with automatic paral-
lelism tuning, Proc. 5th IEEE International Workshop on Storage Net-
work Architecture and Parallel I/Os, pp.11–16 (2008).

[14] Ito, T., Ohsaki, H. and Imase, M.: GridFTP-APT: Automatic paral-
lelism tuning mechanism for GridFTP in long-fat networks, IEICE
Trans. Comm., Vol.E91-B, pp.3925–3936 (2008).

[15] Icaza, M., Molnar, I. and Oxman, G.: The linux RAID-1, 4, 5 code,
Linux Expo (1997).

[16] Yang, Q.K.: On performance of parallel iSCSI protocol for networked
storage systems, Proc. 20th International Conference on Advanced In-
formation Networking and Applications, pp.629–636 (2006).

[17] Oguchi, M. et al.: Performance improvement of iSCSI remote storage
access, Proc. 4th International Conference on Ubiquitous Information
Management and Communication, pp.232–338 (2010).

[18] Soltis, S.R., Ruwart, T.M. and O’Keefe, M.T.: The global file system,
Proc. 5th NASA Goddard Conference on Mass Storage Systems and
Technologies, pp.319–342 (1996).

[19] Lu, Y. and Du, D.H.C.: Performance study of iSCSI-based storage
subsystems, IEEE Communications Magazine, Vol.41, No.8, pp.76–
82 (2003).

[20] Gauger, C.M., Kohn, M., Gunreben, S., Sass, D. and Perez, S.G.:
Modeling and performance evaluation of iSCSI storage area networks
over TCP/IP-based MAN and WAN networks, Proc. 2nd International
Conference on Broadband Networks, pp.915–923 (2005).

[21] Flouris, M.D. and Bilas, A.: Violin: A framework for extensible
block-level storage, Proc. 22nd IEEE/13th NASA Goddard Conference
on Mass Storage Systems and Technologies, pp.128–142 (2005).

[22] Rizzo, L.: Dummynet: A simple approach to the evaluation of net-
work protocols, ACM Comput. Comm. Review, Vol.27, No.1, pp.31–
41 (1997).

[23] Open iSCSI project, available from 〈http://www.open-iscsi.org/〉.
[24] The iSCSI enterprise target project, available from

〈http://iscsitarget.sourceforge.net/〉.
[25] proc(5) - linux manual page, available from 〈http://www.kernel.org/

doc/man-pages/online/pages/man5/proc.5.html〉.

Takamichi Nishijima received B.S. in
Information Science and M.S. in Mas-
ter of Information Science degrees from
Osaka University in 2009 and 2011, re-
spectively. He has been a graduate stu-
dent of the Graduate School of Informa-
tion Science and Technology, Osaka Uni-
versity since April 2011. He is a member

of IEEE and IEICE.

Hiroyuki Ohsaki received his M.E. de-
gree in Information and Computer Sci-
ences from Osaka University, Osaka,
Japan, in 1995. He also received his Ph.D.
degree from Osaka University, Osaka,
Japan, in 1997. He is currently an Asso-
ciate Professor at the Department of Infor-
mation Networking, Graduate School of

Information Science and Technology, Osaka University, Japan.
His research work is in the area of traffic management in high-
speed networks. He is a member of IEEE, IEICE, and IPSJ.

Makoto Imase receied his B.E. and M.E.
degrees in Information Engineering from
Osaka University in 1975 and 1977, re-
spectively. He received his D.E. de-
gree from Osaka University in 1986.
From 1977 to 2001, he was engaged
Nippon Telegraph and Telephone Corpo-
ration (NTT). From 2002 to 2012 He was

a Professor of Graduate School of Information Science and Tech-
nology at Osaka University. He has been a Vice President of Na-
tional Institute of Information and Communications Technology
(NICT) since April 2012. He is also a Fellow of IPSJ and a Emer-
itus Professor of Osaka University. His research interests are in
the area of information networks, distributed systems and graph
theory. He is a member of IPSJ and IEICE.

c© 2013 Information Processing Society of Japan 432


