
Journal of Information Processing Vol.21 No.3 405–412 (July 2013)

[DOI: 10.2197/ipsjjip.21.405]

Regular Paper

The Complexity of Tantrix Match Puzzles with Four Colors

Akihiro Uejima1,a) Fuhito Yanagitani1 Shohei Tsukamoto1

Received: July 31, 2012, Accepted: January 11, 2013

Abstract: Tantrix Match is a puzzle in which hexagonal tiles are arranged within a hexagonal lattice board in which
there are some fixed tiles. Each tile has painted lines in three of four possible colors, and it is required that all lines that
touch on adjacent tiles must match in color. The aim of this research is to determine the computational complexity of
this puzzle, and we prove that the generalized Tantrix Match is NP-complete by reduction from the circuit-satisfiability
problem (Circuit-SAT).

Keywords: puzzles, Tantrix, computational complexity, NP-completeness

1. Introduction and Definitions

Tantrix *1 is a hexagonal-tile-based abstract strategy puzzle
game invented in 1988 by Mike McManaway of New Zealand.
The hexagonal tiles each have three painted lines such that no two
lines on a tile have the same color. There are four possible colors
of the lines, which in the commercial product are red, green, blue,
and yellow. There are also four different ways in which the lines
are arranged on the tiles (see Fig. 1), thus the combination of four
shapes of tiles and three colors chosen from among four possible
colors give a total of 56 different tiles.

There are several different types of commercial Tantrix prod-
ucts, e.g., multi- or single-player versions, and versions that re-
strict the possible colors. In this paper, we focus on Tantrix

Match, which was invented in 2009, and analyze its computa-
tional complexity. Tantrix Match is a single-play puzzle in which
the number of possible colors is restricted to three, i.e., red, green,
and yellow. This puzzle has a set of unique stock tiles and a
hexagonal lattice board with pre-placed clue tiles, and it is played
by arranging the stock tiles on the empty spaces in the given board
according to the following rule (basic constraint): all touching
lines must match in color. For an instance of Tantrix Match, the
set of stock tiles is the stock set, the set of hexagonal cells in a
board that do not have clue tiles form the allocatable area, and a
member of the allocatable area is an allocatable cell. Note that

Fig. 1 Tantrix tiles.

1 Osaka Electro-Communication University, Neyagawa, Osaka 572–8530,
Japan

a) uejima@isc.osakac.ac.jp
*1 Tantrix R© is a registered trademark of Colour of Strategy Ltd. in New

Zealand and of TANTRIX JAPAN in Japan, under the license of M.
McManaway, the inventor.

the size of the stock set is equal to the size of the allocatable area.
One more rule for all Tantrix puzzles is that the arrangements

of tiles cannot contain holes, which are places that do not con-
tain tiles but that are completely enclosed by tiles. We call this
condition the hole constraint. In Tantrix Match, this constraint is
satisfied by the shape of the given boards.

In this paper, we consider the problem below as a generaliza-
tion of Tantrix Match, and we prove that the problem without the
hole constraint is NP-complete. Note that in the generalization,
we may use tiles painted from within four colors. We assume that
there exists a catalog consisting of all hexagonal tiles (for exam-
ple, 56 tiles when using 4 colors) and their initial orientation. We
note that the size of such a catalog is constant.

Tantrix Match Problem
Instance: A hexagonal lattice board B with clue tiles, an al-

locatable area AB (AB ⊆ B), and a stock multiset

S (|AB| = |S |),
Question: Is there an arrangement of all stock tiles in S on

B that satisfies the basic constraint?

Instances of the Tantrix Match problem and their solutions are
shown in Figs. 2 and 3. Throughout this paper, tiles with a white
or gray background represent stock or clue tiles, respectively, and
the blue hexagonal cells on the board B express the allocatable
area AB within B. If hexagonal cells b and b′ on a board B have
a common edge, b is a neighbor of b′. For a cell b, the set of all
neighbors of b in B is denoted by NB(b), so each cell b has at most
six neighbors in B (i.e., |NB(b)| ≤ 6).

An arrangement of all stock tiles in S on B can be expressed by
a one-to-one mapping f : AB → S and a rotation of each stock
tile f (b) ∈ S that is placed on a hexagonal cell b. If the mapping
f is fixed as an input, i.e., the position of all stock tiles on AB is
given, then the only possibility to make S fit is to rotate each stock
tile. A problem similar to this was considered in Refs. [1], [2]. M.
Holzer and W. Holzer [1] invented the Tantrix rotation problem,
which is the Tantrix Match problem with the stipulations that B

has no clue tiles and a mapping f : AB → S is fixed as an in-

c© 2013 Information Processing Society of Japan 405

Journal of Information Processing Vol.21 No.3 405–412 (July 2013)

Fig. 2 Instance of a Tantrix Match problem.

Fig. 3 Instance of a Tantrix Match problem without hole constraint.

put (note AB = B in this case). They proved in Ref. [1] that the
Tantrix rotation problem with four colors (but without the hole
constraint) is NP-complete, moreover in Ref. [2], Baumeister and
Rothe showed that the three-color and two-color versions of the
problem remain NP-complete.

It seems too restrictive that a mapping f is fixed prior to solv-
ing the Tantrix Match problem. Positioning the stock tiles on AB

by trial and error is one of the key factors that makes this puz-
zle entertaining. Consequently, we consider the Tantrix Match
problem in which the player is allowed to position the stock tiles.
We analyze the time complexity of the Tantrix Match problem as
defined above, and we prove the following theorem.

Theorem 1 The Tantrix Match problem with four colors avail-

able for the painted lines on the tiles, but without the hole con-

straint, is NP-complete.

2. Proof of NP Membership

In this section, we state and prove Lemma 1 as the first step in
proving our claim of NP-completeness, that is, Theorem 1.

Lemma 1 The Tantrix Match problem is in NP.

Proof. Consider a polynomial-time algorithm for verifying the
candidates for solution. We suppose that the candidates for B, AB,
and S are expressed as the combination of a one-to-one mapping
f : AB → S and a rotation function r : S → {0, 1, . . . , 5}. For
a mapping f and a rotation function r, this means that each tile
f (b) ∈ S is placed on a hexagonal cell b and rotated r(f (b)) · π/3
radians in a clockwise direction, based on an initial orientation of
f (b) (we can see the initial orientation in O(1) time by referring
to the catalog data for the tile f (b)).

Given such f and r, we can easily check whether a mapping f

is one-to-one in O(|S |) time by a search of f , and we can verify
the basic constraint in O(|B|) time by checking for every hexago-
nal cell b ∈ B that all touching lines between b and NB(b) match

in color.
As mentioned in Section 1, whether the hole constraint is sat-

isfied depends on the shape of a given board; hence, we do not
consider how to check the hole constraint. Therefore, the above
algorithm outputs “yes” if and only if the candidate satisfies the
basic constraint, and it takes a total of O(|B|) time.

In the remainder of this paper, we prove Lemma 2, i.e., we
prove the NP-hardness of the Tantrix Match problem without the
hole constraint.

Lemma 2 The Tantrix Match problem with four colors avail-

able for the painted lines on the tiles, but without the hole con-

straint, is NP-hard.

3. The Reduction

We prove Lemma 2 by reducing the circuit-satisfiability prob-
lem (Circuit-SAT for short), which is the problem of satisfying
given Boolean circuits C(v1, v2, . . . , vn) with n Boolean values
v1, v2, . . . , vn, to the Tantrix Match problem. Circuit-SAT has al-
ready been shown to be NP-complete in Ref. [3]. For present-
ing a proof by construction, we describe some gadgets that act
in circuit-like ways. Our goal is to simulate the behavior of a
Boolean circuit by combining these gadgets. For a given Boolean
circuit, we construct an instance (B, AB, S) of a Tantrix Match
problem corresponding to that circuit in polynomial time of the
number of cells in the hexagonal lattice board.

We can create quite varied and complicated circuits by using
only the basic logical gates AND and NOT (note that {AND,
NOT} is universal), wires, and splits. In the reduction, we must
be careful about wire crossing in the circuits. To construct the
Tantrix Match puzzle from circuits, we consider the Boolean
circuits restricted to a plane. For this purpose, we can replace
the wire crossing by McColl’s planar “cross-over” circuit [4] as
shown in Fig. 4, which can be constructed by three XOR gates
(note that a XOR gate can be expressed as the combination of

c© 2013 Information Processing Society of Japan 406

Journal of Information Processing Vol.21 No.3 405–412 (July 2013)

Table 1 List of stock tiles prepared for the gadgets.

Wire Input Output NOT Split AND Bend
Section 3.1 Section 3.2 Section 3.3 Section 3.4 Section 3.5 Section 3.6 Section 3.7

(a) ◦ ◦ ◦
(b) ◦ ◦ ◦
(c) ◦ ◦
(d) ◦ ◦
(e) ◦
(f) • ◦ •
(g) • ◦ •

Fig. 4 McColl’s planar “cross-over” circuit.

Fig. 5 Catalog of 13 types of tiles.

AND and NOT gates). Our reduction, including the planarization
of circuits, is similar to the reducing technique in Refs. [1], [2].

In the following, we consider the Tantrix Match problem in
which the types of tiles set in the board B and included in the mul-
tiset S of stock tiles are restricted to the tiles listed in Fig. 5. We
need only to consider the constructions of seven gadgets, which
correspond to wires, inputs, outputs, NOT gates, splits, AND
gates, and bended wires, and in the following subsections, we
will construct such gadgets by using the 13 types of tiles illus-
trated in Fig. 5 as clue and stock tiles. Table 1 shows information
for the combination of types of stock tiles and the gadgets: (1)
the tiles of types marked by ◦ will be prepared as stock tiles for
each gadget, and (2) if the row of a gadget has • elements, then
this means that the tiles of types marked by • are not prepared
as stock tiles for the gadget, but may be arranged on an essential
part of the gadget by diverting from stock tiles prepared for the
other gadgets.

After constructing all gadgets that we use for the reduction in
the rest of this section, we will explain how to connect our several
gadgets by illustrating an instance of the Tantrix Match problem,
which simulates a simple Boolean circuit, in Section 4. When
connecting between two gadgets except for the wire ones, we in-
sert wire gadgets between them with the aim of combining them

Fig. 6 Wire gadget.

without a contradiction.
We will represent true by the color blue and false by the color

red, and when we say that the input of a certain gadget is blue

(resp. red), we will mean that the input of the corresponding log-
ical gate carries the value of true (resp. false). The same holds
for the output. For a hexagonal cell b in a sub-board B̃, a color
sequence concerning a line touching b of a (pre-)placed tile on
b′ ∈ NB̃(b) is expressed as InCOLb = (c0, c1, . . . , c5) such that
ci ∈ {r, g, b, y, ∗,−} for i = 0, 1, . . . , 5 moving clockwise from
the top position, and the ith mark ci in InCOLb is expressed as
InCOLb(i). The colors are represented by their initials r, g, b, y,
and ∗ and −mean suspense and nonexistence, respectively. Simi-
larly, for a cell b ∈ B̃ on which a tile f (b) is arranged, the order of
colors of f (b) on the six sides of b, starting at the top and moving
clockwise, are represented as OutCOLb = [c′0, c

′
1, . . . , c

′
5], such

that c′j ∈ {r, g, b, y} for j = 0, 1, . . . , 5. We define OutCOLb(j) as
the jth mark c′j in OutCOLb.

3.1 Wire Gadget
A wire gadget Bw of length three that corresponds to a wire in

a circuit is shown in Fig. 6. In addition, we prepare stock tiles (a)
and (b), as many in number as the length of the wire gadget. In
the case of Fig. 6, three tiles each of types (a) and (b) are prepared
as stock tiles for this sub-board. In the wire gadget, clue tiles of
types (a) and (b) are fixed on both sides of allocatable cells Wi,
and there exists a red (resp. blue) straight line, which parallel
Wis, on clue tiles (a) (resp. (b)) at the left (resp. right) side of the
Wis. We call these straight lines side lines of wire gadgets.

If the input color of the gadget is blue, i.e., the top color of a tile
arranged on the cell marked by in is blue, then the color sequence
of cell W1 is (∗, y,−, b,−, g) due to the clue tiles on NBw (W1).
Hence, the only stock tile on W1 that fits the sequence is type (a).

In the similar way, we must place a type (a) tile on cell
W2 (resp. W3) since the sequence of W2 (resp. W3) became

c© 2013 Information Processing Society of Japan 407

Journal of Information Processing Vol.21 No.3 405–412 (July 2013)

Fig. 8 Swapping red and blue colors of side lines on the wire gadget.

Fig. 7 Solutions to the wire gadget.

(∗, y, y, b, g, g) (resp. (∗,−, y, b, g,−)) after placing the tile on W1

(resp. W2) as shown in the left figure of Fig. 7. As a result, the
output color of the wire gadget is also blue. From the same dis-
cussion, if the input color is red, then the output is also red (see
the center figure of Fig. 7).

After arranging the tiles on the allocatable cells Wi of the gad-
get, the remaining stock tiles can then be arranged on the unla-
beled allocatable cells paralleling Wis. For example, when the
input color of the wire gadget is blue, three tiles of type (b) re-
main after the above arrangements on Wis, we can arrange these
tiles as shown in the right figure of Fig. 7.

The wire gadget shown in Fig. 6 has a red left-side line and
a blue right-side line, and unlabeled allocatable cells on the ex-
treme right. Then, we can easily construct variant wire gadgets
about colors of side lines and layouts of the unlabeled allocatable
cells as shown in Fig. 8. We note that the above discussion about
arrangements of clue tiles also holds for these wire gadgets, since
the color sequences of the allocatable cells for every wire one re-
main unchanged. Moreover, we can directly connect these variant
wire gadgets (see Fig. 9), since the clue tiles on a wire gadget are
not neighbors of the clue tiles on another wire gadget. Even if
the allocatable cells on the outside in the wire gadgets connect
as shown in the left figure of Fig. 9, we can arrange all clue tiles
prepared for their wire gadgets on the allocatable cells of them
in a similar way to the arrangements shown in the right figure of
Fig. 7.

The combination of their variant wire gadgets is very useful for
connecting several gadgets except for wire ones.

3.2 Input Gadget
An input gadget BIN corresponding to an input in a circuit is

shown in Fig. 10. In this gadget, we set one stock tile of each of
types (a) and (b) in the same way as was done in the wire gadget
of length three. We can then place the (a) or (b) tile on cell I of
BIN ; thus the output color is only blue or red (see Fig. 11). The
treatment of other cells in the gadget and the remaining tiles is
similar to that of the wire gadgets. We remark that the stock tiles
other than types (a) and (b) cannot be positioned on a side cell.

Fig. 9 Combination of the wire gadgets with different side colors.

Fig. 10 Input gadget.

Fig. 11 Solutions to the input gadget.

Fig. 12 Output gadget.

3.3 Output Gadget
The output of a circuit can be represented as shown in Fig. 12.

If the input color is either blue or red, the basic constraint is sat-
isfied only when the color is blue.

3.4 NOT Gadget
The NOT gadget BNOT , corresponding to a NOT gate in a cir-

cuit, and one tile of type (c) that is set as a stock tile are shown in
Fig. 13. Since the color sequence of a unique allocatable cell in

c© 2013 Information Processing Society of Japan 408

Journal of Information Processing Vol.21 No.3 405–412 (July 2013)

Fig. 13 NOT gadget.

Fig. 14 Solutions to the NOT gadget.

Fig. 15 Split gadget.

the gadget is (∗, g,−, ∗, g,−), the cell can have a stock tile of type
(c). Hence, if the input color is blue (resp. red), then the output
is red (resp. blue) as shown in Fig. 14.

3.5 Split Gadget
The split gadget Bs shown in Fig. 15 simulates splitting a wire

into two copies in a circuit. We prepare seven stock tiles of type
(d) for a split gadget. A color sequence of S 0 is (−, ∗, r, ∗, b, ∗),
and if we assume that the input is blue or red, then a tile of type
(d) is located on cell S 0.

If the input is blue, then the tile on S 0 is fixed, as shown in
Fig. 16. The sequence of cell S ′1 is then (∗,−, y, y,−, r); thus the
arrangement of the cell is fixed, and tiles of type (d) are also ar-
ranged on the subsequent cells S ′2 and S ′3 in the same way (see
the left figure of Fig. 16). As a result, the left output is blue.

On the other hand, we can place either a tile of type (d) or type
(g) on cell S 1 because its sequence is (∗, b,−, y, r,−). If a type
(d) tile is placed on S 1 (refer to the right figure of Fig. 16), the
sequence of S 2 is (y, ∗, r, b,−,−). Then S 2 can only have a tile
of type (d). Thus tiles of either type (d) or (g) can be placed on
cell S 3. When a (g) tile is positioned on cell S 3, we must arrange
a tile on the right cell with an out label such that the sequence

Fig. 16 Split gadget with blue input.

Fig. 17 Two solutions to the split gadget with blue input.

is (−,−, y, y, g,−). However, there exist no stock tiles satisfying
such a sequence. Given this situation, we must arrange a (d) tile
on S 3. Therefore the right output is also blue, as shown on the
left figure of Fig. 17.

For the case in which a tile of type (g) is placed on S 1, S 2

can only have a tile of type (g), since the sequence of S 2 is
(y, ∗, r, y,−,−). Then we can then arrange tiles of either type (d)
or (g) on cell S 3. If a (g) tile is arranged on cell S 3, we have no
possible tiles to be placed on the right cell with an out label, the
sequence of which is (−,−, y, y, g,−). Therefore, all the allocated
cells of the gadget are fixed, as is shown in the right figure of
Fig. 17, and both outputs are blue.

We consider the case where the input is red. For the left- and
right-side sets of the allocatable cells in the split gadget, the color
sequences are bilaterally symmetric. Hence, our discussion for
this case is similar to the above discussion for the case where the
input is blue, but with the sub-board reversed left to right. Since
the input is red, the tiles on S 0 and S 1 are fixed as shown in
Fig. 18. Then, S 2 can have a tile of either type (d) or (f). How-
ever, there exist no tiles satisfying the sequence of S 3 for placing
an (f) tile. Hence, we can determine a tile arrangement for the
right-side cells, as shown in Fig. 18.

For the left side, we can place a tile from among the types
(d), (f), and (g) on S ′1 since the sequence of S ′1 is (∗,−, b, y,−, r).
When choosing a tile of type (d) or (f), the sequence of S ′2 be-
comes (y,−,−, r, b, ∗); otherwise it is (y,−,−, y, b, ∗).

In the former case, we can place a tile of either type (d) or (e)
on cell S ′2. However, if a tile of type (e) is placed on S ′2, there
exist no tiles satisfying the sequence of S ′3. If a tile of type (d) is
chosen for S ′2, the candidates for cell S ′3 are tiles of types (d) and
(g). If a (g) tile is placed on cell S ′3, we cannot set a tile on the
upper out cell. Therefore, a (d) tile is placed on S ′3 and the left
output is red (see the left and center figures of Fig. 18).

In the latter case, a tile of type (g) is placed on cell S ′2
from the sequence of S ′2. Then, the sequence of S ′3 becomes
(∗, b, b, y,−, r), and we can place only a tile of type (d) on cell
S ′3 since another candidate (g) is excluded. The arrangement cor-

c© 2013 Information Processing Society of Japan 409

Journal of Information Processing Vol.21 No.3 405–412 (July 2013)

Fig. 18 Three solutions to the split gadget with red input.

Fig. 19 AND gadget.

responding to this case is illustrated in the right figure of Fig. 18.
We thus have three solutions when the input is red, and the

solutions shown in Fig. 18 represent a circuit in which a wire car-
rying a value of false is split into two copies. We notice that there
exist solutions using all given tiles of type (d) for the cases of
both blue and red inputs.

3.6 AND Gadget
Our AND gadget corresponds to an AND gate in a circuit, as

illustrated in Fig. 19. Some of the unlabeled allocatable cells
shown in the figure are places for arranging the remaining tiles
after placing the labeled cells, such as the wire and input gadgets.
For an AND gadget, we prepare stock tiles as shown in the green
box in Fig. 19, i.e., five tiles each of types (a) and (b), two tiles of
type (c), and one tile each of types (e), (f), and (g).

Suppose that the inputs from cells in1 and in2 are either blue

or red. Because of the clue tiles on the neighbors of cells A1

and A′1, we can place on these cells only a tile of type (c) with a
straight green line. As a result, the order of colors OutCOLA1 on
A1 by the (c) tile becomes either [r, g, r, b, g, b] or [b, g, b, r, g, r],
and the order OutCOLA′1 for A′1 is [b, r, g, r, b, g] or [r, b, g, b, r, g].
Namely, if InCOLA1 (3) = b (resp. InCOLA1 (3) = r), then
OutCOLA1 (5) = b (resp. OutCOLA1 (5) = r), which is a wire-like
action. Also, if InCOLA′1 (3) = b (resp. InCOLA′1 (3) = r), then
OutCOLA′1 (0) = r (resp. OutCOLA′1 (0) = b), which is a NOT-like
action.

We consider a sequence of cells W1 and W2 as shown in
Fig. 19. These cells are touched by green and yellow lines from
the outside, so InCOLW1 (1) = g and InCOLW1 (5) = y for W1,
InCOLW2 (2) = y and InCOLW2 (4) = g for W2. Thus we can
arrange only tiles of type (a) and (b) on W1andW2. As in wire
gadgets, the sequence outputs the input color from cell in1, such
that OutCOLW2 (0) = b (resp. OutCOLW2 (0) = r) for blue (resp.

Fig. 20 AND gadget with inputs (blue, blue).

Fig. 21 Solution to the AND gadget with inputs (blue, blue).

Fig. 22 AND gadget with inputs (red, red).

red) input. In a similar way, a sequence of cells W′1, W ′2, W ′3 can
also be assigned (a) and (b) tiles, and it then behaves as a wire
gadget. We have thus fixed a tile arrangement on A1, W1, W2, W ′1,
W ′2, and W ′3 for each pair of inputs from in1 and in2 (see the left
figures of Figs. 20, 22, 24, and 25).

Because of the color sequence InCOLA2 = (∗, y, b, b,−,−) for
inputs (blue, blue), we must place a tile of type (g) on cell A2 and
one of type (c) on A′1, as shown in Fig. 20. As a result, the output
is blue. The remaining stock tiles for the AND gadget can then be
arranged on the unlabeled allocatable cells, as shown in Fig. 21.

If the inputs are (red, red) (see Fig. 22), InCOLA2 =

(∗, y, r, r,−,−). With a tile of type (c) placed on cell A′1, the allow-
able tiles on A2 are limited to type (g). Hence, the arrangement
of tiles on the labeled cells is fixed, as shown in the right fig-
ure of Fig. 22. The remaining stock tiles can be arranged on the
unlabeled allocatable cells, as shown in Fig. 23.

c© 2013 Information Processing Society of Japan 410

Journal of Information Processing Vol.21 No.3 405–412 (July 2013)

Fig. 23 Solution to the AND gadget with inputs (red, red).

Fig. 24 AND gadget with inputs (blue, red).

Fig. 25 AND gadget with inputs (red, blue).

If the inputs are (blue, red), then InCOLA2 = (∗, y, r, b,−,−).
Thus we can arrange the tiles on the labeled cells as shown in
Fig. 24. The remaining stock tiles can be arranged on the AND
gadget, as is shown in the right figure of Fig. 24.

If the inputs are (red, blue), then InCOLA2 = (∗, y, b, r,−,−).
In this situation, the arrangement of the tiles on the labeled cells
is fixed, as shown in the left figure of Fig. 25, and the remaining
tiles can be arranged on the AND gadget, as shown in the right
figure of Fig. 25.

As a consequence, the output of the AND gadget for each pair
of inputs works as the output of an AND gate in a circuit. The tiles
placed on A2 play an important role in the control of the output:
a tile of type (g) is used in the case that the input is (blue, blue) or
(red, red), type (e) when the input is (blue, red), and type (f) when
the input is (red, blue). In addition, if there exist an AND gadget
such that the input is not (red, blue) and a split gadget with the
input red, then an arrangement of a tile of type (f) does not fixed
on the unlabeled cells in the AND gadget. Thus the tile of type (f)
may be exchanged for a tile of type (d) prepared as a stock tile for
the split gadget, and we may obtain the arrangement on the split
gadget shown in the center figure of Fig. 18. Similarly, if there ex-
ist two AND gadgets such that the inputs are neither (blue, blue)
nor (red, red), an arrangement of tiles on a split gadget may be as
shown in the right figures of Fig. 17 and Fig. 18.

Fig. 26 Bend gadget.

3.7 Bend Gadget
Since wires must bend to connect logical gates in circuits, our

construction needs to bend wire gadgets to route between our
gate-like gadgets. In our reduction, we can put needed gadgets
on a board, in which the parities of the horizontal positions of all
the in and out cells of the gadgets are coincident, based on the
construction of the above gadgets. Figure 26 illustrates how to
shift an in cell to the left or right by two cells. This bend gadget
is constructed by using the left or right half of our split gadget.

When shifting an in cell to the left (or right) by 2p cells, we
can construct the bended wires by alternating the p bend gadgets
shown in the left (or right) figure of Fig. 26 and the p − 1 variant
wire gadgets as shown in the left figure of Fig. 9 in Section 3.1.

4. Proof of Correctness of the Reduction

We are now ready to prove Lemma 2, with the help of the gad-
gets constructed in the previous section.

Proof of Lemma 2. Every gadget except the wire and output gad-
gets has clue tiles, which are on neighbors of the in and out cells,
within the gadget. We consider such gadgets. For the upper right-
and-left cells b with clue tiles of the in cells, OutCOLb(2) = g and
OutCOLb(4) = y, and for the lower right-and-left cells b′ with
clue tiles of the out cells, OutCOLb′ (1) = g and OutCOLb′ (5) = y
(see Fig. 27). Moreover, these gadgets can be divided into four
groups illustrated in Fig. 27 for the combination of color patterns
in OutCOLbs and OutCOLb′s. Therefore, we can construct an
instance of the Tantrix Match problem, which simulates a given
instance of the Circuit-SAT, by combining our gadgets as shown
in Fig. 28. The wire gadgets are expressed as cells with frames
colored by orange in Fig. 28. For connecting between two gadgets
except the wires without a contradiction, we insert the combina-
tion of variant wire gadgets between them and switch red and
blue colors of their side lines on the wires connecting from the
out cells on one gadget to the in cells on another gadget.

Because each component of a circuit can be replaced by a cor-
responding small gadget and the number of cells in the Tantrix
Match problem is polynomial in the number of inputs for the
Circuit-SAT problem, our reduction takes polynomial time of the
number of inputs for the Circuit-SAT problem.

Let a satisfying truth-value assignment (v1, v2, . . . , vn), vi ∈
{0, 1} for i = 1, 2, . . . , n, for the input circuit C with n variables
be given. Then we can construct an arrangement satisfying the

c© 2013 Information Processing Society of Japan 411

Journal of Information Processing Vol.21 No.3 405–412 (July 2013)

Fig. 27 Color patterns on neighbors of in and out cells on gadgets.

Fig. 28 The outline of the reduction for an instance of Circuit-SAT.

basic constraint for the Tantrix Match instance by choosing a lo-
cal arrangement of the input gadgets corresponding to the truth
assignment (v1, v2, . . . , vn) and by adding the local arrangement to
the other gadgets arising from arrangements of the input gadgets.

On the other hand, if there exists an arrangement satisfying the
basic constraint for the Tantrix Match instance, then we can easily
construct the satisfying truth-value assignment of C by following
the local arrangement of the input gadgets, that is, choosing a tile
of type (a) or (b) on the gadgets (recall Fig. 11 in Section 3.2).

5. Conclusions

We have shown that the Tantrix Match problem with four avail-
able colors but without the hole constraint is NP-complete by
reducing the Circuit-SAT problem to this one. To simulate a
Boolean circuit on a hexagonal lattice board with clue and stock
tiles, we restricted the types of tiles used as clue and stock tiles
(see Fig. 5 in Section 3). Since our constructed instance of the
Tantrix Match problem may contain holes, the complexity of the
Tantrix Match problem with the hole constraint is still open. It
may also be interesting to analyze the complexity of this problem
with three colors or less, using a proper subset of our tile restric-
tion or an entirely different set of tiles. Moreover, we note that
for each solution of the Circuit-SAT problem there are multiple
solutions for the Tantrix Match: some gadgets may have local so-
lutions in our gadgets, and the placing of tiles on allocatable cells
without labels is not fixed. This means that the mapping from
Circuit-SAT solutions to Tantrix Match solutions is not injective.
As an area of future work, one might try to find a reduction such
that there is an injective solution for the mapping.

Acknowledgments This research was supported in part by

Institute of Informatics, Osaka Electro-Communication Univer-
sity.

References

[1] Holzer, M. and Holzer, W.: Tantrix Rotation Puzzles are Intractable,
Discrete Applied Mathematics, Vol.144, No.3, pp.345–358 (2004).

[2] Baumeister, D. and Rothe, J.: The three-color and two-color Tantrix
rotation puzzle problems are NP-complete via parsimonious reduc-
tions, Information and Computation, Vol.207, No.11, pp.1119–1139
(2009).

[3] Cook, C.S.: The complexity of theorem proving procedures, 3rd ACM
Symposium on Theory of Computing, pp.151–158 (1971).

[4] McColl, W.: Planar crossovers, IEEE Trans. Comput., Vol.30, No.2,
pp.223–225 (1981).

Akihiro Uejima was born in 1975. He
received a B.E. and M.E. from Infor-
mation Systems Engineering, Department
of Information and Computer Sciences,
Toyohashi University of Technology in
1998 and 2000, respectively, and Dr.
of Informatics degree from Department
of Communications and Computer Engi-

neering, Graduate School of Informatics at Kyoto University in
2005. Since 2005, he has been a lecturer in Department of Engi-
neering Informatics, Osaka Electro-Communication University.
His research interest is in graph theory, computational complex-
ity. He is a member of the IEICE, IPSJ, the Operations Research
Society of Japan, the Language and Automaton Symposium.

Fuhito Yanagitani was born in 1988. He
received a B.Sc. from Department of En-
gineering Informatics, Faculty of Infor-
mation and Communication Engineering,
Osaka Electro-Communication University
in 2011. From 2011, he is a student of
Master course in Division of Information
and Computer Science, Graduate School

of Engineering at Osaka Electro-Communication University.

Shohei Tsukamoto was born in 1990.
He received a B.Sc. from Department of
Engineering Informatics, Faculty of Infor-
mation and Communication Engineering,
Osaka Electro-Communication University
in 2012.

c© 2013 Information Processing Society of Japan 412

