
Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

[DOI: 10.2197/ipsjjip.21.378]

Regular Paper

A Tale of Two Puzzles:
Towers of Hanoi and Spin-Out

Paul Cull1,a) LeanneMerrill2,b) Tony Van1

Received: July 26, 2012, Accepted: November 2, 2012

Abstract: Once upon a time, there were two puzzles. One was the Towers of Hanoi invented or introduced by Ed-
uardo Lucas in 1883. The other was Spin-Out patented by William Keister in 1972. There are many stories about
these puzzles. Some of these stories hint or claim that these puzzles have an intimate relationship with the Gray codes
invented by Frank Gray in 1947. Here, we wish to show how these puzzles can be generalized and crossed to give
puzzles for every base and for every number of pieces. The Gray relationship will become clearer when we describe
the graphs associated with the puzzles and the graph labelings induced by the puzzles. These labelings will have the
Gray property in the appropriate base. Counter to claims that Gray counting is needed to solve these puzzles, we
describe counting algorithms which solve these puzzles using a standard binary counter. We also give recursive and
iterative algorithms for these puzzles.

Keywords: puzzles, graphs, algorithms, Towers of Hanoi, Spin-Out, iterated complete graphs

1. Introduction

People enjoy playing with puzzles. The manipulation and con-
comitant tactile stimulation is satisfying enough, but the men-
tal stimulation in understanding the solution of the puzzle is, for
some, even more satisfying. In this paper, we want to relate our
tale of investigating two well-known puzzles, Towers of Hanoi
and Spin-Out, and how our attempts at understanding these puz-
zles led us to the creation of a whole family of puzzles, one for
each positive integer.

Puzzles are intimately connected with graphs. The vertices of a
graph are the configurations of the puzzle, and the graph’s edges
specify the allowed moves of the puzzle. A solution to the puzzle
is a path from a starting vertex corresponding to the initial config-
uration of the puzzle to a target vertex corresponding to the final
configuration of the puzzle. So, in our construction of puzzles,
we also create a bi-infinite family of graphs, which we call the
iterated complete graphs, Kn

d . Here, d which we call the dimen-
sion specifies the type of puzzle, and n which we call the iteration
indicates the number of pieces in the puzzle.

Some years ago, we investigated the Towers of Hanoi and algo-
rithms to solve this puzzle [4]. We found, in particular, that this
puzzle could be solved using only a binary counter. Somewhat
to our dismay, whenever we mentioned this result, we were met
with the response “Oh yes, you can solve Towers of Hanoi using
the Gray code.” This response is presumably a reference to an
article by Martin Gardner [9] in which he shows that the disk to

1 Computer Science, Kelley Engineering Center, Oregon State University,
Corvallis, OR 97331, USA

2 Department of Mathematics, University of Oregon, Eugene, OR 97403,
USA

a) pc@eecs.oregonstate.edu
b) leannem@uoregon.edu

be moved on the kth move is given by which digit is changed in
in going from k to k + 1 in the Gray sequence. The Gray code re-
ferred to here is the binary reflected Gray code patented by Frank
Gray in 1947 [8]. In more generality, a Gray code is a sequence
of strings over some alphabet, so that the kth and (k + 1)st strings
differ in exactly one position [18]. For puzzles, the Gray prop-
erty is almost automatic, in that it corresponds to the rule that
only one piece may be moved at a time. Hence, the sequence of
configurations for the solution of a puzzle should have the Gray
property. For Towers of Hanoi, the alphabet could be {A, B,C} or
{0, 1, 2} and the solution sequence would have the Gray property
over a 3 character alphabet. Where does the binary Gray code
fit in? As we will see, Spin-Out corresponds exactly to the bi-
nary Gray code. Further, as we will see, the changing digit in
the binary Gray code corresponds to the rightmost 0 in a binary
counter and this rightmost 0 indicates which piece to move not
only in Spin-Out and Towers of Hanoi, but also in the whole fam-
ily of puzzles we will construct. This rightmost rule is the basis
for our counting algorithms to solve these puzzles.

2. Towers of Hanoi

Here, we will recall some well-know facts about the familar
Towers of Hanoi puzzle. More detailed discussion of Towers of
Hanoi is in Cull and Ecklund [4]. In the Towers of Hanoi prob-
lem, one is given three towers, usually called A, B, and C, and n

disks of different sizes. Initially the disks are stacked on tower A
in order of size with diskn, the largest, on the bottom, and disk1,
the smallest, on the top. The problem is to move the stack of
disks to tower C, moving the disks one at a time in such a way
that a larger disk is never stacked on top of a smaller disk. An
extra constraint is that the sequence of moves should be as short
as possible. An algorithm solves the Towers of Hanoi problem

c© 2013 Information Processing Society of Japan 378

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

Fig. 1 The labeled graph K3
3 corresponding to the Towers of Hanoi with 3

disks. For example, 112 means that disks one and two are on tower
1, and disk three is on tower 2.

if, when the algorithm is given as input n the number of disks,
and the names of the towers, then the algorithm produces the
shortest sequence of moves which conforms to the above rules.
To set things up for development of other puzzles, we will indi-
cate the towers by the numbers 0, 1, and 2 because later we will
use MOD 3 arithmetic. For the 3 tower Towers of Hanoi we use
k = neither i nor j to mean the number that is different from i and
j when i and j are distinct.

The following is the well-known recursive algorithm for Tow-
ers of Hanoi. It produces the unique minimal move solution to
the problem of moving n disks from tower i to tower j.

RECURSIVE ALGORITHM

PROCEDURE HANOI(i, j, n)
IF n > 0
THEN

k = neither i nor j

HANOI (i, k, n − 1)
move the top disk from tower i to tower j

HANOI(k, j, n − 1)

It is easy to give an inductive proof of this fact, and it is also
easy to calculate the number of moves in this solution. The num-
ber of moves is 2n − 1, which follows readily from the difference
equation

M(n) = 2 M(n − 1) + 1 with M(1) = 1.

Here, of course, M(n) is the number of moves, M(1) = 1 be-
cause it takes one move to solve the problem for a single disk,
and the algorithm calls itself twice using one less disk.

An essential idea is that the states of this puzzle can be rep-
resented by the graph in Fig. 1. Each node (vertex) represents
a state of the puzzle. The label of a vertex indicates the tower
on which a disk resides in the corresponding state. The towers
are assigned the “names” 0, 1, and 2. For example, 112 means
that disk 1, the smallest disk, is on tower 1, disk 2 is on tower 1,
and disk 3 is on tower 2. At some point we may want to reverse

the labels, so that the tower of the smallest disk is the rightmost
character of the label.

The edges of the graph indicate legal moves in the puzzle. For
example, the edge between 110 and 112 represents the move of
the largest disk, disk 3, from tower 0 to tower 2. This is a legal
move because the smaller disks are all on tower 1.

These Towers of Hanoi graphs have been widely studied. For
example, by Refs. [6], [7], and [14] in the context of error-
correcting code, and by Refs. [1] and [15] in the context of color-
ing and symmetries.

We draw the Towers of Hanoi graphs in levels. The top vertex
00 . . . 0 will be at level 0, and the two vertices adjacent to it will
be at level 1. We can then recursively construct Hn, the Towers of
Hanoi graph for n disks, by the following diagram:

Hn =

Hn−1
/ \

Hn−1 Hn−1

That is, we take three copies of the drawing of Hn−1, and con-
nect them as follows. The top Hn−1 has two corner vertices in its
bottom row. We add an edge connecting one of these to the top
vertex of the lower left Hn−1, and we add an edge connecting the
other of these corner vertices to the top vertex of the bottom right
Hn−1. We also add an edge between the bottom right corner ver-
tex of the lower left Hn−1 to the bottom left corner vertex of the
lower right Hn−1. So if Hn−1 has levels 0 through l, then Hn will
have levels 0 through 2l + 1.

Although the above diagram captures the topology of the
graphs, it does not display the labeling which we will need for
our puzzles. Let Ln be the labeled graph, then:

Ln+1 =

RLn0
/ \

↑ RLn1 ↓ RLn2

By this we mean that the labeled graph for n + 1 disks can be
constructed from 3 copies of the labeled graph for n disks. By
RLn we mean the labeled graph which is the mirror image of Ln.
In Ln, the lower right vertex is labeled 22 . . . 2, and the lower left
vertex is labeled 11 . . . 1. In RLn, the lower right vertex is la-
beled 11 . . . 1, and the lower left vertex is labeled 22 . . . 2. The
top copy, RLn0, looks like RLn, but each vertex has a 0 appended
to its label. Similarly, ↑ RLn1 is a copy of RLn which has been
rotated 120 degrees clockwise and has a 1 appended to each label,
and ↓ RLn2 is a copy of RLn which has been rotated 120 degrees
counterclockwise and has a 2 appended to each label. For exam-
ple,

n = 1

0
/ \
1 2

n = 2

00
/ \

20 10
/ \

21
/ \

11 01

12
/ \

02 22

2.1 Iterative Algorithms
There are a variety of algorithms to solve the Towers of Hanoi

c© 2013 Information Processing Society of Japan 379

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

puzzle. Here, we will discuss two of them.
The following iterative algorithm is due to Buneman and

Levy [2].

ITERATIVE ALGORITHM

move the smallest disk one tower clockwise

WHILE a disk (other than the smallest)

can be moved DO

move that disk

move the smallest disk one tower clockwise

ENDWHILE

The Buneman and Levy algorithm assumes that the towers are
arranged in a circle or assigned the numbers 0, 1, 2 mod 3. The
minor difficulty is to decide which way to move the smallest disk.
If n is ODD, disk 1 (the smallest) should be moved to its target
tower, but when n is EVEN, disk 1 should be moved to the non-
target tower. The simplest way to handle this is to arrange the
towers in circular order 0, 2, 1 when n is ODD and in circular
order 0, 1, 2 when n is EVEN. Then moving disk 1 clockwise
will always move it in the right direction.

Alternatively, one could always use the circular order 0, 1, 2
but then the n disks would be moved from tower 0 to tower 1
when n is ODD and the n disks would be moved from tower 0 to
tower 2 when n is EVEN.

2.2 Counting Algorithm
The iterative algorithm assumes that one can look at the puzzle

and see which disk to move. Somewhat surprisingly, the neces-
sary information can be in a simple binary counter as used in the
following algorithm.

COUNTING ALGORITHM

T:= 0 (*TOWER NUMBER COMPUTED MODULO 3*)
COUNT:= 0 (*COUNT HAS n BITS*)
P:= {1 if n is even } {-1 if n is odd }

move disk 1 from T to T+P

T:= T+P

COUNT:= COUNT + 1

WHILE COUNT � ALL 1’s DO
IF rightmost O in COUNT is in even position

THEN move disk from T-P to T+P

ELSE move disk from T+P to T-P

COUNT:= COUNT + 1

move disk 1 from T to T+P

T:= T+P

COUNT:= COUNT + 1

ENDWHILE

The above algorithm is due to Cull and Ecklund [4] and a simi-
lar counting algorithm was presented by Walsh [20]. We defer the
correctness argument until after we have generalized this puzzle.

3. Spin-Out

Spin-Out is another popular, but somewhat lesser-known puz-

Fig. 2 A configuration of the Spin-Out puzzle, which corresponds to the la-
beling 0011011. The spinner under the arc may move, and we may
also slide the inner rectangle to the right and move the leftmost spin-
ner.

zle. The physically embodied puzzle Spin-Out was invented by
William Keister in 1970. Copies of this embodied puzzle may
be purchased for around $12 [19]. Another embodiment The
Brain was produced by Mag-Nif but no longer seems to be avail-
able [12].

The abstract definition of these puzzles is given in the follow-
ing box [5].

Spin-Out
The following locking system describes the Spin-Out puzzle.

The locking system has n interconnected locks so that:
(1) Lock 1 may be changed from locked to unlocked

or from unlocked to locked, at any time.
(2) For j > 1, lock j may be changed from locked to un-

locked
(or vice versa), only if locks 1 through j − 2, are unlocked
and lock j − 1 is locked.

The physically embodied puzzle is pictured in Fig. 2. Here
lock 1 is on the left. By design, each spinner can have one of
two spins; the rounded part may be pointed down, or the rounded
part may be pointed to the right. We correspond the rounded
part pointed down to “LOCK,” and the rounded part pointed to
the right to “UNLOCK.” To make this numeric, we correspond
“LOCK” to 1 and “UNLOCK” to 0. As one can see a lock (or
spinner) may be rotated only when it is under the curved arc in
the puzzle. For spinner 1, this is the only condition and so spin-
ner 1 can be changed at any time. If spinners 1 through j − 2 are
not ALL unlocked then spinner j can not be moved to under the
curved arc. Finally, for spinner j to change spin, spinner j − 1
must have spin that allows spinner j to move. So this physical
puzzle is described by the definition in the above box.
Proposition 3.1. The state space of the Spin-Out puzzle is the

reflected binary Gray code.

This code may be described in a symbolic fashion by:

Gn = 0 Gn−1 || 1 GR
n−1

Here, Gn means the sequence of n bit Gray numbers, i.e., the
Gray bit strings corresponding to the integers in their natural or-
der. For example, 000 corresponds to the number 0, while 111
corresponds to the number 5. || means followed by (or con-
catenation). GR

n−1 means the reversed sequence of n − 1 bit Gray
numbers, i.e., the bit strings corresponding to the integers in the
reverse of their natural order. See Fig. 3.

Clearly, for Spin-Out with n = 2 the state space is

00 ←→ 01 ←→ 11 ←→ 10

c© 2013 Information Processing Society of Japan 380

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

Fig. 3 The reflected binary Gray code for K1
2 , K2

2 , and K3
2 with every third

vertex circled.

which is the same as the binary reflected Gray code on 2 bits.
(Often the Gray code is made cyclic by allowing 10 to change to
00, but this is not an allowed move in Spin-Out.)

Since we can maneuver spinners 1 through n − 1 without
changing spinner n, we may assume the following. If spinner
n in Spin-Out has spin 0, then each state has a leading 0 and all
of the other spinners have configurations which correspond to the
Gray code on n − 1 bits. If spinner n in Spin-Out has spin 1,
then each state has a leading 1 and all of the other spinners have
configurations which correspond to the Gray code on n − 1 bits.

Changing the nth spinner from 0 to 1 joins the the two state
spaces for n − 1 bits. This involves the two states 010 . . . 0 and
110 . . . 0. Using the orientation on n − 1 bits which starts with
00 . . . 0 and ends with 10 . . . 0, means that when these two n − 1
spinner state spaces are joined, the second half (with n spinners)
runs from 110 . . . 0 to 10 . . . 0 and when limited to the last n − 1
bits this sequence is identical to the sequence in the first half taken
in reverse order. Using 00 . . . 0 as the first element of this state
space forces an orientation on the states which corresponds to the
orientation of the binary reflected Gray code.

(Notice that this is NOT how the puzzle is usually described.
The puzzle usually starts with all the spinners locked, that is, state
11 . . . 1 and the problem is to reach the state 00 . . . 0, that is all
unlocked. Conversely, the binary reflected Gray code is usually
given as a sequence binary n-tuples which starts with the tuple
00 . . . 0 and ends with the tuple 10 . . . 0. In this listing of the Gray
code, 11 . . . 1 appears about 2/3’s of the way along the list.)

This state correspondence gives an easy way to calculate the
number of moves needed to solve Spin-Out. Specifically, the (bi-
nary) number corresponding to the Gray code string 11 . . . 1 is the
minimum number of moves required. As is well known [8], the
binary number bn bn−1 . . . b1 corresponding to the Gray string
gn gn−1 . . . g1 is given by bn = gn, bn−i = gn−i + bn−i+1.

So, Gray 11 . . . 1 becomes either binary 1010 . . . 01 or binary
1010 . . . 10, and it’s easy to show by summing in base 4, that this
number is �2/3 (2n − 1)�. This proves the folowing theorem.
Theorem 1. The minimum number of moves needed to solve

Spin-Out is �2/3 (2n − 1)�.

3.1 Algorithms for Spin-Out
Spin-Out can be solved using a pair of nested recursive pro-

cedures. SOLVE will take the puzzle from all locked, 11 . . . 1, to
all unlocked, 00 . . . 0. YSOLVE takes the puzzle from 10 . . . 0 to
00 . . . 0 and also takes the puzzle from 00 . . . 0 to 10 . . . 0.

NESTED RECURSION

PROCEDURE SOLVE(n)
IF n > 0 THEN

SOLVE(n − 2)
turn the nth spinner

YSOLVE(n − 1)

PROCEDURE YSOLVE(n)
IF n > 0 THEN

YSOLVE(n − 1)
turn the nth spinner

YSOLVE(n − 1)

Notice that the calls to SOLVE and YSOLVE do NOTHING
when the input parameter n is less than or equal to 0.

Let Yn be the number of moves made by YSOLVE with input
n, and S n be the number of moves made by SOLVE with input n.
Then

Yn = 2 Yn− 1 + 1

and since Y1 = 1 because with input n = 1 YSOLVE makes a
single move,

Yn = 2n − 1.

From the algorithm

S n = S n− 2 + 1 + Yn− 1 = S n− 2 + 2n.

Which implies

S n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2/3 (2n − 1) n EVEN

2/3 (2n − 1) + 1/3 n ODD

= �2/3 (2n − 1)�.
Similar results were found by Pruhs [16] but there is a typo in his
calculation of the number of moves.

MUTUAL RECURSION

PROCEDURE UNLOCK(n)
IF n > 0 THEN

UNLOCK(n − 2)
turn the nth spinner

LOCK(n − 2)
UNLOCK(n − 1)

PROCEDURE LOCK(n)
IF n > 0 THEN

LOCK(n − 1)
UNLOCK(n − 2)
turn the nth spinner

LOCK(n − 2)

Since LOCK and UNLOCK are inverse procedures, they each
make the same number of moves. Letting Un be the number of
moves used by a call to UNLOCK(n), and Ln be the number of

c© 2013 Information Processing Society of Japan 381

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

moves used by a call to LOCK(n), we have from the algorithm

Un = Un− 2 + 1 + Ln− 2 + Un− 1

and using Un = Ln we have

Un = Un− 1 + 2 Un− 2 + 1.

And, using the initial conditions we get

Un = � 2/3 (2n − 1) �.
Like Towers of Hanoi, Spin-Out can also be solved by ITERA-

TIVE and COUNTING algorithms, but we will defer giving these
until we have generalized Spin-Out.

4. Iterated Complete Graphs

Our two example puzzles, Towers of Hanoi and Spin-Out, have
highly structured graphs for their state spaces. In fact, the graphs
for puzzles with more pieces are constructed recursively from the
graphs with only a single piece. To constuct more general puz-
zles, we will first constuct the graphs for these new puzzles by
generalizing this recursive graph construction.

We will use the usual definitions for a graph, G = (V, E),
and its usual parameters [10]. Also, as usual, Kd indicates the
complete graph on d vertices. Figure 4 shows three complete
graphs.
Definition 4.1. An iterated complete graph on d vertices with n

iterations, denoted Kn
d , is defined recursively. K1

d is the complete

graph on d vertices. Kn
d is composed of d copies of Kn−1

d and

edges such that exactly one edge connects each Kn−1
d subgraph to

every other Kn−1
d subgraph and exactly one vertex in each of the

Kn−1
d subgraphs has degree d − 1. We say that a graph Kn

d has

dimension d.

Kn
d can be thought of as Kd with each vertex replaced by a

copy of Kn−1
d , or alternatively as the graph Kn−1

d with each vertex
replaced by a copy of Kd. Figure 5 shows the graphs K1

5 , K2
5 and

K3
5 , illustrating how each graph is constructed from the graph of

the previous dimension.
The edges connecting the copies of Kn−1

d can be explained us-
ing the idea of corner vertices.
Definition 4.2. A corner vertex, or simply corner, of the graph

Fig. 4 The complete graphs K3, K5, and K8.

Fig. 5 The iterated complete graphs K1
5 , K2

5 and K3
5 .

Kn
d is a vertex with degree d − 1. A non-corner vertex is simply

a vertex that is not a corner. All non-corner vertices of iterated

complete graphs have degree d.

The d copies of Kn−1
d are connected by adding edges between

corner vertices. d − 1 corner vertices of a copy of Kn−1
d are con-

nected to corner vertices of the other copies of Kn−1
d . Each of

these d − 1 corner vertices is attached to a distinct copy of Kn−1
d .

Notice that this leaves one unattached corner vertex in each Kn−1
d .

These unattached corners become the corner vertices of Kn
d .

Theorem 2. The maximum distance between any two vertices in

Kn
d is 2n − 1 , and this maximum is attained when the two vertices

are corner vertices.

Proof. Clearly, 2n − 1 = 1 for n = 1 and each vertex is at
distance 1 from every other vertex. Consider any two vertices in
Kn

d , if they are in the same copy of Kn−1
d then by hypothesis they

are at distance ≤ 2n−1 − 1 . If the two vertices, say x and y, are
in different copies of Kn−1

d , then these two copies are attached by
an edge from a corner vertex of x’s copy to y’s copy. By hypoth-
esis, the distance from x to a corner vertex of its Kn−1

d is at most
2n−1 − 1 . Similarly, the distance from y to a corner vertex of its
Kn−1

d is at most 2n−1 − 1 . Hence the distance between x and y
is at most 2n−1 − 1 + 2n−1 − 1 + 1 = 2n − 1. The +1 in
this equation corresponds to the edge between the corner vertices
of the two copies of Kn

d .
For two corner vertices of Kn

d , the distance is 2n − 1 because
a path from a corner to a corner must leave a copy of Kn−1

d , which
can only occur at a corner of Kn−1

d , enter another copy of Kn−1
d

and go from from a corner of Kn−1
d to the corner of this copy of

Kn−1
d which is a corner of Kn

d .
Similar graphs have been studied as Sierpinski graphs [17] us-

ing a labeling that does not have the Gray property and therfore
is inconsistent with our idea of puzzles.

5. Generalized Tower Puzzles

The Generalized Towers of Hanoi has d towers where d is an
ODD number and d ≥ 3. (d = 1 corresponds to a trivial puzzle
with no moves.)

The Geralized Towers of Hanoi puzzle has the same rules as
Towers of Hanoi:
(1) Only one disk is moved at a time.
(2) A larger disk is never placed on top of a smaller disk.

In addition, this puzzle has the following restrictions to guar-
antee that the puzzle’s graph is Kn

d :
(1) No disk may be moved unless all of the disks smaller than it

are stacked together on the same tower.
(2) When a disk is able to move, if the stack of smaller disks is

on tower a and the disk to be moved is on tower b, then the
disk may only move to tower (2a − b) mod d.

Figure 6 shows the labeled graph for 5 towers and 3 disks. This
should be compared with Fig. 1 for the traditional puzzle with 3
towers and 3 disks. Observe the smallest disk is able to move to
any tower because it is unaffected by these rules. Figure 7 shows
configurations corresponding to labels 220 and 224 on K3

5 . Here
the largest disk can only move between towers 0 and 4, and there
is an edge between these two vertices in K3

5 , as shown in Fig. 6.

c© 2013 Information Processing Society of Japan 382

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

Fig. 6 The labeling of K3
5 for Generalized Towers of Hanoi with 3 disks and

5 towers.

Fig. 7 Configurations corresponding to labels 220 and 224 on K3
5 . The

largest disk may move between towers 0 and 4.

5.1 Algorithms to Solve The Generalized Tower Puzzles
Here we will give several algorithms for the Generalized Tow-

ers of Hanoi puzzle and see that this puzzle is basically as simple
as the traditional Towers of Hanoi puzzle.
5.1.1 Recursive Algorithm

The goal in this puzzle is to move all n disks from tower 0 to
tower d − 1. Define the first tower as 0 and the second tower as
1 and so on until the last tower, d − 1. The largest disk can only
move to tower d − 1 if all the smaller disks are stacked together
on tower a where (2a− 0) mod d = d− 1. In the algorithm, rather
than starting at tower 0 and going to tower d − 1, the algorithm
will start with tower i and end at tower j. So, the n − 1 disks
must move to tower a where (2a − i) mod d = j. From these
observations, the recursive algorithm is:

RECURSIVE ALGORITHM

PROCEDURE HANOI(i, j, n)
IF n > 0 THEN k = [(i + j)/2] mod d

HANOI (i, k, n − 1)
move the top disk from tower i to tower j

HANOI(k, j, n − 1)

Where the inputs i and j represent the source and the destination,

respectively, and n is the number of disks that will move from the
source to the destination.

5.2 Iterative Algorithm
In the traditional puzzle, the smallest disk was always moved

one tower, but that was forced since there were only three towers
arranged in a circle. The following Theorem tells us how to move
the smallest disk in the generalized puzzle and hence gives us the
piece of information we need to construct an iterative algorithm
for this puzzle.
Theorem 3. (Equal Increments) When disk 1 is moved in the

solution of moving n disks from tower A to tower B, disk 1 is

always moved by the same increment (in say, the “clockwise” di-

rection) and this increment is (B − A) / 2n−1.

Proof. Clearly, for n = 1, the smallest disk is moved from A to
B which is an increment of (B − A) / 21−1. For n > 1, the disks
are moved in the pattern

AA . . . A =⇒ At . . . t → Bt . . . t =⇒ BB . . . B

where t = (A + B)/2,

here, =⇒ indicates a sequence of moves and → indicates a
single move. In the first sequence n − 1 disks are being moved
from from A to (A + B)/2 and by assumption these moves use an
increment of(

(A + B)
2

− A

)
/2n−2 = (B − A)/2n−1.

In the second sequence n− 1 disks are being moved from from
(A + B)/2 to B and by assumption these moves use an increment
of (

B − (A + B)
2

)
/2n−2 = (B − A)/2n−1.

Since the increment for each half is the same, disk 1 is always
moved by the same increment which is (B − A) / 2n−1.

In the special case when the starting tower is tower 0, the incre-
ment is (B)/2n−1. When the target tower is d − 1, this simplifies
to (−1)/2n−1. For the traditional Towers of Hanoi, d = 3 and
1
2 ≡ 2 ≡ −1, and the Buneman-Levy algorithm will correctly
move disk 1 when n is even, but when n is odd, disk 1 should be
moved in the opposite direction.

ITERATIVE ALGORITHM

move smallest disk clockwise

[B/2n−1] mod d towers

WHILE a disk, other than the smallest,

is able to move DO

move that disk

move smallest disk clockwise

[B/2n−1] mod d towers

ENDWHILE

Proposition 5.1. The iterative algorithm HANOI ITERATIVE

correctly moves n disks from Tower 0 to Tower B. More generally,

this algorithm moves n disks from Tower A to Tower A + B.

Proof. After 2n−1 − 1 moves the algorithm has moved n − 1

c© 2013 Information Processing Society of Japan 383

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

disks from tower 0 to tower B/2 because it is using the increment
B
2

1
2n−2 . At this point the nth disk can be and is moved from tower 0

to tower B. Then the algorithm follows the same pattern as in the
first 2n−1 − 1 moves with increment B

2
1

2n−2 and this moves n − 1
disks B

2 towers from their previous tower, i.e., to tower B.
5.2.1 Counting Algorithm

From the iterative algorithm it is clear that every other move
involves moving disk 1. This will help define the counting algo-
rithm which involves using the counter to determine which disk
should be moved. There are a few extra facts that we need:
(a) the rightmost 0 in BCOUNT tells us which disk to move,
(b) disk j is always moved by an increment which depends on j,
(c) the position of the disk to be moved can be determined from

j and the position of disk 1.
We will defer proofs of these facts until we have defined the com-
bination puzzles.

Counting Algorithm for Generalized Towers of Hanoi

PROCEDURE TOWERS (n)

T : = 0 (Tower number computed modulo d)

BCount : = 0 (BCount has n bits)

P : = (−1)(1/2)n−1 mod d

Move disk 1 from T to T+P

T : = T+P
BCount : = BCount + 1
WHILE BCount is not 11...1 (n 1s) DO

IF Rightmost 0 in BCount is in position b

THEN move disk b from T + (2b−n−1) mod d

to T - (2b−n−1) mod d

BCount : = BCount + 1
ENDWHILE

6. Generalized Spin-Out Puzzles

There is an easy extension of Spin-Out to all dimensions which
are powers of 2. The extended puzzles will retain the sliding
aspect of Spin-Out, but the spinners will be replaced by pieces
which consist of a stack of spinners. When a piece is composed
of m spinners, it will have 2m possible orientations, since each
spinner can be in one of two orientations. For n pieces, there will
be (2m)n = dn configurations. The sliding rules will determine
which pieces can change, and new spinning rules will determine
how the pieces can change. Together these rules define which
configurations can change to which configurations.
• For dimension d = 2m, each puzzle piece will consist of m

spinners stacked one on top of the other.
• To find the orientation of piece j, write j as a binary number.

To set a piece in this orientation, let the 1’s (rightmost) bit
represent the top spinner; a 0 bit means that it is horizontal,
while a 1 bit means that it is vertical. Similarly, let the 2’s
bit represent the spinner just below the top spinner, the 4’s
bit the next spinner, etc. Continue in this manner; the 2m−1’s
bit will represent the bottom spinner.

• Thus for each s ∈ {0, . . . , d − 1} there is a distinct orientation
and corresponding binary number.

Example 6.1. Suppose d = 8 = 23. That is, m = 3, so the pieces

are composed of 3 spinners. Then, for example, the 0 = 0002

Fig. 8 Piece orientations for the Dimension 8 Puzzle.

Fig. 9 An example configuration for the Dimension 8 Puzzle. The pieces
are numbered left to right 1, 2, 3, and 4 and the configuration has
label 0374.

orientation consists of all horizontal spinners, the 7 = 1112 ori-

entation has all vertical spinners, and the 3 = 0112 orientation

has a horizontal spinner on the bottom with two vertical spinners

above it.

Note that the 0 orientation will always consist of all horizontal
spinners.

For an iteration n for n ≥ 1, there will be n puzzle pieces.
Call the leftmost piece the first piece and continue numbering
the pieces from left to right. Thus the rightmost piece is the nth

piece. Given a configuration of the puzzle, there is a labeling
with a string of characters from {0, . . . , d−1}, where each piece 1
through n is represented by the number of the orientation it is in.

The rules of this puzzle are an extension of the rules of the
Spin-Out Puzzle.
(1) The first piece may always change orientation, and may

change to any other orientation.
(2) To spin at least one spinner of the jth piece, s1 through s j−2

must be 0 and s j−1 � 0; that is, pieces 1 through j − 2 have
0 spin and piece j − 1 has non-zero spin. If these conditions
are satisfied, then move as many spinners of the jth piece
as possible; that is, any spinner that can switch between its
horizontal and vertical positions must do so.

Example 6.2. In Fig. 9, piece 3 is able to change orientation.

Since the bottom spinner of piece 2 is horizontal, the bottom spin-

ner of piece 3 cannot move. However, the other two spinners can

move, and so they must become horizontal. Thus the orientation

of piece 3 must change from 7 to 4.

Figure 10 shows the labeled graph corresponding to the Gen-
eralized Spin-Out puzzle with 3 spinners in each stack. The first
graph is for a puzzle with only one piece, so all moves are pos-
sible. The second graph is for a two piece puzzle, and not every
move is possible.

6.1 Algorithms for Generalized Spin-Out
In the Spin-Out puzzle there are n spinners and 2 possible ori-

entations for each spinner. In the Dimension 2m puzzle there are
n stacks of spinners and 2m possible orientations for each stack.
Thus the Dimension 2m puzzle is simply an extension of the Spin-
Out puzzle. An algorithm to solve the Dimension 2m puzzle will

c© 2013 Information Processing Society of Japan 384

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

Fig. 10 The labeling for the first and second iterations for the dimension 8
graph, corresponding to the extended Spin-Out puzzles with 1 and
2 pieces respectively.

therefore be similar to an algorithm to solve the Spin-Out puzzle.
6.1.1 Recursive Algorithms

Pruhs [16] presents a two part recursive algorithm to solve the
Spin-Out puzzle, which consists of moving the spinners from
11 . . . 1 to 00 . . . 0, with n spinners. A similar recursive algo-
rithm can be written to solve the Dimension 2m puzzle with n

stacks of spinners and d = 2m possible orientations for each
stack. To solve the puzzle move the stacks of spinners from
(d − 1)(d − 1) . . . (d − 1) to 00 . . . 0. Let FLIP i mean to rotate
spinner number i from d − 1 to 0 or from 0 to d − 1, where
i ∈ {1, . . . , n}, and the stacks of spinners are indexed from 1 to
n from right to left. In the following, we will use the spins in the
order sn, sn−1, · · · , s1, and to make the states more pictorial, we
use ↑ for spin 1 and← for spin 0.

Mutual Recursion Algorithm for Generalized Spin-Out

PROCEDURE ToZ(n) { Takes ↑ . . . ↑ to ← · · · ← }
IF n > 0 THEN ToZ(n-2)

FLIP n

To1(n-2)

ToZ(n-1)

PROCEDURE To1(n) { Takes ← · · · ← to ↑ . . . ↑ }
IF n > 0 THEN To1(n-2)

ToZ(n-2)

FLIP n

To1(n-2)

Notice that both these procedures are designed to do nothing
when n ≤ 0. Specifically, ToZ(2) calls ToZ(0) which does noth-
ing, FLIPs spinner 2, calls To1(0) which does nothing, and finally
calls ToZ(1) which FLIPs spinner 1. A simple induction suffices
to show correctness of this pair of procedures.

Instead of the these two procedures which call one another, we
can design an algorithm with nested recursion in which one pro-
cedure calls another procedure and the second procedure can call
itself.

Nested Recursion Algorithm for Generalized Spin-Out

PROCEDURE SOLVE(n)

{ Takes ↑ . . . ↑ to ← · · · ← }
IF n > 0 THEN SOLVE(n-2)

FLIP n

SUB(n-1)

PROCEDURE SUB(k)

{ Takes ↑← · · · ← to ←← · · · ←}
{ Takes ←← · · · ← to ↑← · · · ← }
IF k > 0 THEN SUB(k-1)

FLIP k

SUB(k-1)

As in the Mutual Recursion, these procedures do nothing when
called with input less than 1. It is interesting to note that SUB is
its own inverse. Again, the correctness can be proved by induc-
tion, that is showing that SUB is correct and then showing that
SOLVE is correct.
6.1.2 Iterative Algorithms

The iterative algorithms are very simple. Notice that the algo-
rithms really treat a stack of spinners as a single spinner because
FLIP changes the spin of all the spinners in the stack. (Actually,
FLIP could change between spin 0 and any other fixed spin, but
it would still be treating a stack of spinners as a single spinner.)
This is the reason that we did not give iterative algorithms for
Spin-Out, i.e., the algorithms for Spin-Out would be identical to
the algorithms for Generalized Spin-Out.

ITERATIVE Algorithm for Generalized Spin-Out

{ Takes ↑ . . . ↑ to ← · · · ← }

IF n is ODD THEN FLIP 1

WHILE a spinner other than 1 can be moved DO

FLIP that spinner

FLIP 1

ENDWHILE

This first algorithm solves Generalized Spin-Out by taking the
puzzle from LOCKED to the UNLOCKED state. When← · · · ←
is reached, no spinner other than spinner 1 can be changed and so
this algorithm terminates. It’s easy to use induction to show that
this algorithm is correct and uses � 2

3 (2n − 1)� moves.

ITERATIVE Algorithm for Generalized Spin-Out

{ Takes ←← · · · ← to ↑← · · · ← }
{ Takes ↑← · · · ← to ←← · · · ← }

FLIP 1

WHILE a spinner other than 1 can be moved DO

FLIP that spinner

FLIP 1

ENDWHILE

This second algorithm takes the puzzle from the UNLOCKED
state to the state in which only the nth is locked (or vice-versa).
The loop terminates at ↑← · · · ← (or at ←← · · · ←) because
only piece 1 can be changed in these configurations. Induction

c© 2013 Information Processing Society of Japan 385

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

can be used to show correctness and also that this algorithm uses
(2n − 1) moves.
6.1.3 Counting Algorithms

There are also simple algorithms for Generalized Spin-Out
which give the correct move by simply keeping tack of the num-
ber of moves made. We will give both a count up and a count
down algorithm

COUNT-UP Algorithm for Generalized Spin-Out

COUNT = 0 { n bit counter }
FLIP 1

COUNT = COUNT + 1

WHILE COUNT � 1010 . . . { i.e. �2/3(2n − 1)� } DO
j is the position of the rightmost 0 in COUNT
FLIP j

COUNT = COUNT + 1

ENDWHILE

This counting up algorithm takes←← · · · ← to ↑↑ . . . ↑.
To go in the other direction, from ↑↑ . . . ↑ to ←← · · · ←, the
following counting down algorithm suffices.

COUNT-DOWN Algorithm for Generalized Spin-Out

COUNT = 1010 . . . { i.e �2/3 (2n − 1)� }
{ n bit counter }

WHILE COUNT � 0 DO
COUNT = COUNT − 1
j is the position of the rightmost 0 in COUNT
FLIP j

ENDWHILE

7. Combination Puzzle

In generalizing the Towers of Hanoi and Spin-Out puzzles, we
found the iterative complete graphs which generalize the config-
uration spaces of these puzzles. But, when we constructed gen-
eralized puzzles, we only found puzzles which correspond to Kn

d

for either d odd or d a power of 2. Our goal here is to form puz-
zles which correspond to d = q · 2m where q is odd and m is
a positive integer. The obvious idea is to make the new puzzles
a “product” of a generalized Towers of Hanoi and a generalized
Spin-Out puzzle. Taking a direct product makes the size of the
configuration space come out right, but we have to decide how to
“combine” moves from the two component puzzles.

In the product graph we want an edge from (v, z) to (u, w) ex-
actly when there is an edge from v to u in the first graph and
an edge from z to w in the second graph. This might seem to
cause some difficulties because while most vertices in a Towers
of Hanoi graph have degree q and most vertices in a Spin-Out
graph have degree 2m, there are some vertices with degree q − 1
or 2m−1 in these respective graphs. We take care of this difficulty
by declaring that each corner vertex has a self-edge which corre-
sponds to a null move. Then each vertex in the product graph
will have degree d = q · 2m. Notice that the corner vertices of the
product graph have a self-edge corresponding to the self-edges
on the corner vertices in each of the factor graphs. This self-edge

corresponds to a null move in the combination puzzle. There are
also edges which correspond to a self-edge in one factor and not
in the other factor. These edges correspond to a move in the com-
bination puzzle which allows a move in one of the component
puzzles and not in the other component puzzle.

REMARK: We should remark that this product is NOT the
Cartesian product of graphs defined in Ref. [11]. In that “Carte-
sian” product the number of edges is n1E2 + n2E1 where the n’s
are the number of vertices and the E’s are the number of edges
in the factor graphs. So, for example if we took the “Cartesian”
product of K3 and K2 we would get

3 · 1 + 2 · 3 = 9 edges.

This is less than the 15 edges, not counting self-edges, that appear
in K6 which is our product of K3 and K2.
Proposition 7.1. The “product” of Kn

q and Kn
p is Kn

qp, and in par-

ticular, the “product” of Kn
q and Kn

2m is Kn
q2m .

Proof. It is easy to check that the product of Kq and Kp is Kqp.
Since Kn

q and Kn
p are iterated complete graphs they decompose

into q copies of Kn−1
q and p copies of Kn−1

p . Our “product” takes
the direct products of both the vertex sets and the edge sets. So
our product certainly contains products of each pair of these sub-
graphs, i.e., each Kn−1

q with each Kn−1
p . Each of these subproducts

is a copy of Kn−1
qp by inductive hypothesis. There are also extra

edges joining the copies of Kn−1
q and joining the copies of Kn−1

p .
When these edges are crossed there are q p edges which join the
copies of Kn−1

qp which were previously constructed. Since each
Kn−1

q has exactly one edge to every other copy of Kn−1
q , and simi-

larly for Kn−1
p , a product of a pair of these edges becomes a single

edge from a copy of Kn−1
qp to a copy of Kn−1

qp . This gives a unique
edge between each of the copies of Kn−1

qp because there was only
a single edge between each pair of copies of Kn−1

q in Kn
q and a

single edge between each pair of copies of Kn−1
p in Kn

p. So the
product graph satisfies the recursive definition of Kn

qp.

7.1 The Combination Puzzle
Our combination puzzle is a direct product of a generalized

Towers of Hanoi puzzle and a generalized Spin-Out puzzle. Let a
configuration be

⎛⎜⎜⎜⎜⎝ tn tn−1 · · · t2 t1
sn sn−1 · · · s2 s1

⎞⎟⎟⎟⎟⎠ ,
then the allowed moves are
(a) piece 1 can change at any time in any way

so the result of a piece 1 move is
⎛⎜⎜⎜⎜⎝ tn tn−1 · · · t2 x

sn sn−1 · · · s2 y

⎞⎟⎟⎟⎟⎠ ,
where x ∈ {0, · · · , q − 1} and y ∈ {0, · · · , 2m − 1} but
otherwise x and y are arbitrary,

(b) piece k can move if
(1) all of the “smaller” pieces are on a single tower,

i.e., tk−1 = tk−2 = · · · = t1
(2) the first k − 2 stacks of spinners all have spin 0,

i.e., sk−2 = sk−3 = · · · = s1 = 0
the new configuration will be

c© 2013 Information Processing Society of Japan 386

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

Fig. 11 The Puzzle Labeling for K2
12, notice in the labeling that ten is rep-

resented by an A and eleven is represented by a B. The labels are
written in the order x1 x2.

⎛⎜⎜⎜⎜⎝ tn · · · tk+1 2t1 − tk t1 t1 · · · t1
sn · · · sk+1 sk ⊕ sk−1 sk−1 0 · · · 0

⎞⎟⎟⎟⎟⎠ .
In moving piece k the conditions for a change of tower and a

change of spin are both satisfied. Notice that the spin of piece k

does not change if sk−1 = 0. The allowed moves for piece 2 may
be a little confusing. If the configuration of the first two pieces
is

(
t2 t1
s2 s1

)
then an allowed move changes this to

(
2t1−t2 t1
s2⊕s1 s1

)
. If

s1 = 0, piece 2 can change tower without changing spin. If
t2 = t1 and s1 � 0, piece 2 can change spin and not change
tower. Of course, if t2 = t1 and s1 = 0, no change of piece 2
will occur.

7.2 State Space
Proposition 7.2. The state space of our Combination puzzles is

Kn
d , where n is the number of pieces.

Proof. Consider a one piece puzzle. All moves are possible, so
the state space is K1

d for some d. Assume that the state space is
Kn−1

d for an n − 1 piece puzzle. Consider the nth piece. Since the
nth piece has d possible settings, the state space contains d copies
of Kn−1

d .
In each copy, there are d − 1 configurations in which piece n

can change state and each of these results in a distinct state for
piece n. Let d = q 2m for some odd q. The changes for piece n

allowed in our puzzle are⎛⎜⎜⎜⎜⎝tn t t · · · t

sn sn−1 0 · · · 0

⎞⎟⎟⎟⎟⎠ −→
⎛⎜⎜⎜⎜⎝ 2t − tn t t · · · t

sn ⊕ sn−1 sn−1 0 · · · 0

⎞⎟⎟⎟⎟⎠ .
Two of these changes are the same only if

2 t − tn = 2 t′ − tn

sn ⊕ sn−1 = sn ⊕ s′n−1

but these equations imply that t = t′ and sn−1 = s′n−1. So, all
these changes are distinct. The number of changes is q · 2m, i.e.,
the number of distinct t’s times the number of distinct sn−1’s. This
is d rather than d − 1, but if t = tn and sn−1 = 0 the nth piece
stays in the same state, and so, there are really only d − 1 moves.

So, the subgraphs are tied together in exactly the manner re-
quired to construct Kn

d from d copies of Kn−1
d .

Figure 11 displays K2
12 labeled with the configurations of a

combination puzzle with 2 pieces. In this figure, d = 12 = 3 ·22,
so there are 3 towers and each piece consists of a stack of 2 spin-
ners.

8. Solving the Combination Puzzle

In the Combination puzzle, a generalized Towers of Hanoi and
a generalized Spin-Out puzzle are tied together so that the two
component puzzles work in parallel. But, there are some spe-
cial situations in which one of the component puzzles can change
without affecting the other component. Specifically, if all of the
pieces are on a single tower, then the spins, the Spin-Out part, can
be changed without changing the tower positions, the Towers of
Hanoi part. In symbols, if the puzzle configuration is t t ··· t

sn sn−1 ··· s1
,

then the s’s can change according to the rules of generalized Spin-
Out, and for any change in the jth piece, 2 t j−1 − t j = 2t − t = t

and the jth piece does not change tower. (In the special case when
j = 1, s1 can be changed to an arbitrary value and the piece can
still stay on tower t.)

On the other hand, if the spin of every piece is 0 then the pieces
can be moved between towers without changing the spins. In
symbols, if the puzzle configuration is tn tn−1 ··· t1

0 0 ··· 0 , then if the jth

piece is moved between towers, s j ⊕ s j−1 = 0 ⊕ 0 = 0 and the
spin of the piece does not change. (Again, in the special case, the
first piece can always be moved without changing its spin.)

The above suggests that solving the Combination puzzle is “se-
rializable,” that is, the n pieces can be moved from the start tower
to the target tower with all spins remaining at 0, and then the spins
can be changed without moving the pieces. This serial solution
has the unfortunate property that it uses 2n − 1 + � 2

3 (2n − 1)�
moves, and this is more moves than necessary. (In Theorem 2
we showed that vertices, and therefore configurations, are at a
distance of at most 2n − 1 moves.)

So, we want to find “parallel” solution methods. To do so, we
first have to ask what it means to solve a Combination puzzle.
Obviously, we want to move n disks from a start tower to a tar-
get tower, but for the spins, we seem to have several choices. We
could start with all spins 0 and change all of the spins to a spe-
cific spin value, say spin 1. In the following, we will use spin 1
with the understanding that 1 could be replaced by any non-zero
value. In particular, spin 1 could stand for spin 2m − 1. Con-
versely, we could start with all spins 1 and then change to all spins
0. These two choices have the unfortunate property that they take
only � 2

3 (2n − 1)�moves which will conflict with the 2n − 1 needed
to move the pieces between towers. One way out is to start with
spins 0 0 · · · 0 and go to spins 1 0 · · · 0 (or vice-versa) because
these spin configurations are 2n − 1 moves apart. Another way is
to sometimes change a piece’s tower without changing the piece’s
spin. This will require maneuvering the puzzle into a configura-
tion in which the spins do not change.

As with the other puzzle, we expect recursive, iterative, and
counting algorithms for the combination puzzle. But first, we
have to decide what should be the starting configuration and what
should be the target configuration. Three special types of config-
urations suggest themselves:

c© 2013 Information Processing Society of Japan 387

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

A A · · · A

0 0 · · · 0
and

B B · · · B

1 1 · · · 1

and
C C · · · C

1 0 · · · 0
.

Here A, B, and C are distinct names for towers, 0 means all of the
spinners are in one orientation, and 1 means that the spinners are
in an orientation different from from the 0 orientation. Moving
from the first to the second of these configuration (or vice-versa)
would mean solving both a Towers of Hanoi puzzle and a Spin-
Out puzzle by moving all of the pieces from one tower to another
and changing all of the spins from one orientation to another ori-
entation. Moving from the first to the third configuration is easier
to deal with because these configurations are corners of an it-
erated complete graph. Also, moving from the first to the third
configuration will be useful as a subproblem in moving between
the first and second configurations.

Eventually, we want to say that the solution to the combina-
tion puzzle is changing the initial configuration (0 0 · · · 0) to
the target configuration (d − 1 d − 1 · · · d − 1) where we map

the two component pairs

⎛⎜⎜⎜⎜⎝t

s

⎞⎟⎟⎟⎟⎠ to 2m t + s. So our initial configu-

ration will be

⎛⎜⎜⎜⎜⎝0 0 · · · 0
0 0 · · · 0

⎞⎟⎟⎟⎟⎠ and the target configuration will

be

⎛⎜⎜⎜⎜⎝ q − 1 q − 1 · · · q − 1
2m − 1 2m − 1 · · · 2m − 1

⎞⎟⎟⎟⎟⎠ . This will be a problem of

changing a type 1 configuration to a type 2 configuration where
B = q − 1 and 1 stands for 2m − 1.

8.1 Algorithms for Configurations One and Three
Here, we will give recursive, iterative, and counting algorithms

to take the combination puzzle between configurations of types
One and Three.
8.1.1 Recursive Algorithm

The following recursive algorithm solves the problem of mov-
ing from the first configuration to the third configuration. Nicely
enough it also solves the problem of moving from the third con-
figuration to the first configuration. To make the procedure suc-
cinct, we will only pass the names of the towers and the number
of pieces as the procedure’s parameters. We will not pass the
spins of the pieces because pieces 1 through n− 1 are assumed to
have spin 0 and piece n will have spin 1 or 0 depending on which
direction we are going between configuration three and config-
uration one. We will use the instruction MOVE(A, C) to mean:
move the indicated piece from tower A to tower C. We will use
the instruction FLIP to mean: change the spin of the indicated
piece from 0 to 1 or from 1 to 0.

RECURSIVE Algorithm for Combination Puzzle:
Configurations One and Three

A A A ··· A
0 0 0 ··· 0 to C C C ··· C

1 0 0 ··· 0

or A A A ··· A
1 0 0 ··· 0 to C C C ··· C

0 0 0 ··· 0

PROCEDURE SOL(A, C, n)

IF n > 0 THEN
t = (A + C)/2 mod q

SOL(A, t, n − 1)

MOVE(A, C) piece n

FLIP piece n

SOL(t, C, n − 1)

Proposition 8.1. This algorithm takes A A A ··· A
0 0 0 ··· 0 to C C C ··· C

1 0 0 ··· 0

and takes A A A ··· A
1 0 0 ··· 0 to C C C ··· C

0 0 0 ··· 0 .

The proof of correctness is a straight-forward induction starting
from the observation that for n = 1, SOL takes A

0 to C
1 and takes

A
1 to C

0 . Notice that this is essentially the recursive algorithm for
Towers of Hanoi.
8.1.2 Iterative Algorithm

An Iterative algorithm for this problem is also easy.

ITERATIVE Algorithm for Combination Puzzle:
Configurations One and Three

A A A ··· A
0 0 0 ··· 0 to C C C ··· C

1 0 0 ··· 0 or A A A ··· A
1 0 0 ··· 0 to C C C ··· C

0 0 0 ··· 0

INCREMENT = [(C − A)/2n−1] mod d

move piece 1 INCREMENT towers clockwise

FLIP 1

WHILE a piece, other than piece 1,

is able to move DO

change that piece

{ move it and flip it }
move piece 1 INCREMENT towers clockwise

FLIP 1

ENDWHILE

This is really the Towers of Hanoi algorithm working in par-
allel with a Spin-Out algorithm which changes ←← · · · ← to
↑← · · · ←. Of course, this Spin-Out algorithm also changes
↑← · · · ← to←← · · · ←.

Note that each piece is BOTH moved and flipped. This is
required as can be shown by following the recursive algorithm.
Correctness of this ITERATIVE algorithm follows from the re-
cursive algorithm and the fact that at most one piece other than
piece 1 can be moved in any configuration. Termination occurs
when all pieces are on a single tower and hence no piece other
than piece 1 can be moved.
8.1.3 Counting Algorithm

A counting algorithm for this problem is also easy.

COUNTING Algorithm for Combination Puzzle:
Configurations One and Three

A A ··· A
0 0 ··· 0 to C C ··· C

1 0 ··· 0 or A A ··· A
1 0 ··· 0 to C C ··· C

0 0 ··· 0

COUNT = 0 { n bit counter }
T = A

P = (C − A)/2n−1 mod q

MOVE (T, T + P) piece 1

FLIP 1

T = T + P

COUNT = COUNT + 1

WHILE COUNT � 11 · · · 1 DO
j is the position of the

rightmost 0 in COUNT
MOVE piece j

FLIP j

c© 2013 Information Processing Society of Japan 388

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

COUNT = COUNT + 1

MOVE (T, T + P) piece 1

T = T + P

FLIP 1

COUNT = COUNT + 1

ENDWHILE

Notice that if we restrict this algorithm to the special case
where A = 0 and C = q − 1 and the spins are all initially 0,
then the start configuration is 0(n), i.e., all zeros, and if we use
FLIP to mean change ALL of the spinners in a stack, then the
target configuration will be (d − 1)[2m(q − 1)](n−1), all pieces on
tower q− 1, piece n having spin 2m − 1 and all of the other pieces
having spin 0.

8.2 Algorithms for Configurations Two and One
The above algorithms are essentially a Towers of Hanoi algo-

rithm and a Spin-Out algorithm being run in parallel. This par-
allel execution works because moving n disks from one tower to
another in Towers of Hanoi takes 2n − 1 moves, and changing
←← · · · ← to ↑← · · · ← in Spin-Out also takes 2n − 1 moves.
But when changing configurations One to Two or vice-versa, only
�2/3 (2n−1)�moves are needed in the Spin-Out component while
2n−1 moves are needed in the Towers of Hanoi component. Thus,
to run these two algorithms in parallel, we will need a switch

which can turn off the Spin-Out component while the algorithm
is still making progress in the Towers of Hanoi component.
8.2.1 Recursive Algorithms

For recursive algorithms the switch is not explicit. Instead we
use previously constructed algorithms as subroutines. In SOLVE,
we use both SOL and HANOI. SOL flips and moves pieces, while
HANOI only moves pieces without flipping them.

RECURSIVE Algorithm for Combination Puzzle:
Configurations One and Two

A A ··· A
0 0 ··· 0 to C C ··· C

1 1 ··· 1

PROCEDURE SOLVE(A, C, n)

IF n > 0 THEN
t = (A + C)/2 mod q

SOL(A, t, n − 1)
MOVE(A, C) piece n

FLIP piece n

t1 = (t + C)/2 mod q

HANOI(t, t1, n − 2)
MOVE(t, C) piece n − 1 {If n > 1}
SOLVE(t1, C, n − 2)

To go the other way between these configurations we can use
algorithmm SOLVE2. In SOLVE2, we again use both SOL and
HANOI as subroutines.

RECURSIVE Algorithm for Combination Puzzle:
Configurations Two and One

C C ··· C
1 1 ··· 1 to A A ··· A

0 0 ··· 0

PROCEDURE SOLVE2(C, A, n)

IF n > 0 THEN

t = (A + C)/2 mod q

t1 = (t + C)/2 mod q

SOLVE2(C, t1, n − 2)
MOVE(C, t) piece n − 1
HANOI(t1, t, n − 1)
MOVE(C, A) piece n

FLIP n

SOL(t1, C, n − 2)

8.2.2 Iterative Algorithm

ITERATIVE Algorithm for Combination Puzzle:
Configurations One and Two

A A ··· A
0 0 ··· 0 to C C ··· C

1 1 ··· 1

SWITCH = ON

TEST = n

INC = (C − A)/2n−1 mod q

move piece 1 INC towers (clockwise)

IF SWITCH = ON THEN FLIP 1

WHILE piece j (j � 1) can be moved DO
CHANGE piece j (move and flip)

{ if s j−1 = 0 this flip does not change s j }
IF j = TEST THEN Complement SWITCH

TEST = TEST - 1

move piece 1 INC towers (clockwise)

IF SWITCH = ON THEN FLIP 1

ENDWHILE

In this Iterative algorithm, the switch is explicit.
This algorithm changes

A A · · · A

0 0 · · · 0
to

C C · · · C

1 1 · · · 1
.

This algorithm can be modified to change

C C · · · C

1 1 · · · 1
to

A A · · · A

0 0 · · · 0
.

The needed modifications are:
(a) change the inialization of TEST to: TEST = 2
(b) TEST = TEST + 1 (rather than TEST = TEST - 1)
(c) after SWITCH = ON insert IF n is even THEN SWITCH =

OFF.
8.2.3 Counting Algorithm

The Iterative algorithm can be converted into a Counting algo-
rithm by specifing the moves that need to be made.

COUNTING Algorithm for Combination Puzzle:
Configurations One and Two

A A ··· A
0 0 ··· 0 to C C ··· C

1 1 ··· 1

T = A

COUNT = 0 { n bits }
SWITCH = ON

TEST = n

INC = (C - A)/2n−1 mod q

MOVE(T, T + INC) piece 1

IF SWITCH = ON THEN FLIP 1

c© 2013 Information Processing Society of Japan 389

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

COUNT = COUNT + 1

T = T + INC

WHILE COUNT � 1 · · · 1 { i.e. 2n − 1 } DO
j is the position of the rightmost 0 in COUNT
STEP = INC · 2 j−2 mod q

MOVE(T - STEP, T + STEP) piece j

IF SWITCH = ON THEN FLIP j

IF j = TEST THEN Complement SWITCH;

TEST = TEST - 1

MOVE(T, T + INC) piece 1

IF SWITCH = ON THEN FLIP 1

T = T + INC

COUNT = COUNT + 2

ENDWHILE

As for the Iterative algorithm, this Counting algorithm can be
modified to change

C C · · · C

1 1 · · · 1
to

A A · · · A

0 0 · · · 0
.

The needed modifications are:
(a) change the inialization of TEST to: TEST = 2
(b) TEST = TEST + 1 (rather than TEST = TEST − 1)
(c) after SWITCH = ON insert

IF n is even THEN SWITCH = OFF.

9. Justification for the Counting Algorithms

For the counting algorithms, we make use of the RULE:
Move disk j where j is the position of the rightmost 0 in

COUNT.

The following is the justification for this rule.
Theorem 4. (Rightmost Zero Rule for Towers.) In (generalized)
Towers of Hanoi the rightmost zero in the counter specifies which

piece to move.

Proof. From the recursive algorithm, after 2n−1 − 1 moves n−1
pieces have been moved from the starting tower to an intermedi-
ate tower, and then the nth piece is moved. Of course 2n−1 − 1 is
011 · · · 1 in binary and the rightmost zero is in position n specify-
ing correctly that the nth is to be moved, and then the counter is
incremented to 100 · · · 0. The first and last 2n−1 − 1 moves involve
only the smaller n − 1 disks and by hypothesis these moves obey
the rule. As a base, for n = 1, the counter initially contains 0 and
so the rightmost zero is in position 1 and the first piece is moved.
(For n = 0, the claim is vacuously true.)

The rightmost zero rule also holds for generalized Spin-Out.
In the following to “flip” a piece in spin state s we mean that the
piece’s new state is s ⊕ s′ where s′ is assigned a fixed non-zero
value.
Theorem 5. (Rightmost Zero Rule for Spinners.) In (general-

ized) Spin-Out with staring configuration s00 · · · 0 the rightmost

zero in the counter specifies which piece to flip.

Proof. Clearly, the first move flips piece 1 and the counter
which starts at all zeros has its rightmost 0 in the first position.
After 2n−1 − 1 moves, the configuration will be s s′ 0 · · · 0 and

the rightmost zero in the counter will be in the nth position and
the nth piece is flipped. After the counter is incremented, it con-
tains 100 · · · 0 and the configuration is s ⊕ s′ s′ 0 . . . 0. So,
the procedure continues as if it had only n − 1 pieces with start-
ing configuration s′ 0 . . . 0, and by assumption this reaches
s′ ⊕ s′ 0 . . . 0 (which is 0 0 . . . 0) when the n − 1 bit counter
has only 1’s. But, for the n piece puzzle, this is configuration
s ⊕ s′ 0 0 . . . 0 when the n bit counter contains only 1’s.

This rightmost rule does not hold for all initial configurations
of Spin-Out. In particular, if the puzzle starts in the configura-
tion 11 · · · 1 and the counter starts with all zeros, the rule does
not hold. In our counting algorithms we solve this problem by
starting the counter at the value it would have had if the starting
configuration would have been one of the configurations which
obeys the rule.

We also need a justification for the moves our counting algo-
rithms make. First, we show how to calculate how many towers a
piece should be moved.
Theorem 6. In the minimal move solution to moving n disks from

tower A to tower C, disk j always moves (C−A)/2n− j mod q tow-

ers clockwise. (This is 2 j−1 · INC, where INC = (C −A)/2n−1 mod
q is the increment always moved by disk 1.)

Proof. From the recursive algorithm for generalized Towers of
Hanoi, if j = n then the only move of disk n is from A to C which
uses an increment of (C −A)/2n−n. Again from the algorithm, the
first half is a Towers of Hanoi with n− 1 disks in which each disk
is moved from A to (A + C)/2, and by inductive assumption, the
increment for disk j is [(A + C)/2 − A]/2n−1− j which equals
(C−A)/2n− j. For the second half, disk j is moved from (A+C)/2
to C, and by inductive assumption, the increment for disk j is
[C − (A +C)/2]/2n−1− j which again equals (C − A)/2n− j.

Now we need to show where disk j is and where it has to be
moved to. When piece j is moved the Towers of Hanoi compo-
nent is tn, · · · , t j+1, t j, t, · · · , t, i.e., all smaller pieces on tower t

which is the tower that holds piece 1. The new tower for t j is
2t − t j and since t j is moved by INC j (see the above theorem),
we have

2t − t j = t j + INC j

giving t j = t − 1
2

INC j

and 2t − t j = t − 1
2

INC j + INC j = t +
1
2

INC j.

So our counting algorithms move the jth piece correctly.
We should also comment on our use of 1

2 . Since we assume
that q is an odd number, 1

2 ≡ q+1
2 (mod q), and 1

2 can be com-
puted with a simple integer division. (In binary, this would be a
one bit shift.)

In several of the algorithms, we use (C − A)/2n−1. This can
be computed using 2n−1 divisions or from above 2n−1 multipli-
cations. By using repeated squaring, we can cut this down to
O(n − 1) multiplications. Notice that since these operations are
mod q, we can assume that they take constant time independent
of n. The other increments are all multiples of this basic incre-
ment, and since the number of multiplies times their frequency is

c© 2013 Information Processing Society of Japan 390

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

j/2 j, these operations take constant time in an amortized sense.

10. Time and Space Usage

Here, we will show that all of our puzzles have essentially the
same complexity. Further, we show that the counting algorithms
use both the minimum amount of time and the minimum amount
of space. In the following, the subscripted c’s are constants which
are independent of n.
Theorem 7. Each puzzle with n pieces has time complexity

Θ(2n), i.e., any algorithm for the puzzle executes at least c1 2n

operations, and at least one algorithm uses at most c2 2n opera-

tions. In fact, all of our algorithms use O(2n) operations.

Proof. A solution to an n piece puzzle will consist of mak-
ing the moves or at least printing the moves. In either case, each
move will require at least a constant amount of time or number
of instructions. Since Theorem 2 and Theorem 1 show that c1 2n

moves are required for all our puzzles, the lower bound is estab-
lished. For many of our algorithms, each move is calculated using
a constant number of operations. The exception are our counting
algorithms which can take up to n operations to increment the
counter. But, this incrementing (and in some algorithms multi-
plication by powers of 2) will only take j steps in about 1/2 j of
the moves, and since

∑∞
j=1 j/2 j converges, the total number of

operations is bounded by c2 2n.
Theorem 8. Every algorithm for our puzzles requires n + c3 bits

of storage, and our counting algorithms use this minimal amount

of storage.

Proof. Since each puzzle requires c1 2n moves, any algorithm
which solves the puzzle must have at least c1 2n internal states.
Otherwise, an internal state would be repeated before the puzzle
is solved, and the algorithm would be in a dead loop endlessly
repeating the same instructions. The number of internal states is
c4 2B where B is the number of memory bits. To avoid a dead
loop, c4 2B ≥ c1 2n is required, and so B ≥ n + c3 is necessary.

Each counting algorithms uses an n bit counter and a few other
variables which only use a constant number of bits.

For space usage, we should mention what our other algorithms
use. While the recursive algorithms do not use any visible mem-
ory, the recursion stack uses Θ(n log n) bits to store n stack
frames each of which uses log n bits to represent the number of
pieces being dealt with.

The iterative algorithms do not use explicit storage, but they
need a representation of the puzzle to see which piece to move.
Since a puzzle has dn configurations, a representation of these
configurations requires at least n log d bits of storage. We will
not discuss various tricks which can be used to determine which
piece to move without a full representation of the puzzle.

The short conclusion, here, is that the counting algorithms are
best possible. They use the minimal amount of storage up to an
additive constant, and the minimal number of operations up to a
multiplicative constant.

11. Conclusion

We have shown that two familiar puzzles, Towers of Hanoi and
Spin-Out, can be generalized and “crossed” to give an infinite
family of puzzles, one for each d ≥ 2. Each of these puzzles

is really an infinite sequence of puzzles, one for each number of
pieces n ≥ 1. These puzzles correspond to the bi-infinite family
of iterated complete graphs, Kn

d . Of course, every graph corre-
sponds to a puzzle in which the vertices are the puzzle’s configu-
rations and the edges indicate allowed moves.

There are some things we did not do. Specifically, we did not
discuss the “generalized” Towers of Hanoi in which piece j can
be moved to any tower if pieces 1 through j − 1 are on a single
tower. This is a notorious problem, whose algorithm is presum-
ably known, but whose proof has been lacking for 70 years [13].
There are many other variants of Towers of Hanoi, e.g., Ref. [3]
which we also did not discuss.

For all of our puzzles, we presented a variety of recursive, iter-
ative, and counting algorithms, and showed that while all of these
algorithms were time optimal, only the counting algorithms were
both time and space optimal.

Finally, we clarified the significance of the Gray code for these
puzzles by showing that the Gray property corresponds to the
stipulation that only one piece may be changed at a time, and
showing that the Rightmost Rule applies to both Towers of Hanoi
and Spin-Out and so which piece to move is given by the right-
most 0 in a binary counter which is also the position of the bit
that is flipped while counting in the Gray code.

Acknowledgments Much of the work here was carried out
by students in the REU Summer Program at Oregon State Univer-
sity in previous years. We would like to thank the following peo-
ple for their contributions: Lindsay Baun, Sonia Chauhan, Eliz-
abeth Skubak, Nicholas Stevenson, Ingrid Nelson, Jessica Ca-
vanaugh, Kevin Stoller, David Bode, Be Birchall, Jason Tedor,
Shaun Alspaugh, Nathan Knight, Kathleen Meloney, Christo-
pher Frayer, Shalini Reddy, Stephanie Kleven, Kathleen King,
Pamela Russell, and Elizabeth Weaver. Many of their papers
appear on the website: http://math.oregonstate.edu/∼math reu/
REU Proceedings/.

References

[1] Arett, D. and Doree, S.: Coloring and counting on the Tower of
Hanoi graphs, Mathematics Magazine, Vol.83, No.3, pp.200–209
(June 2010).

[2] Buneman, P. and Levy, L.S.: The Towers of Hanoi Problem, Inf. Pro-
cess. Lett., Vol.10, No.4/5, pp.243–244 (1980).

[3] Chen, X., Tian, B. and Wang, L.: Santa Claus’ Towers of Hanoi,
Graphs and Combinatorics, Vol.23, No.suppl. 1, pp.153–167 (2007).

[4] Cull, P. and Ecklund Jr., E.F.: Towers of Hanoi and Analysis of Algo-
rithms, American Mathematical Monthly, Vol.92, No.6, pp.407–420
(June-July 1985).

[5] Cull, P., Flahive, M. and Robson, R.: Difference Equations, Springer,
New York (2005).

[6] Cull, P. and Nelson, I.: Error-correcting codes on the Towers of Hanoi
graphs, Discrete Math., 208/209, pp.157–175 (1999).

[7] Cull, P. and Nelson, I.: Perfect Codes, NP-Completeness, and Towers
of Hanoi Graphs, Bull. Inst. Combin. Appl., Vol.26, pp.13–38 (1999).

[8] Doran, R.W.: The Gray code, Journal of Universal Computer Science,
Vol.13, No.11, pp.1573–1597 (2007).

[9] Gardner, M.: Curious properties of the Gray code and how it can be
used to solve puzzles, Scientific American, Vol.227, No.2, pp.106–109
(1972).

[10] Gross, J. and Yellin, J.: Graph Theory and its Applications (2nd Edi-
tion), Chapman & Hall, Boca Raton, FL (2006).

[11] Imrich, W., Klavzar, S. and Rall, D.F.: Topics in Graph Theory:
Graphs and Their Cartesian Product, A.K. Peters, Ltd., Wellesley,

c© 2013 Information Processing Society of Japan 391

Journal of Information Processing Vol.21 No.3 378–392 (July 2013)

Massachusetts (2008).
[12] Jaap: Jaap’s puzzle page, available from 〈http://www.jaapsch.net/

puzzles/spinout.htm〉.
[13] Klavžar, S., Milutinović, U. and Petr, C.: On the Frame-Stewart al-

gorithm for the multi-peg Tower of Hanoi problem, Discrete Applied
Mathematics., Vol.120, No.1-3, pp.141–157 (2002).

[14] Li, C.-K. and Nelson, I.: Perfect codes on the Towers of Hanoi graph,
Bull. Austral. Math. Soc., Vol.57, pp.367–376 (1998).

[15] Park, S.E.: The group of symmetries of the Towers of Hanoi graph,
American Mathematical Monthly, Vol.117, No.4, pp.353–360 (April
2010).

[16] Pruhs, K.: The SPIN-OUT puzzle, ACM SIGCSE Bulletin, Vol.25,
pp.36–38 (1993).

[17] Petr, C., Klažar, S. and Milutinović, U.: 1-perfect codes in Sierpinski
graphs, Bull. Austral. Math. Soc., Vol.66, pp.369–384 (2002).

[18] Savage, C.: A survey of combinatorial Gray codes, SIAM Review,
Vol.39, pp.605–629 (1996).

[19] Spin-Out, Amazon, available from 〈http://www.amazon.com/
Think-Fun-5401-Thinkfun-Spinout/dp/B000EGI4IA〉.

[20] Walsh, T.R.: The Towers of Hanoi revisited: Moving the rings by
counting the moves, Inf. Process. Lett., Vol.15, pp.64–67 (1982).

Paul Cull is Professor (emeritus) of com-
puter science at Oregon State University
where he has worked for over 40 years.
He has taught a variety of undergradu-
ate courses and graduate courses in theory
of computation, analysis of algorithms,
and cybernetics. During the summers he
works with students in a research expe-

rience for undergraduates program which focuses on problems
at the interface between computer science and mathematics. In
2001, Cull was given the Alumni Professor Award. His research
interests are mathematical biology, theory of computation, and
analysis of algorithms. His early work was on inferring gene link-
age from pedigree data. He earned his Ph.D. at the University of
Chicago where he studied with the committees on mathematical
biology and information science. He wrote his thesis on the anal-
ysis of neural networks. Over the years, he has worked on a large
variety of topics and published papers in many venues. His most
recent papers are in machine learning, neural nets, interconnec-
tion networks, biological string alignment, discrete iterations, and
error-correcting codes. He is the co-author of the book “Differ-
ence Equations: From Rabbits to Chaos” published by Springer
in 2005.

Leanne Merrill is currently a Ph.D. stu-
dent at the University of Oregon. Her in-
terests include topological graph theory,
probability theory, axiomatic set theory,
algebraic topology, and mathematics ed-
ucation. She holds a Master’s degrees
in Mathematics and Bachelor’s degree in
Mathematics and Music, all from the State

University of New York at Potsdam. In addition to participation in
the Oregon State University Research Experience for Undergrad-
uates in 2010, she participated in the SUNY Potsdam/Clarkson
REU in 2009.

Tony Van is a graduate from the Univer-
sity of Pennsylvania. He was awarded the
Bachelor of Arts with distinction in math-
ematics and Latin honors in May of 2012.
He plans on pursuing doctoral studies in
statistics and applied mathematics. After-
wards, he hopes to do research in the pri-
vate sector and to contribute to academia

in the long run. His academic research interests include wavelet
analysis and probability theory.

c© 2013 Information Processing Society of Japan 392

