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Technical Note

Indexing of Motion Capture Data Using Feature Vectors
Derived from Posture Variation
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Abstract: Recently several large-scale databases of motion-capture data streams have been constructed. We present
a novel method to index motion-capture data streams in such databases. We pay attention to posture variation; the
impression of the visual aspect of the whole body is regarded as important. The spatial distribution of body segments
is statistically summarized as a feature vector having only 12 dimensions. The experimental results showed that the
feature vector we introduced provided properties comparable to those of the methods previously proposed, even though
its dimensionality is extremely low.
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1. Introduction

Recently motion-capture (Mocap) data streams have attracted
much attention due to their high reproducibility for human mo-
tions. Several large-scale databases of Mocap data streams have
been constructed in the past few years [1], [2]. Utilizing Mocap
databases allows us to easily create realistic computer animations
of human-like characters.

The use of a fast information retrieval system is required for
database management. Indexing documents in a database is
known as one of the methods to realize fast information retrieval.
In this paper, we present a novel method to index Mocap data
streams; the developed method is used for similarity retrieval. We
pay attention to posture variation; the impression of the visual as-
pect of the whole body is regarded as important. In the first stage
of indexing, the spatial distribution of body segments is quanti-
fied at every frame by statistically analyzing the positions of body
segments. Then, the tendency of all the frames in a data stream is
statistically summarized as a 12-dimensional feature vector; this
vector corresponds to a document vector in information retrieval.

To evaluate the developed method, we conducted an experi-
ment in which a set of Mocap data streams selected from multi-
ple motion categories was used. The experimental results showed
that the feature vector we introduced provided properties compa-
rable to those of the methods previously proposed, even though
its dimensionality is extremely low.

The remainder of this paper is organized as follows. We first
review the related work in Section 2. In Section 3, we describe
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the derivation of the feature vector. We verify the effectiveness
of the developed method in Section 4. Conclusions are finally
summarized in Section 5.

2. Related Work

It is well known that dynamic time warping (DTW) is often
used to evaluate the similarity between Mocap data streams [3].
DTW directly compares every pair of frames each extracted from
each of the data streams compared. This causes a significant dis-
advantage in computational complexity, namely quadratic time
complexity [4].

Krüger et al. [5] reported a trial to reduce the time complexity
of the frame-comparison approach. However, the proposed pro-
cedure requires a large amount of space to store the data of the
frames similar to each of all the frames in a query motion. As for
the present method, in contrast, only 12 data are stored as those
representing each Mocap data stream.

A number of researchers have proposed several indexing meth-
ods utilizing some sort of features of Mocap data streams. Onuma
et al. [6] developed FMDistance in which the feature vector repre-
senting the kinetic energy of joint motions was used. Li et al. [7]
employed singular value decomposition (SVD) to extract the ge-
ometric structure of a Mocap-data matrix. The feature vectors
of the above methods are much longer than that of the present
method, as will be shown later.

Preprocessing of a database has also been examined: clus-
tering [8], preparing binary geometric features [9], extracting
hierarchically-structured motion patterns [10], etc. These ap-
proaches require a relatively large number of procedures such as
updating newly added data streams [8], manually selecting mo-
tion features [9], spatially and temporally segmenting motion se-
quences [10], etc. On the other hand, the present method does
not require the preprocessing of an entire database; only indexing
individual Mocap data streams is needed.
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3. Derivation of the Feature Vector

As mentioned in Section 1, we focus on the impression of the
visual aspect of the whole body. Here, we index Mocap data
streams under the assumption that the impression depends on the
spatial distribution of body segments.

Consider the constellation of the joints and end effectors shown
in Fig. 1: shoulders, elbows, wrists, fingers, knees, ankles, toes,
neck and head. End effectors are hereafter regarded as joints for
simplicity. The position of each joint is described in the coordi-
nate system fixed to the pelvis, and normalized by the height of
the body to reduce the influence of difference in body constitu-
tion.

We first quantify the distribution of body segments at each
frame using the variance-covariance matrix of joint coordinates:

Σ(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σxx(n) σxy(n) σxz(n)
σyx(n) σyy(n) σyz(n)
σzx(n) σzy(n) σzz(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

σab(n) =
1
J

J∑
j=1

{
pa j(n) − p̄a(n)

} {
pb j(n) − p̄b(n)

}
,

p̄a(n) =
1
J

J∑
j=1

pa j(n) (a, b : x, y or z)

where pa j(n) is the a-coordinate of the jth joint at the nth frame
and J is the number of joints selected (J = 16), respectively.
Since Σ(n) is symmetric, only six elements are needed to describe
the distribution of body segments; we select the elements corre-
sponding to the axes and planes of movement [11] (see Fig. 1).
We adopt these elements as the components of the feature vector
f (n) characterizing a posture in each frame:

f (n) =
[

f1(n) f2(n) f3(n) f4(n) f5(n) f6(n)
]T

=
[
σxx(n) σyy(n) σzz(n)

σxy(n) σyz(n) σzx(n)
]T (2)

To estimate the tendency throughout an entire data stream, we
statistically summarize the feature vectors obtained from all the
frames in the data stream as follows:

Fig. 1 Quantification of the spatial distribution of body segments.

F =
[

F1 F2 · · · F12

]T
=

⎡⎢⎢⎢⎢⎣ f̄
s̄

⎤⎥⎥⎥⎥⎦ (3)

f̄ =
[

f̄1 f̄2 · · · f̄6
]T
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1
N
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fi(n),
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√√√
1
N
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{
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}2
where N is the number of frames and f̄ and s̄ are the mean and
standard deviation of f (n)’s, respectively. We finally employ the
12-dimensional vector F as the feature vector representing a Mo-
cap data stream. Since every component of F has the identical
physical dimension (squared length), similarity between Mocap
data streams can be evaluated by the Euclidean distance between
F’s.

The calculation of Eq. (1) for a Mocap data stream requires
9JN computations, and that of Eq. (3) requires DN computations
(D = 12, invariant with respect to J which can be changed as the
need arises, and in general D � 9J). As a result, the computa-
tional complexity of calculating F becomes O(JN). As for the
Euclidean distance between F’s, O(D) is required.

4. Experimental Results

We report the experimental results in this section. The Mo-
cap data streams used in the experiment are shown in Table 1
(138 data streams classified into 17 categories, downloaded from
Carnegie-Mellon Mocap Database [1]). We compared the present
method with FMDistance [6], kWAS [7] and PCA similarity fac-
tor [12]. These methods have the following properties in common
with the present method:
( 1 ) A Mocap data stream is represented as a feature vector hav-

ing a fixed length.
( 2 ) Preprocessing of a database is not required.

Table 2 shows the dimensionality of the feature vectors and
computational complexity *1. It is noted that the dimensionality

Table 1 Motion-capture data streams used in the experiment.

Label Category Data
Number
of data

A Walk 07 01−07 03, 07 06−07 11 9
B Walk (slow) 07 04, 07 05, 08 04, 37 01 4

C Walk 36 10−36 20 11(on uneven terrain)
D Marching 138 01−138 10 10
E Run 09 01−09 09 9
F Jump 118 01−118 10 10
G Climb ladder 13 33, 13 34, 14 33−14 35 5
H Golf (swing) 64 01−64 10 10
I Soccer (kick ball) 10 01−10 03, 10 05, 10 06, 11 01 6

J Basketball 06 02−06 05 4(forward dribble)
K Boxing 14 01−14 03, 15 13, 17 10 5
L Modern dance 05 02−05 14 13
M Chicken dance 18 15, 19 15, 20 01, 21 01, 143 34 5
N Salsa dance 61 01−61 10 10
O Breaking 85 01−85 08, 85 10 9
P Charleston 93 03−93 06, 93 08 5
Q Indian dance 94 01−94 13 13

Total: 138
Downloaded from http://mocap.cs.cmu.edu.

*1 As for PCA similarity factor, we set the number of DOF to be identical to
that of kWAS, and the number of principal components to be six which is
large enough to give almost all Mocap data streams the over-80-percent
contribution rate.
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Table 2 Dimensionality of feature vectors and computational complexity.

Method Dimensionality of feature vector
Computational complexity

Calculation of feature vector Calculation of distance
Present method D = 12 O(JN) O(D) (Euclidean distance)

FMDistance D = 61 (= L) O(LN) O(D) (Euclidean distance)
kWAS D = 330 (= (L + 1)k, L = 54, k = 6) O(L2N) (for SVD) O(Lk) ((inner product of L-dimensional vectors)×k)

PCA similarity factor D = 324 (= Lk, L = 54, k = 6) O(L2N) (for PCA) O(Lk2) (product of (k × L) and (L × k) matrices)

N: Number of frames, L: DOF of Mocap data, J: Number of joints, k: Number of singular values (or principal components).

Table 3 Results of supervised classification and unsupervised clustering.

Present method FMDistance kWAS PCA similarity factor

Supervised
Unsupervised

Supervised
Unsupervised

Supervised
Unsupervised

Supervised
Unsupervised

18 clusters 17 clusters 16 clusters 18 clusters
Error Rc Pc Error Rc Pc Error Rc Pc Error Rc Pc

A 1 1.000 0.750 1 1.000 0.692 0 1.000 0.129 1 1.000 0.692
B 2 0.625 0.210 3 1.000 0.308 2 1.000 0.057 3 1.000 0.308
C 0 1.000 1.000 0 1.000 0.917 0 1.000 0.157 0 1.000 0.500
D 0 1.000 1.000 0 1.000 1.000 0 1.000 0.143 0 1.000 0.455
E 0 1.000 1.000 0 1.000 1.000 0 1.000 0.129 0 1.000 1.000
F 0 0.500 0.857 0 1.000 0.625 0 1.000 0.143 0 1.000 1.000
G 0 0.520 0.221 1 0.680 0.233 0 1.000 0.192 0 1.000 1.000
H 0 1.000 1.000 0 1.000 1.000 0 1.000 1.000 0 1.000 1.000
I 1 0.722 0.391 0 1.000 0.600 0 1.000 0.086 0 1.000 0.667
J 0 1.000 0.286 1 1.000 0.400 0 1.000 0.057 1 0.625 0.778
K 0 1.000 0.357 1 0.680 0.567 0 1.000 0.192 0 1.000 0.833
L 0 0.456 0.890 1 0.361 0.676 5 0.219 1.000 4 0.609 0.859
M 0 1.000 1.000 1 0.680 0.552 0 1.000 0.192 1 1.000 1.000
N 0 1.000 0.909 0 0.580 0.925 0 1.000 0.385 0 1.000 0.909
O 0 0.407 1.000 2 0.481 0.602 3 0.160 0.677 2 0.481 0.804
P 3 0.360 0.148 3 0.360 0.511 3 1.000 0.071 3 0.360 0.498
Q 0 0.858 1.000 2 0.609 0.719 1 1.000 1.000 0 0.858 0.868

Total Ae = 0.949
0.797 0.804

Ae = 0.884
0.781 0.725

Ae = 0.899
0.872 0.413

Ae = 0.891
0.882 0.790

Fmeasure = 0.800 Fmeasure = 0.752 Fmeasure = 0.561 Fmeasure = 0.834

of the present method is extremely low compared with the other
methods. As for computational complexity, all the methods take
linear time with respect to N to calculate a feature vector; on the
other hand, the complexity of calculating the distance between
Mocap data streams does not depend on N in all the cases.

We verified the effectiveness of the above methods in two
stages: supervised classification and unsupervised clustering. In
supervised classification, we evaluated the results given by the 1-
nearest-neighbor classifier [13] using the empirical accuracy Ae

obtained from 1-fold cross-validation [13]. As for unsupervised
clustering, we used the hierarchical clustering algorithms [14];
Ward’s method was applied to both the present method and
FMDistance which use Euclidean distance, whereas the group
average method was applied to both kWAS and PCA similarity
factor which use nonmetric similarity measures. The number of
clusters was determined by maximizing the Bayesian information
criterion for the Gaussian mixture clustering model [14] (present
method and FMDistance) or by Mojena’s stopping rule [15]
(kWAS and PCA similarity factor). To evaluate the results of
clustering, we used the parameter Fmeasure [16].

Fmeasure is given as a combination of the parameters recall R

and precision P as follows:

Fmeasure =
2RP

R + P
(4)

R =

∑C
c=1 McRc

M
, P =

∑C
c=1 McPc

M
,

Rc =

∑Q
q=1 Mq,cRq,c

Mc
, Pc =

∑Q
q=1 Mq,cPq,c

Mc
,

Rq,c =
Mq,c

Mc
, Pq,c =

Mq,c∑C
c′=1 Mq,c′

where M is the total number of samples (feature vectors in this
case), Mc is the number of samples in the cth ground-truth cate-
gory, Mq,c is the number of samples of the cth ground-truth cate-
gory in the qth cluster, C is the total number of the ground-truth
categories and Q is the total number of clusters, respectively.

The experimental results are shown in Table 3. In supervised
classification, the present method gave the highest value of Ae.
As for unsupervised clustering, PCA similarity factor gave the
highest value of Fmeasure; however, the difference of the present
method from PCA similarity factor is only 0.034. Although the
dimensionality of the feature vector we introduced is extremely
low, the present method provided properties comparable to those
of the other methods. This suggests that the efficiency of the
present method is considerably high.

It should also be pointed out, on the other hand, that the present
method has several limitations; a typical one is that whole-body
locomotion is not considered. This may have caused the confu-
sion between the categories “Walk (slow)” (B) and “Climb lad-
der” (G) in unsupervised clustering. The factor that motion speed
is not incorporated is also noted; this may have caused the confu-
sion between the categories “Walk” (A) and “Walk (slow)” (B).

5. Conclusions

The main contribution of this study is the dimensionality re-
duction of the feature vector used for similarity retrieval in Mo-
cap databases; this was accomplished without significant perfor-
mance degradation. It is hoped that the present method will help
in improving Mocap-database management systems. However,
the issue that several motion characteristics such as whole-body
locomotion and motion speed are not incorporated still remains
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unresolved. Further work is necessary to resolve this issue.
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