
Journal of Information Processing Vol.21 No.2 315–319 (Apr. 2013)

[DOI: 10.2197/ipsjjip.21.315]

Technical Note

Fast Computation of the n-th Root in Quad-double
Arithmetic Using a Fourth-order Iterative Scheme

Tsubasa Saito1,a)

Received: August 22, 2012, Accepted: December 7, 2012

Abstract: We propose new algorithms for computing the n-th root of a quad-double number. We construct an itera-
tive scheme that has quartic convergence and propose algorithms that require only about 50% to 60% of the double-
precision arithmetic operations of the existing algorithms. The proposed algorithms perform about 1.7 times faster
than the existing algorithms, yet maintain the same accuracy. They are sufficiently effective and efficient to replace the
existing algorithms.

Keywords: octuple-precision, quad-double arithmetic, square root, n-th root, modified Newton’s method

1. Introduction

High-precision arithmetic is needed to verify the numerical re-
sults computed by double-precision arithmetic, and quad-double
arithmetic has been proposed for quasi-octuple-precision arith-
metic [8]. These arithmetic operators can be achieved by com-
bining double-precision arithmetic operations. However, com-
puting the n-th root of a quad-double number requires many more
double-precision arithmetic operations, because the computation
is based on Newton’s method.

In this paper, we propose two new algorithms, one each for
computing the square root and the n-th root of a quad-double
number. We reconsidered the existing algorithms, which are
based on the second-order Newton iterative scheme, and con-
structed a fourth-order iterative scheme. To reduce the number
of double-precision arithmetic operations, we considered the fol-
lowing strategies: (i) Rearranging terms to reuse intermediate re-
sults; (ii) Using multiplication by the power of 2; and (iii) Re-
placing quad-double multiplication by addition.

We compared the number of double-precision arithmetic oper-
ations, the computation time, and the accuracy of both new al-
gorithms with the existing algorithms. The proposed algorithms
require only 50% to 60% of the double-precision arithmetic oper-
ations required by the existing algorithms in the QD package [1].
The proposed algorithms can be executed much faster than the
existing algorithms, and have almost the same results as the ex-
isting algorithm in 63 decimal digits. The proposed algorithms
are thus effective for computing the n-th root of a quad-double
number.

2. Double-double and Quad-double

Double-double and quad-double arithmetic were proposed for

1 Graduate School of Science, Tokyo University of Science, Shinjuku,
Tokyo 162–8601, Japan

a) t.saito0106@gmail.com

quasi-quadruple and -octuple-precision arithmetic by Hida et
al. [8]. A double-double number is represented by two, and
a quad-double number is represented by four, double-precision
numbers. Throughout this paper, the variables with a subscript
as x(dd) and y(qd) mean a double-double number and a quad-
double number respectively. The symbols · (· ∈ {+,−,×, /}) rep-
resent the four arithmetic operators based on mathematics, and
� (� ∈ {⊕,�,⊗,�}) represent the double-precision operators per-
formed on the computer. A double-double number x(dd) and a
quad-double number y(qd) are represented by double-precision
numbers x0, x1, y0, y1, y2, y3 as follows:

x(dd) = x0 + x1, y(qd) = y0 + y1 + y2 + y3.

The components x0, x1, y0, y1, y2 and y3 satisfy the following in-
equalities:

|x1 | ≤ 1
2

ulp(x0), |yi+1 | ≤ 1
2

ulp(yi), i = 0, 1, 2,

where ulp stands for ‘units in the last place’. A double-double
(quad-double) number has 31(63) significant decimal digits.
These can be computed by using only double-precision arith-
metic operations. Addition, subtraction, and multiplication of
quad-double numbers are based on error-free floating-point arith-
metic algorithms such as Two-Sum [9] and Two-Prod [3]. There
are no error-free algorithms for division or for finding the square
root, so computing these are based on Newton’s method. As
a result, for quad-double numbers, these operations need more
double-precision arithmetic operations than do addition and mul-
tiplication. The details of the algorithms for double-double and
quad-double arithmetic are shown in Refs. [10], [11].

3. Existing Algorithms for the n-th Root

Algorithm 1 shows the procedure for computing the square
root of a quad-double number using the QD package [1], which
is one of the most popular libraries using quad-double arithmetic

c© 2013 Information Processing Society of Japan 315

Journal of Information Processing Vol.21 No.2 315–319 (Apr. 2013)

written in C++. It is based on division-free Newton-Raphson it-
eration:

xi+1 = xi +
xi(1 − ax2

i)

2
, i = 0, 1, . . . , (1)

which converges to 1√
a
, starting with the double-precision ap-

proximation to 1√
a
. To get the square root

√
a, we need to mul-

tiply the result by the input argument a. This algorithm does not
require division of quad-double numbers. Note that round-off er-
rors do not occur in multiplication or division by the power of 2,
and in this case, multiplication by 0.5 can be done component-
wise in line 3.

Algorithm 2 for an n-th root (n > 2) can be designed in the
same way as Algorithm 1. It is based on the following second-
order iterative scheme:

xi+1 = xi +
xi(1 − axn

i)

n
, i = 0, 1, (2)

A round-off error may occur with division by n. Unlike computa-
tion of the square root, Algorithm 2 requires quad-double division
in lines 8 and 11. Also, Algorithm 2 requires computation of an n-
th power of a quad-double number in line 4, which requires more
double-precision arithmetic operations than computing a square.

Algorithm 1 Quad-double square root in the QD package
1: app← sqrt(a0)
2: r(qd) ← qd(1.0 � app)
3: h(qd) ← mul pwr qd(a(qd), 0.5)
4: for i = 1 to 3 do
5: x(qd) ← qd sqr(r(qd))
6: y(qd) ← qd qd mul(h(qd), x(qd))
7: w(qd) ← d qd sub(0.5, y(qd))
8: z(qd) ← qd qd mul(w(qd), r(qd))
9: r(qd) ← qd qd add(r(qd), z(qd))

10: end for
11: res(qd) ← qd qd mul(r(qd), a(qd))
12: return res(qd)

Algorithm 2 Quad-double n-th root in the QD package
1: app← pow(a0,−1.0 � n)
2: r(qd) ← qd(app)
3: for i = 1 to 3 do
4: x(qd) ← qd pow(r(qd), n)
5: y(qd) ← qd qd mul(a(qd) s, x(qd))
6: w(qd) ← d qd sub(1.0, y(qd))
7: z(qd) ← qd qd mul(w(qd), r(qd))
8: v(qd) ← qd d div(z(qd), n)
9: r(qd) ← qd qd add(r(qd), v(qd))

10: end for
11: res(qd) ← d qd div(1.0, r(qd))
12: return res(qd)

4. Proposal of a New Algorithm

We consider computing by a modified Newton’s method. Re-
cently, high-order iterative schemes focused on the square root
or the n-th root have been proposed (Refs. [4], [7]). However,
such schemes are often complicated to compute with quad-double
arithmetic. In contrast, a simple approach was proposed by Ger-
lach [6]. Gerlach focused on a class of functions that converges
well with Newton’s method, and then modified Newton’s method
for more rapid convergence. Ford and Pennline [5] improved Ger-
lach’s scheme to obtain the same result but can be implemented

more easily.
We propose a new fourth-order iterative algorithm that is based

on the method of Ford and Pennline [5]. The mantissa of a quad-
double number is four times longer than that of a double-precision
number. If the scheme has quartic convergence, the accuracy of
an approximate solution increases four times with each iteration.
Using a square root with double-precision arithmetic as an ini-
tial value, we can obtain the n-th root of a quad-double number
with one iteration. First we present a theorem for the high-order
iterative scheme in Ref. [5]. Using this, a fourth-order iterative
scheme for computing the n-th root is constructed.
Theorem. (Ford and Pennline [5]) If Newton’s method has M-

th-order convergence for a given function f , then the solution to

f (x) = 0 may be obtained by applying the modified Newton’s

method

xi+1 = xi − f (xi)QN(xi)
QN+1(xi)

, i = 0, 1, 2, . . . , (3)

where the function QN is defined for N ≥ M by
⎧⎪⎪⎪⎨⎪⎪⎪⎩

QM(x) = 1, (4)

QN+1(x) = f ′(x)QN(x) − 1
N − 1

f (x)Q′N(x), N ≥ M, (5)

the scheme having N-th-order convergence, i.e.,

|xi+1 − a | ≤ C|xi − a |N ,

for some constant C and the solution a.

From this theorem, an N-th-order iterative scheme can be ob-
tained by calculating QM , QM+1, . . . ,QN+1 according to Eqs. (4)
and (5), and substituting them into Eq. (3). We can deductively
generate an iterative scheme that has more than M-th-order con-
vergence.

Let a function f be f (x) = 1
xn − 1

a . Newton’s method has
quadratic convergence, i.e., M = 2. We calculate Q3, Q4, and
Q5 and substitute them into Eq. (3). Then the iterative scheme
becomes

xi+1 = xi −
3xi(xn

i − a)
(
(n + 1)xn

i + (n − 1)a
)

(n2 + 3n + 2)x2n
i + 4(n2 − 1)axn

i + (n2 − 3n + 2)a2
.

(6)

This is the fourth-order iterative scheme for computing the n-th
root of a quad-double number. Let xi be the n-th root computed
by double-precision; then xi+1 becomes the n-th root of a quad-
double number. This is faster than the existing algorithm.

4.1 Algorithm for the Square Root
When n = 2 in Eq. (6), we obtain a simple scheme for comput-

ing the square root:

xi+1 = xi −
(x2

i − a)(3x2
i + a)

4xi(x2
i + a)

. (7)

This iterative scheme is known as the Bakhshali square root for-
mula from ancient times [2]. Although division-free Newton-
Raphson iteration does not require quad-double division, Eq. (7)
does. To reduce the number of double-precision arithmetic op-
erations, we consider the following: (i) Rearranging terms to

c© 2013 Information Processing Society of Japan 316

Journal of Information Processing Vol.21 No.2 315–319 (Apr. 2013)

reuse intermediate computation results; (ii) Using multiplication
by the power of 2; and (iii) Replacing quad-double multiplica-
tion with addition. The reason for (iii) is that quad-double addi-
tion needs fewer double-precision arithmetic operations than does
quad-double multiplication.

Algorithm 3 shows the procedure based on Eq. (7). In order to
compute 3x2

i + a, two quad-double operations are required. Then
we compute 3x2

i + a by transforming it into (x2
i + a) + 2x2

i . The
first term x2

i + a was computed in line 3, and the second term 2x2
i

does not have round-off error. Only two double-precision multi-
plications are needed for computing 2x2

i in line 5. Thus 3x2
i + a

can be computed by two double-precision multiplications and one
mixed-precision addition of double-double and quad-double in
line 6. 4xi is also computed with no round-off errors in line 8.
As a result, the proposed algorithm requires only about half the
double-precision arithmetic operations required by the algorithm
in QD package.

4.2 Algorithm for the n-th Root
We reconstruct the iterative scheme Eq. (6) to reduce the num-

ber of double-precision arithmetic operations as follows:

xi+1 = xi −
3xi(xn

i − a)
(
(n + 1)xn

i + (n − 1)a
)

(n2 + 3n + 2)x2n
i + 4(n2 − 1)axn

i + (n2 − 3n + 2)a2

= xi − F(xi)
G(xi)

, (8)

Algorithm 3 Proposed algorithm for computing the square root of a
quad-double number
1: app← sqrt(a0)
2: x(dd) ← Two-Sqr(app)
3: s(qd) ← dd qd add(x(dd), a(qd))
4: t(qd) ← dd qd sub(x(dd), a(qd))
5: p(dd) ←mul pwr dd(x(dd), 2)
6: u(qd) ← dd qd add(p(dd), s(qd))
7: v(qd) ← qd qd mul(u(qd), t(qd))
8: q← 4 ⊗ app
9: w(qd) ← d qd mul(q, s(qd))

10: z(qd) ← qd qd div(v(qd), w(qd))
11: res(qd) ← qd(app,−z0,−z1,−z2)
12: return res(qd)

Algorithm 4 Proposed algorithm for computing the n-th root of a
quad-double number
1: app← pow(a0, 1.0 � n)
2: x(qd) ← qd pow(qd(app), n)
3: s(qd) ← qd qd add(x(qd), a(qd))
4: t(qd) ← qd qd sub(x(qd), a(qd))
5: u(qd) ← d qd mul(n, s(qd))
6: v(qd) ← qd qd add(u(qd), t(qd))
7: w(qd) ← qd qd mul(t(qd), v(qd))
8: y(qd) ← d qd mul(app, w(qd))
9: z(qd) ←mul pwr qd(y(qd), 2)

10: b(qd) ← qd qd add(z(qd), y(qd))
11: nn← n ⊗ n
12: p(qd) ← d qd mul(nn ⊕ 3 ⊗ n ⊕ 2, s(qd))
13: q(qd) ← d qd mul(6 ⊗ n, a(qd))
14: r(qd) ← qd qd sub(p(qd), q(qd))
15: c(qd) ← qd qd mul(s(qd), r(qd))
16: d(qd) ← d qd mul(2 ⊗ (nn � 4), a(qd))
17: e(qd) ← qd qd mul(d(qd), x(qd))
18: g(qd) ← qd qd add(c(qd), e(qd))
19: h(qd) ← qd qd div(b(qd), g(qd))
20: res(qd) ← qd(app,−h0,−h1,−h2)
21: return res(qd)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F(xi) = xi(xn
i − a)

(
n(xn

i + a) + (xn
i − a)

)

+ 2xi(xn
i − a)

(
n(xn

i + a) + (xn
i − a)

)
,

G(xi) = (xn
i + a)

(
(n2 + 3n + 2)(xn

i + a) − 6na
)
+ 2(n2 − 4)axn

i .

Algorithm 4 shows the procedure based on Eq. (8). As for the
square root, the intermediate results (xn ± a) are used repeatedly
in lines 5, 6, 7, 12, and 16. We transform 3xi(xn

i −a)
(
(n+1)xn

i +(n−
1)a
)

into F(xi) to apply multiplication by 2 and replace the quad-
double multiplication with addition. The proposed algorithm re-
quires about 60% the number of double-precision arithmetic op-
erations of the algorithm in the QD package.

5. Comparison

We compared the number of double-precision arithmetic oper-
ations, the computation time, and the accuracy. Experiments were
carried out on a PC with an Intel Core i5 1.7 GHz CPU, 4 GB
memory, and Scilab version 5.3.3 running on a Mac OS X Lion.
To execute the algorithms, we use our MuPAT [10], which is im-
plemented in double-double and quad-double arithmetic based on
the QD package on Scilab.

5.1 Number of Double-precision Arithmetic Operations
Table 1 shows the number of double-precision arithmetic op-

erations for both algorithms. ‘Double’ is the number of double-
precision arithmetic operations needed for each function. The
numbers in the 3rd to 6th column show the number of times func-
tions appear in each algorithm. ‘Number of double’ is the total
number of double-precision arithmetic operations for each algo-
rithm. The sqrt and pow functions do not count in the total
number of double-precision arithmetic operations. For comput-
ing the square root, the existing algorithm in the QD package
needs 2,445 double-precision arithmetic operations, but the pro-
posed algorithm only needs 1,212, about half as many.

The number of double-precision arithmetic operations for the
n-th power depends on the exponent n. Table 2 shows the num-

Table 1 The count of functions in each function, and the number of
double-precision arithmetic operations for Algorithm 1 to 4.

Square root n-th root
‘Function’ ‘Double’ QD Proposed QD Proposed
Two-Sqr 12 - 1 - -

dd qd add 71 - 2 - -
qd qd add 91 3 - 3 4
d qd sub 52 3 - 3 -

dd qd sub 71 - 1 - -
qd qd sub 91 - - - 2
d qd mul 118 - 1 - 5
qd qd mul 217 7 1 6 3
d qd div 610 - - 1 -
qd d div 286 - - 3 -
qd qd div 649 - 1 - 1

qd sqr 164 3 - - -
mul pwr dd 2 - 1 - -
mul pwr qd 4 1 - - 1
⊕, �, ⊗, � 1 1 1 1 8
sqrt (+1) 1 1 - -
pow (+1) - - 1 1

qd pow X(n) - - 3 1
‘Number of double’ 2,445 1,212 3,200+3X(n) 2,458+X(n)

X(n) : Depends on the exponent n (see Table 2)

c© 2013 Information Processing Society of Japan 317

Journal of Information Processing Vol.21 No.2 315–319 (Apr. 2013)

Table 2 Number of double-precision arithmetic operations for the n-th
power and the total number of double-precision arithmetic oper-
ations for n-th root (3 ≤ n ≤ 10).

n-th power n-th root
n X(n) QD Proposed Ratio(%)
3 600 5,000 3,058 61.2
4 548 4,844 3,006 62.1
5 765 5,495 3,223 58.7
6 765 5,495 3,223 58.7
7 982 6,146 3,440 56.0
8 713 5,339 3,171 59.4
9 930 5,990 3,388 56.6

10 930 5,990 3,388 56.6

Table 3 Comparison of the computation time in seconds.

n QD (sec.) Proposed (sec.) Speed-up ratio
2 0.982 0.561 1.75
3 2.315 1.414 1.64
4 2.257 1.415 1.59
5 2.530 1.484 1.70
6 2.534 1.484 1.71
7 2.739 1.551 1.77
8 2.477 1.480 1.67
9 2.733 1.554 1.76

10 2.740 1.550 1.77

ber of double-precision arithmetic operations for computing the
n-th power and the n-th root (3 ≤ n ≤ 10) of a quad-double
number. The algorithm in the QD package requires about 4,800
to 6,100 double-precision arithmetic operations, but the proposed
algorithm needs only about 3,000 to 3,400, reducing the number
of double-precision arithmetic operations by 56% to 62%. The
proposed algorithms are thus faster than the existing algorithms.

5.2 Computation Time
We generated one million quad-double random numbers be-

tween 0 and 1 with the function qdrand in MuPAT; it is a
quad-double random value generator based on the Scilab func-
tion rand. Table 3 shows the computation times (each one is the
average of ten trials) and the speed-up ratios. The computation
time includes calling the functions to execute the algorithms on
Scilab. In the case of the square root, the computation times using
the existing algorithm and the proposed algorithm are 0.982 sec-
onds and 0.561 seconds, respectively. The proposed algorithm is
1.75 times faster than the existing algorithm. In every case where
3≤n≤10, the proposed algorithm is faster than the existing algo-
rithm.

The existing algorithm is a sequential algorithm and lines 5 to
9 in Algorithm 1 use the previous computation results. On the
other hand, the proposed algorithm can compute in parallel. For
example, the numerator and denominator of the iterative scheme
Eqs. (7) and (8) can be computed separately, which can lead to
further acceleration.

5.3 Accuracy
We generated another one million quad-double random num-

bers and computed the square root and the n-th root of a quad-
double number with each algorithm. We then compared them to
63 decimal digits, which is the number of significant digits of a
quad-double number. Table 4 shows the concordance rate of the
results of both algorithms. In case of the square root, 97.3% of the
results by the proposed algorithm correspond exactly to the exist-

Table 4 Concordance rate of both results to 63 decimal digits.

n Ratio
2 97.3%
3 96.5%
4 96.8%
5 96.2%
6 95.9%
7 95.6%
8 95.9%
9 95.4%

10 95.1%

ing algorithm. If we represent all the results by the algorithm in
the QD package as the vector q(qd) and those by the proposed al-
gorithm as the vector p(qd), then ||q(qd) − p(qd)||∞ is 1.396× 10−63.
That is, even if the results differ, the difference occurs at most in
the 63rd digit in decimal. For the n-th root, more than 95% of the
results are the same (3 ≤ n ≤ 10). These results confirm that the
proposed algorithms lead to an approximation that has almost the
same accuracy as the existing algorithms.

6. Conclusion

We proposed two new algorithms, one each for computing the
square root and the n-th root of a quad-double number using a
fourth-order iterative scheme. The proposed algorithm for the
square root requires about half the number of double-precision
arithmetic operations as for the existing algorithm in the QD
package, and that for the n-th root, 56% to 62%.

We compared the computation time and the accuracy between
the algorithms. The proposed algorithms for the square root and
the n-th root are 1.59 to 1.77 times faster than the existing algo-
rithm. Of the results of the square root, 97.3% are the same to 63
significant decimal digits. In case of the n-th root (3 ≤ n ≤ 10),
more than 95% of the computation results of the proposed al-
gorithm are the same as from the existing algorithm. Thus the
proposed algorithm has almost the same accuracy as does the al-
gorithm in the QD package.

The proposed algorithms are fast and accurate, and we con-
clude that they are an improvement over the existing algorithm
in the QD package. Quad-double division is also based on the
Newton’s method, so a similar faster algorithm is expected. This
and executing the current proposed algorithms in parallel to ac-
celerate them, are future topics of study. Acceleration by specific
hardware such as FPGA is also a future topic of study.

Acknowledgments The author would like to thank the
anonymous reviewers for their useful comments.

References

[1] Bailey, D.H.: QD (C++ / Fortran-90 double-double and quad-double
package), available from 〈http://crd.lbl.gov/˜dhbailey/mpdist/〉

[2] Bailey, D.H. and Borwein, J.M.: Ancient Indian square roots: An ex-
ercise in forensic paleo-mathematics, Amer. Math. Monthly, Vol.119,
No.8, pp.646–657 (2012).

[3] Dekker, T.J.: A floating-point technique for extending the available
precision, Numer. Math., Vol.18, pp.224–242 (1971).

[4] Dubeau, F.: Newton’s method and high-order algorithms for the nth
root computation, J. Comput. Appl. Math., Vol.224, No.1, pp.66–76
(2009).

[5] Ford, W.F. and Pennline, J.A.: Accelerated convergence in Newton’s
method, SIAM Review, Vol.38, pp.658–659 (1996).

[6] Gerlach, J.: Accelerated convergence in Newton’s method, SIAM Re-
view, Vol.36, pp.272–276 (1994).

[7] Hernández, M.A. and Romero, N.: Accelerated convergence in New-

c© 2013 Information Processing Society of Japan 318

Journal of Information Processing Vol.21 No.2 315–319 (Apr. 2013)

ton’s method for approximating square roots, J. Comput. Appl. Math.,
Vol.177, No.1, pp.225–229 (2005).

[8] Hida, Y., Li, X.S. and Bailey, D.H.: Quad-double arithmetic: Al-
gorithms, implementation, and application, Technical Report LBNL-
46996, LBNL, Berkeley, CA 94720 (2000).

[9] Knuth, D.E.: The Art of Computer Programming, Vol.2, Addison Wes-
ley (1969).

[10] Saito, T.: MuPAT (Multiple Precision Arithmetic Toolbox), available
from 〈http://www.mi.kagu.tus.ac.jp/qupat.html〉

[11] Saito, T., Ishiwata, E. and Hasegawa, H.: Development of quadru-
ple precision arithmetic toolbox QuPAT on Scilab, Proc. ICCSA 2010,
Part II, LNCS 6017, pp.60–70 (2010).

Tsubasa Saito received his M.S. degree
from Tokyo University of Science in
2011. His research interest is high-
precision arithmetic for numerical linear
algebra. He implemented a quadruple pre-
cision arithmetic environment QuPAT and
a multiple precision arithmetic environ-
ment MuPAT as toolboxes on Scilab. He

is the Grand Prize winner of Scilab Toolbox Japan Contest 2009
for the student section.

c© 2013 Information Processing Society of Japan 319

