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Abstract: In this paper, we propose a method to estimate the node distribution for pedestrians with information ter-
minals. The method enables us to provide situation-aware services such as intellectual navigation that tells the user the
best route to go around congested regions. In the proposed method, each node is supposed to know its location roughly
(i.e., within some error range) and to maintain a density map covering its surroundings. This map is updated when a
node receives a density map from a neighboring node. Each node also updates the density map in a timely fashion
by estimating the change of the density due to node mobility. Node distribution is obtained from the density map by
choosing cells with the highest density in a greedy fashion. The simulation experiments have been conducted and the
results have shown that the proposed method could keep average position errors less than 10 m.
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1. Introduction

A recent innovation of wireless communication technology has
brought us possibilities to deploy infrastructure-less wireless ap-
plications. In Intelligent Transportation Systems (ITS), many
research efforts have been conducted for situation awareness of
pedestrians and vehicles based on DSRC for collision avoidance.
For example, OKI has developed a DSRC attachment for mo-
bile phones for pedestrian safety [1] by broadcasting positions of
pedestrians obtained by GPS. People centric sensing [2] is also
an emerging technology using sensing information such as traffic
information from smartphones for urban sensing.

These studies indicate that ad-hoc wireless communication is
a cost-efficient way of data fusion and diffusion among local
agents. In particular, if pedestrians can estimate and obtain the
information on their surroundings in real-time through ad-hoc
communication, many services and applications can be provi-
sioned without infrastructures. For example, it would be more
beneficial to a human navigation system for emergency evacu-
ation and to stranded commuters in disasters if information on
the distribution of people in its surroundings is available. Some
literature have proposed methods for people density estimation
in urban areas. For example, in Ref. [3], Bluetooth scan is used
for estimating the number of nearby nodes. Reference [4] has
investigated people density estimation using locations of mobile
phones obtained via base stations for large scale urban monitor-
ing. However, real-time estimation of mobile node distribution
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by collaboration through ad-hoc networks is still challenging.
In this paper, we propose a method for mobile wireless nodes,

which are pedestrians, to estimate the distribution of mobile
nodes in their surroundings. In the proposed method, each node
is assumed to know its location roughly (i.e., within some error
range) and to maintain a density map covering its surroundings.
This map is updated when a node receives a density map from a
neighboring node. Each node also updates its density map in a
timely fashion by estimating the change of node distribution over
time due to node mobility.

The goal of our study is to propose an autonomous protocol to
let mobile nodes have accurate node distribution with reasonable
amount of wireless ad-hoc communication traffic. For estimating
the node distribution, a mobile node may independently main-
tain and share positions of each node. However, the amount of
data exchanged among mobile nodes may be large since a large
number of nodes are expected in urban areas. To achieve a data
size which is independent of the number of nodes, we use a den-
sity map where we divide a target region into grid cells and the
expected numbers of nodes (i.e., density) in each cell are main-
tained. Nodes can estimate the current distribution of nodes from
their own density maps by finding cells with a high density in a
greedy fashion. To build a density map, with a certain interval,
each node broadcasts its own density map where its area of pres-

ence (the area in which a true location is included) is merged. On
receiving a density map from neighboring nodes, the node up-
dates such a part of its own density map by the received density
information which seems to be fresher.

We note that there is a clear trade-off between the freshness of
density information and the required amount of wireless capac-
ity to exchange density information. To pursue this trade-off, we
have two key ideas. First, we provide an estimation function that
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estimates the future density map based on its time-varying char-
acteristics. As a simple example, if we know the maximum speed
Vmax of mobile nodes, an estimation function that estimates the
density map after Δt time can be designed in such a way that each
density in the current map is spread over Vmax · Δt region. An-
other function can be designed in such a way that the density is
spread only to the directions toward which other nodes exist. This
is based on the property that pedestrians walk on roads. Second,
we design an adaptive protocol that controls the transmission in-
terval of messages depending on the density of surroundings, in
order to avoid similar density maps to be emitted to the wireless
channel.

The simulation experiments have been conducted and the sim-
ilarity between the real and estimated distributions has been mea-
sured. The results in three different scenarios have shown that
the proposed method could attain average localization errors less
than 10 m.

2. Related Work

In Vehicular Ad-hoc NETworks (VANETs), there have been
various approaches to aggregate and disseminate several types of
contexts like road surface condition, temperature, traffic jam in-
formation [5], [6], [7], [8]. Similar approaches have been consid-
ered in Wireless Sensor Networks (WSNs) [9], [10], [11], [12].
Some of them consider reducing the amount of data based on its
similarity (i.e., elimination of data redundancy) and others con-
sider in-network computing of given queries.

Our proposed method falls into these categories in the sense
that it is aimed at aggregating (sensed) data with less amount of
traffic. However, the proposed method is designed for mobile
nodes to self-estimate their neighborhood distribution. Therefore,
the data is time-varying in the scale of minutes while VANETs
and WSNs target the aggregation of data such as load surface
condition and wide-area traffic condition information which are
relatively stable in long-term. Hence, we have to consider the
trade-off between timeliness of data of mobile nodes’ locations
and the traffic overhead. We note that object detection and track-
ing in WSNs have to deal with real-time motion of objects (thus
the data must be time-varying in very short term). However, these
applications are not aimed at aggregating data but detecting ob-
jects.

As we stated in the introduction, each node has estimation
functions to estimate the dynamic change of the node distribution,
and exchanges the estimated result with others to help increase
the accuracy of density maps. Also depending on the neighbor-
hood density, each node controls the transmission interval. Based
on these two ideas, we have designed a protocol that deals with a
unique problem, that is, self-estimation of mobile node distribu-
tion. In this sense, our approach is original.

Our goal relates to localization algorithms [13], [14], [15],
[16], which aim to estimate positions of nodes. However, the
goal of localization algorithms is to estimate each node’s position
by itself and does not much care about positions of other nodes.
Also their main concern is accuracy, while our challenge is to de-
sign a protocol that pursues the trade-off between the accuracy
and the traffic.

There are several methods for estimating the density of peo-
ple in urban areas [17], [18], [19]. Mobile space statistics [19]
presented by NTT DOCOMO tracks populations of each area by
counting mobile phone users observed at each base station. How-
ever, this approach aims at large-scale statistics such as the popu-
lation in a city, which is different from our target. Reference [17]
proposes a method to reconstruct the people flow from exist-
ing person-trip survey data. Reference [18] proposes a method
for density estimation using coarse location information obtained
from mobile phone call data. To the best of our knowledge, there
is no research to provide a real-time estimation of node density
in urban areas using the cooperation among mobile users. A
straightforward approach is to upload position data obtained by
GPS from all the nodes by using 3G networks. However, the 3G
network traffic is overloaded in such an approach particularly in
urban areas where a large number of people exist. In contrast, we
use an ad hoc communication between mobile nodes to share the
density information while avoiding 3G network overloading.

3. Self-Estimation of Neighborhood Distribu-
tion

3.1 Overview
We assume that each node i is equipped with a wireless de-

vice and knows its (rough) location through GPS or other tech-
nologies. We also assume that the region is divided into square
cells with s(m) edge. Based on this cell representation of the ge-
ography, node i maintains a density map Di, which represents
the node density (i.e., the expected node numbers) in its sur-
roundings. Concretely, Di has Xi × Yi elements and each element
dx,y(1 ≤ x ≤ Xi, 1 ≤ y ≤ Yi) represents the node density in the
cell (x, y). We define the size Xi,Yi and the location of the density
map as node dependent values since each node may require its
local view of the density map depending on applications. An ex-
ample of a density map is shown in Fig. 1. We assume each node
knows the maximum speed Vmax of all the nodes to estimate the
change of the node density in each cell by predicting movement
of nodes. This is because the maximum speed may be estimated
easier than the average speed, which largely depends on the time,
the locations, the density and geometrical attributes such as the
path’s width.

Each node i executes the following procedures every t seconds.
( 1 ) Node i updates its density map Di by using a given estima-

tion function f . We assume a typical moving pattern in the
target environment is modeled into the estimation function.

Fig. 1 An example of a density mapx.
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According to this model, f (Di) diffuses the density values in
each cell toward its surrounding cells that are supposed to
be reachable within a message exchange interval denoted by
t. This represents the estimated movement of other nodes.
We note that in f (Di), if dx,y is less than a certain threshold
denoted by T Hd after updating, dx,y is set to zero. For T Hd,
we set the value which is too small or too old as the density
information and which is therefore not useful any longer.

( 2 ) Node i adds its presence information to Di. To do this,
firstly, node i obtains its area of presence (denoted by Ri)
from the GPS or other measurement devices where Ri is the
area which includes node i’s true position. We represent Ri

as a set of cells as follows;

Ri = {(xi1, yi1), (xi2, yi2), . . . , (xin, yin)}
where n is the number of cells included in the area of pres-
ence. Thus the density value in each cell of Ri is 1/n. Sec-
ondly, this value is added to the density value of each cell in
the density map Di. This procedure is executed only when
the elapsed time since node i records Ri becomes longer than
a certain Δti seconds. For Δti, we set the expected time
for the density 1/n added to each cell to be less than a cer-
tain threshold (denoted by ε) due to the estimation function.
Hence, Δti should be set according to the estimation func-
tion.

( 3 ) Node i sends Di to its neighbors.
( 4 ) Node i updates Di when i receives Dj from neighboring node

j.
We explain the details of these procedures in the following sec-
tion.

3.2 Algorithm
3.2.1 Estimation Function

Density maps are updated by the estimation function f , which
is given beforehand. Typical movement patterns in the target re-
gion and/or the target nodes are modeled in the estimation func-
tion. Here, we describe (i) the diffuse estimation function, (ii) the
limited diffuse estimation function, and (iii) the hybrid estima-
tion function as examples of typical movement patterns and their
estimation functions.
3.2.1.1 Diffuse Estimation Function

When the maximum speed of nodes is the only known fact,
there is a possibility that each node moves toward any direc-
tions in the region. Thus, the diffuse estimation function divides
density values in each cell to its neighboring cells which have a
shared edge with the cell. A weight α(0 < α < 1) is considered
when a density value is divided so that aging of information can
be regarded. Because the edge size of a cell is s(m) and updates
are repeated every t seconds, the diffuse estimation function it-
erates this procedure �t ∗ Vmax/s� times. Figure 2 (b) and Fig. 3
show an example of the update by the diffuse estimation function
and its pseudo-code, respectively.

In this function, Δti is determined based on k which satisfies
the following condition:

αk

2k2 + 2k + 1
≤ ε (1)

Fig. 2 Update by estimation function.

for(step=0; step<floor(t*Vmax/s); step++){

D’_i=D_i;

foreach (d_(x,y) in D_i){

d’_(x,y)=0.2*d_(x,y)*alpha;

d’_(x-1,y)=d_(x-1,y)+0.2*d_(x,y)*alpha;

d’_(x,y-1)=d_(x,y-1)+0.2*d_(x,y)*alpha;

d’_(x+1,y)=d_(x+1,y)+0.2*d_(x,y)*alpha;

d’_(x,y+1)=d_(x,y+1)+0.2*d_(x,y)*alpha;

}

D_i=D’_i;

}

return D_i;

Fig. 3 Diffuse estimation function.

Here, k is the number of iterations by the diffuse estimation func-
tion. The left part in the above condition approximately denotes
a density value in one cell after k steps, starting from a single cell
of which a density value is 1. The denominator is the number of
cells and the numerator means the freshness of the latest recorded
area of presence. Each iteration is executed once in s/Vmax sec-
onds. Therefore,

Δti =
k ∗ s
Vmax

. (2)

3.2.1.2 Limited Diffuse Estimation Function
There are actually movable areas and unmovable areas if

pedestrians walk on roads. Here, we consider an estimation func-
tion which distributes density values in each cell to only movable
areas in its neighboring cells. We do not assume any maps but
exploit a density map to estimate movable areas in this function.

Figure 2 (c) and Fig. 4 show an example of an update by this
limited diffuse estimation function and its pseudo-code, respec-
tively. In this function, for each direction (i.e., up, bottom, left
and right), we calculate the average density of cells to which the
distance from the diffused cell dx,y is less than m cells. Then, if
the result is more than T Hmove, dx,y is divided by the number of
directions which satisfy the condition and diffused to them. In
the same way as the diffuse estimation function, α is regarded for
aging. This procedure is iterated �t ∗ Vmax/s� times.

In the case of the limited diffuse estimation function, the num-
ber of cells which satisfy the condition varies every time it up-
dates a density map. Thus, it is complicated to derive Δti pre-
cisely. For this reason, we use the same rule with the diffuse
estimation function to determine Δti.
3.2.1.3 Hybrid Estimation Function

Because a density map is propagated among nodes hop by hop,
the freshness of information in farther areas is lower. This means
that it is sometimes hard to estimate movable areas in farther re-
gions based on the limited diffuse estimation function as we de-
scribed before. Hence, we combine both the diffuse estimation
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for(step=0; step<floor(t*Vmax/s); step++){

D’_i=D_i;

foreach(d_(x,y) in D_i){

expand_num=1;

sum=0;

for(j=1; j<=m; j++) sum+=d_(x+j,y);

avg=sum/m; right=false;

if(avg >= TH_move){

right=true; expand_num++;

}

sum=0;

for(j=1; j<=m; j++) sum+=d_(x-j,y);

avg=sum/m; left=false;

if(avg >= TH_move){

left=true; expand_num++;

}

sum=0;

for(j=1; j<=m; j++) sum+=d_(x,y+j);

avg=sum/m; down=false;

if(avg >= TH_move){

down=true; expand_num++;

}

sum=0;

for(j=1; j<=m; j++) sum+=d_(x,y-j);

avg=sum/m; up=false;

if(avg >= TH_move){

up=true; expand_num++;

}

if(right) d’_(x+1,y)=d_(x+1,y)+1/expand_num*d_(x,y)*alpha;

if(left) d’_(x-1,y)=d_(x-1,y)+1/expand_num*d_(x,y)*alpha;

if(down) d’_(x,y+1)=d_(x,y+1)+1/expand_num*d_(x,y)*alpha;

if(up) d’_(x,y-1)=d_(x,y-1)+1/expand_num*d_(x,y)*alpha;

d’_(x,y)=1/expand_num*d_(x,y)*alpha;

}

D_i=D’_i;

}

return D_i;

Fig. 4 Limited diffuse estimation function.

function and the limited diffuse estimation function and propose
the hybrid estimation function. In the hybrid estimation func-
tion, for the cells in the proximity of the current position, the lim-
ited diffuse estimation function is used and the diffuse estimation
function is applied to distant areas.

We define the areas around the current position as the cells in-
cluded in Ri, and use the limited diffuse estimation function for
cells included in Ri and the diffuse estimation function for other
cells. Δti is determined according to the same manner as the dif-
fuse estimation function for the simplicity.
3.2.2 Recording Area of Presence

Each element d′x,y after recording node i’s area of presence is
calculated as defined below.

d′x,y =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dx,y +
1
n
, if (x, y) ∈ Ri;

dx,y, otherwise.
(3)

where n denotes the number of elements in Ri. In this formula,
the larger the size of Ri, the smaller the value added to each cell
in Ri becomes.
3.2.3 Merging Density Maps

When a node i receives a density map Dj from another node
j, node i merges Di with Dj. Because each density map does not
include any information which indicates the freshness of the den-
sity information in each cell, we regard a higher density as more

fresh (i.e., newer) information. This policy is based on the obser-
vation that the density in each cell is diffused as time passes and
hence a higher density is likely to be a fresher information. In
merging of density maps, for each cell (x, y), the value d′x,y after
the merging is computed as below.

d′x,y = max{di
x,y, d

j
x,y} (4)

3.3 Getting Node Distribution from a Density Map
The node distribution is obtained from a density map D by

finding cells with the highest density in a greedy fashion. The
algorithm is described below in details.
( 1 ) Find a cell c = (xc, yc) with the highest density dxc ,yc . If

the densities of all cells are zero, terminate the distribution
estimation.

( 2 ) Set an estimated position of a node to a point in c and initial-
ize a set C of cells to c.

( 3 ) If dxc ,yc ≥ 1.0, subtract 1.0 from dxc ,yc and return to the first
step.

( 4 ) Repeat adding neighboring cells of all cells in C to C until
∑

e∈C dxe ,ye ≥ 1.0. Here, a neighboring cell of a cell c is a
cell that shares any border or corner of c. If the algorithm
cannot find any neighboring cells, terminate the distribution
estimation.

( 5 ) Subtract 1.0 from C. For this purpose, we sort cells in C
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into descending order c(1), c(2), . . . , c(n) in terms of the den-
sity. For c(1), c(2), . . . , c(m − 1), c(m), c(m + 1), . . . , c(n), set
dxc(1) ,yc(1) , . . . , dxc(m−1) ,yc(m−1) to 0 where

∑m−1
i=1 dxc(i) ,yc(i) < 1.0 and

∑m
i=1 dxc(i) ,yc(i) ≥ 1.0. Then, subtract 1.0 − ∑m−1

i=1 dxc(i) ,yc(i) from
dxc(m) ,yc(m) , and go to the first step.

Intuitively, the algorithm sorts densities in descending order,
and iterates the estimation of node positions from the cell with
the highest density. At that time, we have to subtract 1.0 in to-
tal from the density map since a density of 1.0 corresponds to
the presence of one node. Figure 5 shows an example of this
algorithm. In Fig. 5 (a), the highest density is 0.3 in the center
cell, which is less than 1.0. Therefore, the densities of the neigh-
boring cells and the center cell are sorted in descending order
{0.3, 0.15, 0.15, 0.14, 0.13, 0.12, 0.11, 0.1, 0.04}. Then, all values
larger than 0.11 are set to 0 since (0.3+0.15+0.15+0.14+0.13+
0.12) = 0.99 and (0.3+0.15+0.15+0.14+0.13+0.12+0.11) = 1.1.
Finally, 1 − 0.99 = 0.01 is subtracted from 0.11, and a node posi-
tion is estimated by choosing a point in the center cell as shown
in Fig. 5 (b).

3.4 Reduction of Communication Overhead
Each node i sends its density map Di every t seconds. The data

size of Di is inversely proportional to the size s2 of a cell and
proportional to the size of the target region. We introduce a tech-
nique which adjusts the view of a density map sent to neighbors,
depending on the number of neighbors, in order to pursue the
trade-off between the communication overhead and the accuracy.

We denote a sub-density map of Di as D̂i hereafter. Ideally, it is
better to send a density map Di every t seconds in order to propa-
gate the density information to distant areas for a higher accuracy.
However, if the density around a node is high, it seems enough to
send density maps from a few nodes in the surroundings because
the information in distant areas is likely to be very similar among
those density maps.

Based on this idea, our technique uses a sub-density map D̂i of
which the size is fixed and smaller than the density map. Every t

seconds, each node i selects either its density map Di or its sub-
density map D̂i to broadcast. The density map is selected with the
probability of 1/Ni where Ni is the number of i’s neighbor nodes.
In addition, node i broadcasts Di only if it has not sent Di in the
last T seconds in order to guarantee that a density map is sent in
a certain period of time.

Fig. 5 Estimation of node distribution from a density map.

4. Experimental Results

4.1 Settings
We have evaluated the performance of the proposed method

using a network simulator MobiREAL [20]. For simulation, we
have used two maps of which the sizes are 100 m × 100 m. Man-

hattan in Fig. 6 (a) which has 4 intersections and roads of 10 m
width, and free-space in Fig. 6 (b). In the Manhattan map, nodes
can only exist on roads, and in every map nodes were deployed
uniformly before simulations. Nodes move along a road with a
constant velocity which is randomly chosen from [0.1, 1.0] (m/s).
Each node changes its direction to the opposite if it encounters a
border, and randomly chooses one of the three directions except
the backward direction if it enters an intersection. In the free-
space map, the random waypoint mobility model [21] with pause
time 0 and the moving speed range of [0.1, 1.0] (m/s) was used.
200 nodes moved according to the above mobility models in each
scenario. The length s of grid cells was set to 2 m. We used the
radio range of 10 m and the network bandwidth of 1 Mbps. We
have assumed the location information Ri is obtained by GPS and
given as a square region of size 49 m × 49 m of which the center
is the real node position. The simulation settings are summarized
in Table 1. We have empirically decided threshold values shown
in Table 1.

Through the analysis of simulation results, we confirmed that
the accuracy of the estimated node distribution is very similar
among the nodes of different initial locations and moving speeds.
Therefore, in the following results, we focus on the density map
of a particular node (this node is denoted as p hereafter) if no
explicit explanation is given. We have measured the positioning
error to assess our method since it is quite intuitive and under-
standable not only for applications but also for people. By mea-
suring the positioning error, we can compare our approach with
the case where GPS positions of all the nodes are collected.

(a) Manhattan (b) free-space

Fig. 6 Simulation maps.

Table 1 Simulation settings.

Parameters Manhattan free-space
estimation function f (D) hybrid (m=10) diffuse
available density threshold T Hd

(node/cell)
0.01 0.015

density threshold ε for location registra-
tion interval (node/cell)

0.002 0.002

sub-density map Tx interval t(s) 2 2
density map Tx interval T (s) 10 10
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Fig. 7 Time vs. estimated number of nodes in a density map.

Table 2 Average number of nodes in an estimated density map.

Estimated # of nodes
Manhattan (21 s∼600 s) 199.788
free-space (21 s∼600 s) 202.720

4.2 Results
4.2.1 Accuracy of a Number of Nodes

Figure 7 shows the estimated number of nodes in the two
maps, along the progress of the simulation time. Table 2 also
shows the average number of nodes in each case. We can see that
these averaged values are very close to the original values. In all
the cases, large errors between the estimated and real node den-
sities were measured before 30 sec. because it is the initial phase
of the simulation where each node had started to collect informa-
tion about the others and the density maps covering whole areas
had not been constructed yet. Therefore, we focus on the state af-
ter 30 sec., where the estimated number of nodes was stable with
small errors from the real density.
4.2.2 Similarity of the Estimated Distribution

Figure 8 (a) and Fig. 8 (b) show the estimated node distribu-
tion of a node p at time 450 sec. and its corresponding real node
distribution in the case of the Manhattan map. By comparing the
real node distribution with the estimated one, we can see some
errors in each node position. However, we can also observe that
the estimated node distribution has dense and sparse areas quite
similar to the real ones. Lines of nodes imply the roads in the
real world and this indicates the estimated node distribution well
captures the real node distribution.

To evaluate the accuracy of the estimated node distribution, we
focus on positioning errors between the estimated positions and
the real positions. Positioning errors can be defined as distances
between nodes in the estimated node distribution and its corre-
sponding nodes in the real node distribution. Note that we never
know the node identification in the estimated distribution. There-
fore, for each estimated position, the nearest node in the real dis-
tribution is regarded as the corresponding node, and the distance
between the estimated position and the real position of the cor-
responding node is used for calculating positioning errors. Here,
each node in the real distribution is selected as a corresponding
node of an estimated position only once so as to evaluate posi-
tioning errors properly.

Figure 9 (a) and Fig. 9 (b) show averages of positioning errors
(denoted as a solid line) in each simulation map. The averages of
positioning errors in the both maps fluctuate due to the mobility.
When the node p is in the proximity of the intersections or the

(a) Estimated (Manhattan)

(b) Real (Manhattan)

Fig. 8 Real node distribution and estimated node distribution of node p (at
450 sec.).

center of the map, averages of positioning errors will be smaller
because the node p can receive fresher information from different
directions in such areas efficiently, and the accuracy of the density
map of node p can be improved. Table 3 shows the average of po-
sitioning errors throughout the whole simulation. We can see that
the average positioning error in the Manhattan map is about 10 m
and that in the free-space map is less than 10 m approximately.
These results mean that the proposed method can correctly esti-
mate the node distribution in terms of the street level considering
the road width of 10 m and the road segment length of 40 m in
the Manhattan map. From the above results and observations of
the average positioning error as a quantitative criterion, we can
confirm the effectiveness of the proposed method.

4.3 Reduction in Communication Overhead
In our technique, the target region is divided into cells. The

number of cells is 2,500 in the default simulation setting, and we
assume that each cell requires 4 bytes. Then, the data size of a
density map is 10 Kbytes. Each node sends its density map peri-
odically and hence the communication overhead may be large. To
reduce this communication overhead, we use a sub-density map
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(a) free-space

(b) Manhattan

Fig. 9 Time vs. average positioning errors in estimated distribution of node
p.

Table 3 Avg. positioning errors in estimated node distribution of node p.

Manhattan free-space
w/o reduction 10.03 6.50
w/ reduction 10.89 7.39

Table 4 Comparison of average bandwidth per node.

Manhattan free-space
w/o reduction (kbps) 40 40
w/ reduction (kbps) 16.16 20

as we mentioned in Section 3.4.
In order to see the effect of this scheme, we evaluated the

amount of traffic. The result is shown in Table 4. We could
confirm that our scheme could reduce approximately 50–75% of
the original traffic.

From the results shown in Fig. 9 (a) and Fig. 9 (b), we can see
the average of positioning errors increases as time elapses in most
cases with message reduction (denoted as dotted line), compared
with the cases without message reduction. The second row of Ta-
ble 3 also shows the averages of positioning errors with message
reduction are 109% and 114% as much as those without mes-
sage reduction in the Manhattan map and in the free-space map
respectively. Obviously, there is a trade-off between the commu-
nication overhead and the accuracy of an estimated node distri-
bution. Therefore, it is important to determine the parameters on
the communication appropriately.

5. Discussion

The proposed method uses a cell matrix to represent a density
map. The cell matrix facilitates the computation like merging
and the mobility estimation, while the data size may be large,
depending on both the region and cell sizes. In WSNs, there is
a method to build a contour map of the data sensed by wireless
sensor nodes [9], [22]. Some other possibilities use some encod-

ing technique to compress the map. We are trying to clarify their
advantages and disadvantages in terms of the trade-off between
the computation overhead and the data size.

We also discuss another important issue on the position infor-
mation. In the proposed method, each node may provide its po-
sition information with some error range. This has the following
two advantages, (i) robustness to position errors caused by the
GPS or other measurements such as position estimation methods
like Sextant [23] and UPL [15] due to their likelihood estimation
in range-free localization, and (ii) privacy protection in which in-
tentionally randomized positions obscure the true position.

The maximum speed Vmax affects the estimation accuracy.
If we use overestimated maximum speeds, the accuracy de-
grades because the estimated density spreads faster than the real
speeds. In this sense, the maximum speed used in the simula-
tion is overestimated since we have used 1.0 m/s as the maximum
speed although the real speeds uniformly distributed within [0.1,
1.0] (m/s). Nevertheless, our approach has achieved a reasonable
performance.

6. Conclusion

In this paper, we have proposed a method for pedestrians to
self-estimate the node distribution in their proximity in real-time
using ad-hoc wireless communications among these nodes. We
have conducted simulation experiments to see the accuracy and
the communication overhead of the proposed method. Through
quantitative evaluation by measuring positioning errors, we have
confirmed the average position error is less than 10 m, which is
comparable with GPS errors. This result indicates our method
estimates the node distribution accurately.

One of our potential application domain is personal naviga-
tion. In huge shopping centers and fireworks festivals (in the case
of Japan) in which many people get around, observing their loca-
tions through their mobile terminals will be helpful not only for
commercial use but also for safe navigation toward exits.

Assuming these potential application examples, we are plan-
ning to conduct simulations in more realistic environments, to
determine appropriate parameter settings and to validate the use-
fulness of the method. Furthermore, the autonomy of the proto-
col is our important goal where protocol parameters like message
transmission intervals can be autonomously converged into ap-
propriate values in each cell depending on its neighborhood den-
sities for zero-configuration.
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