
Journal of Information Processing Vol.21 No.1 53–66 (Jan. 2013)

[DOI: 10.2197/ipsjjip.21.53]

Regular Paper

Online Kernel Log Analysis for Robotics Application

Midori Sugaya1,a) Hiroki Takamura2,b) Yoichi Ishiwata3,c)

Satoshi Kagami3,d) Kimio Kuramitsu1,e)

Received: March 5, 2012, Accepted: September 10, 2012

Abstract: Humanoid robot systems are composed of an assortment of hardware and software components, and they
have complex embedded systems and real-time properties. These features make it difficult to isolate or to identify a
fault in a short period of time even though such systems are expected to recover quickly in order to avoid any harmful
behaviors that may cause harm to the users. This paper presents a new technological method for detecting errors in
real-time applications online through the technique of online kernel log monitoring and analysis method. The contribu-
tions of approaches are that we present a method for kernel log analysis based on a state transition model of scheduling
tasks, and apply it to the kernel logs to detect anomaly behavior of real-time tasks. In order to reduce the analysis
overhead of huge volumes of data, we propose a new system that places the kernel log analysis engine on a separate
core from the one that runs the kernel log monitoring process. Based on this system, we provide a framework for
writing analyzers to detect errors incrementally. In our system, these components work together to solve the problems
highlighted by root cause analysis in robotic systems. We applied the proposed system to actual robotics systems and
successfully detected several deviated errors and faults that include a serious priority inversion that was not detected in
over 10 years of operation in the actual operating system.
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1. Introduction

Today’s diverse and sophisticated embedded systems, such as
the humanoid robot, are connected to networks where they collect
a massive amount of information for use in providing advanced
services. These services are provided through interaction with
physical environments, such as human communications, and ac-
cess to remote databases through network connections. They are
updated frequently due to the addition or removal of devices or
components. Subsequently, it is difficult to achieve dependabil-
ity in these complex, networked systems [17], [27], [31]. These
advanced robotic systems are generally supported by real-time
operating systems that provide precise periodic execution of real-
time applications. To support accurate and precise periodic exe-
cution, they provide special APIs for delivering timer, real-time
scheduler and priority lock mechanisms in a predictable manner.
Moreover, lots of complex human interaction software works in
conjunction on the system. This makes it difficult to detect errors
and their causes. Detecting errors and faults for quick system
recovery is important for providing a stable robotics service for
users. The requirements for fault detection in humanoid robotics
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are discussed, and summarized as follows.
Firstly, our system must be support its interaction with hu-

mans so that any faults or errors should be quickly detected and
therefore avoiding any dangerous threats to the user. Secondly,
our system should detect faults in real-time systems without in-
terfering with the execution of these tasks. Thirdly, any mod-
ifications to the applications are likely avoided by our system,
since robotics applications can be implemented with a variety of
languages. And finally, the robotics applications can be easily
added/removed from the system during development to adjust the
movement of robotics. To implement these changes, the system
should also be supportable in that it needs to be able to adapt to a
changing environment.

There are lots of existent approaches that focus on detecting
problems such as timing and concurrency, in complex real-time
systems. There are also a variety of related techniques for un-
covering software faults using static program analysis and pro-
viding runtime detections [21]. In these approaches, static ap-
proaches [11], such as source code analysis will not satisfy the re-
quirement of detecting timing problems and we could not predict
all of the feasible paths statistically. Compiler-based approaches
[24] are strong at detecting faults, however, they have a high cost
when applied in runtime and depend on the application imple-
mented languages. Runtime verifications check whether the pro-
gram violates a programmer-specified safety property [26]. They
generally focus on creating fault and error models to detect the
targets. In these approaches, developers generally write asser-
tions in programs for detecting runtime errors [9]. However, the
programmer-written assertions are not very effective in providing
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high coverage of runtime errors [25]. Pattabiraman et al. present
an automated procedure runtime error detection mechanism [22]
outside the applications to avoid writing assertions. This idea is
effective since our system also believe that the detection mecha-
nism should be outside of application.

Based on this idea, and also satisfy the robotics’ requirements
that we presented previous paragraph, we will propose a online
kernel log analysis system.

The purpose of the presented system is both to support debug-
ging for application developers, and for the actual operation of the
robotic system. To achieve this purpose, we consider using ker-
nel log as our general approach, and apply it in online kernel log
analysis framework. Online support allows for faster detection of
faults, while kernel log supports no modification of application.
Our current architecture and tools support log analysis without
disturb real-time processing. At the kernel level, behavior of ap-
plications is abstracted as a process, and then it can detect error
behavior without modification of application. However, in gen-
eral, kernel level detailed monitoring costs more. Therefore, we
applied a cost effective tool that generates kernel logs with a con-
stant low overhead [6], and separate the analysis cost to reduce
overhead in the target system with proposed architecture.

In this paper, we describe the details of our contributions by
showing actual examples of our prototype architecture. We suc-
cessfully implemented a prototype system on ART-Linux, which
provides a hard real-time extension on Linux kernel and multi-
core support. By using our proposed system, a non-experienced
engineer was able to find a serious priority inversion’s fault that
was not detected for over 10 years in the actual operating robotics
system by using our proposed system and associated tools.

The paper will be constructed as follows: In Section 2, we
will introduce the related works for this area. In Section 3, we
will describe the proposed system architecture, and in Section 4,
we will describe the method to analyze kernel logs, in Section 5,
we will present a design and actual log volumes of the system,
in Section 6, we will show the log analysis framework that ana-
lyzes kernel logs. In Section 7, we will show experimental studies
based on actual cases using simple robotic systems. Section 8 will
show our evaluation, then Section 9 will conclude the paper.

2. Related Work

Runtime software monitoring has been used for profiling, per-
formance analysis, software optimization as well as software
fault-detection, diagnosis and recovery [5]. There has been a lot
of work in the domain of on-line monitoring in distributed sys-
tems [3], [7] used resource parameters, system calls to detect per-
formance bottleneck or overheads in some component with low
overhead. Combined with the component-based approach, and
provided it’s framework, these approaches are effective to spec-
ify the component or path that contains a fault. These approaches
are effective, however, it might impose to use specific languages
and methods that coincide with the designing of the applications.

To detect more specific software faults, such as concurrent bug
and deadlocks, in general and concurrent programs, there are var-
ious approaches used [8], [14]. In distributed domain, both of
static analysis [19] and runtime analysis [20] are presented. Run-

time analysis [20] approach, generally, low level debugging in-
formation is needed for detecting faults. To reduce the runtime
overhead, Ref. [20]’s Java-based tools that automate to collect de-
bugging logs from each server and send it to debugger servers.
This makes it possible to reduce the debugging cost using low-
bandwidth line. Although our approach may be similar to this
approach, the differences are that our focus is placed on real-time
software.

In real-time systems, statically scheduled systems [32] are gen-
erally considered. In it, task synchronization was statically de-
cided before the program runs that task parameters and con-
straints. If these parameters and constraints are known previously,
the scheduling is guaranteed to satisfy safety and liveness prop-
erties. However, these days, real-time systems are constructed by
general-purpose operating systems that cannot give these param-
eters ahead of time. These real-time systems need to treat thread
priorities in a more flexible manner by using protocols like pri-
ority inheritance [28], used to prevent priority inversion. These
threads work for a variety of purposes and it is difficult to predict
their lifetime beforehand.

For detecting faults in complex real-time systems a variety of
tools are presented: GRASP is an integrated tool that can trace,
visualize and measure the behavior of real-time systems [10]. It
provides plug-in infrastructure for the μC/OS-II real-time oper-
ating system; however, it does not take into account the per-
formance of the real-time system or log volume. It focuses
mainly on detecting the performance of timing behavior such as
worst/average/best execution cases. The cause of a failure will
not be detected with this method. RESCH focuses on a more
general operating system such as real-time Linux [2], it focuses
on the real-time scheduler and it’s scheduling method. Our sys-
tem can treat more general errors and faults that can be detected
from logs. No other approach that provides whole framework for
online log analysis with satisfying performance and generosity.

A variety of software testing and simulation methods are pre-
sented and developed for improving the quality of software.
These methods are generally used to detect faults before the sys-
tems or products are shipped out, because their approaches pro-
duce an extra load on the system that will be a burden during
the operational phase. Dynamic program analysis also provides
functions to check the runtime behavior of software in the devel-
opmental phase. However, the method is different from the test-
ing and simulations in that they need to consider how to minimize
the effect that instrumentation has on the execution of the target
program because they need to consider the operational condition
of the target program that will be running in the operational phase.
Our approach will be the kind of dynamic program analysis.

All three of these approaches are generally used in the devel-
opment phase. However, as a dynamic program analysis, our ap-
proaches focus more on using in the operational phase, and have a
purpose not to modify source code of applications. As described
in the introduction, the robotics applications are developed by
a variety of programing languages. To check the real-time at-
tributes of application, we did not select the approach that insert
debugging code for application, but used a kernel logging that
is effective for detecting faults from behavior’s of applications.
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As a dynamic program analysis, we need also consider to reduce
the runtime cost, we presented the way in this paper in following
sections.

3. Online Kernel Log Monitoring and Analysis

3.1 Proposal
Nowadays, humanoid robots that require high-performance

embedded systems are expected to be flexible to allow for human
instructions and be responsive to environmental changes. For
these systems, proactive avoidance and quick reactions to failures
are required since these systems have to interact with humans.

As discussed in the previous section, there are four require-
ments for the design of fault detection systems. To satisfy the re-
quirements, we present online analysis system for reducing time
for detecting faults. To achieve online analysis, we propose an ex-
ample architecture of log-transferred system. The information of
application is collected from kernel for generality, then analyzed
in online. Online analysis can reduce the total logs that contains
the unnecessary information because it can analysis in online and
store only the results, and time to write data to storage. We pro-
vide these systems on a log analysis framework.

3.2 Design Purpose
Based on the previously mentioned idea, we developed online

analysis system with the considerations based on the following
three design purposes:
• Generality: Log analysis is a popular technique used to find

evidence of attacks and patterns of performance of the sys-
tem [1]. We propose a kernel log analysis method, which
can find application behavior errors. The behavior of appli-
cations is abstracted as transition states of a task from the
viewpoint of the kernel. It is then possible to make generic
application’s behavior model without modifying the appli-
cation. We compare the patterns of transition states of ab-
stracted task model with transitions patterns recorded in the
kernel log.

• Performance: To detect erroneous behavior of a process
from the kernel log, detailed information is required. Usu-
ally, this increases the cost of monitoring. We separate mon-
itoring and analysis functions in order to reduce analysis
overhead from target. To achieve this, we present a multi-
core architecture to reduce the cost of transferred logs. Com-
pared with sending it to the other host through a network, it
was 40 times faster to transfer logs.

• Log Analysis Support: To adapt to the changing environ-
ment, we provide a log analysis support framework that can
easily add analysis script as a user mode program. We sup-
port various log formats and libraries to reduce the overhead
of developers. Our solution is simplified by focusing on log
file analysis.

The complete architecture which we present is illustrated in
Fig. 1. We assume multi-core system because of humanoid robot
needs powerful machine in limited space. Moreover, they require
both of real-time and non real-time application that works hand
in hand to provides services. These applications sometimes needs
close cooperation, so that the multi-operating system on multi-

Fig. 1 Complete architecture.

core is expected to provide efficient environment for their appli-
cations. In the figure, you can see on the left target system, real-
time applications are running on real-time operating system on
a core. In this operating system, kernel-monitoring mechanisms
that collect logs of task scheduling and related parameters are
running. These monitoring logs are then transferred to a separate
core for the analysis process. On the other processor, a general-
purpose operating system works to store the transferred log that
was passed in from the monitoring core and checks the invari-
ant of real-time task behaviors in kernel logs. If there are any
anomaly behaviors on the task, it will report the path and errors.

In the following sections, we first present a kernel log analysis
method and then we introduce the separation design architecture
and log analysis support framework. Finally, we show the ex-
perimental studies of online kernel log analysis applied to actual
robotic systems.

4. Analysis Method

To achieve the first design purpose, we develop a general model
that is based on the transition state of a real-time task by using the
information from the kernel. Once we build a model of tasks in
the kernel, we analyze the logs so as to determine the normal or
abnormal behavior of the task. In this section, we describe the
kernel log analysis method.

4.1 Kernel Log Analysis
As we described previously, a behavior of an application can

be considered a task, which is scheduled as an abstracted entity in
the kernel. The state of the task will be changed according to the
scheduling procedure functions that are called by kernel to switch
the tasks for execution. We can consider that the task’s schedul-
ing sequences for functions can show an abstracted behavior of
an application. Based on this, we developed the following two
models.

First, we assume to use information of kernel, which is an op-
erating system’s view, and the behavior of tasks is modeled as
transition states. Through functions, the state of tasks is changed.
We define functions and transitions as the labeled transition sys-
tem in Section 4.2.1. As this transition is finite for each task, we
can apply this model for detecting an incorrect transition com-
pared with the correct transition state. Then, we add the time
element for the transition state. Based on the difference between
the time of scheduling tasks, we can detect a type of faults which
arose by the delaying of scheduling in Section 4.2.2.
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Fig. 2 Transition model for real-time system.

Finally, we consider multiple tasks transition states. How-
ever, multiple tasks transition states are too complex to express
the problem of competitive shared resource problems. Therefore,
we omit the transition, and use only the order of tasks (priority),
shared resource information (lock) and time.

In Fig. 2, we define a finite-state machine mechanism of a real-
time task on an operating system. Based on the actual operating
system scheduling procedure, we developed the following mod-
els. (1) State transition model of a scheduling task, (2) Add a
transition time to the above conditions, (3) Competitive resource
for multiple tasks.

4.2 Task Models
4.2.1 Transition of Single Task

In our model, a labeled transition system is a tuple (S , L,→)
where S is a set of states. L is a set of labels. L is a trigger
function that invokes the next state of the transition.

→⊆ S × L × S (1)

is a ternary relation. In Fig. 2, the right-hand picture shows the
transitions. If p, q ∈ S and a ∈ L, then (p, a, q) ∈→ is usually
written as p × a→ q. In our model, S and L are set of
• S = {NonRTRunning,NonRTS leep,Running,Wait,

S uspend, Blocked}
• L = {art enter(), art wait(), art wakeup(), schedule(),

dispatch(), art exit()}.
For example, if a running real-time task in state Running in-
vokes function art wait(), we can write it as a ternary relation
Running × art wait()→ Wait.

Our verification is to check the sequence of recorded states in
the log data. The sequence of transition states in our labeled tran-
sition model is checked. If it corresponds to a valid sequence of
transition states, the task did not take an improper state. If it dose
not correspond to a valid sequence of transition states, the task
possibly took an improper state.
4.2.2 Timing Conditions

Based on the transition state of scheduling tasks, we propose
a checking method with a time property. We consider that each
state has time information. In such a case our labeled transition
system is a quadruplet (S ,T, L,→) where S is a set of states, T is
a set of times, L is a set of labels and

→⊆ (S × T ) × L × (S × T ) (2)

is a relation. ((p, t1) × a → (q, t2)) ∈→ is usually written as
(p, t1)→a (q, t2). Using time information, we can verify the more
concrete scheduling properties.

Fig. 3 Example of generated log.

5. System Architecture

5.1 Example Log Volume
To develop a log analysis system, first we need to consider how

many logs are needed in order to find errors. To understand the
volume required, we collected an actual log by assuming that a
task will miss its deadline due to an API misuse. We used a tracer
named LTTng (Linux Next Generation Trace Tool Kit) [6]. The
code is inserted in to key places in the kernel. One is placed
before context switch of process, the second is inserted in hold-
ing spin lock for avoiding resource contention, the last is in point
wake up in the kernel. We apply the patch to real-time OS, and
set new probes according to the information received to spec-
ify the problem, such as the {recording time, function,
state (prev/next), id, priority} from the kernel log in-
sertion points in Fig. 3. We then developed a fault program and
ran it with the collected logs from the kernel.

We collected around 25 MB of logs per second, which equates
to around 245 bytes per entry. This means that about 150 MB per
minute, 9 GB per hour. If we find more general problems in real-
time tasks, priority inversion and context switch misses, we need
to consider how to store and analyze these logs.

5.2 Prediction of Log Transfer
We collect logs from the application running on the target core

and transfer it to the specified core that is exclusively assigned to
log analysis by the log analysis method. With this architecture,
we need to consider the log volumes that need to be transferred to
the other core. If the output rate of logs exceeds the transfer rate
of logs, output logs might be truncated by overwrites. We have
developed a formula to calculate the log-generation rate, and ap-
ply it to the actual log generating measurement. We then compare
the calculated result with the actual log measurement.

Generally, a real-time task will work periodically. We thought
that if we set probes in a real-time task’s periodic execution, we
can estimate the log volumes which they will generate in the while

loop. Using this idea we set up the prediction model for the log
generation rate.

We assumed a fixed priority scheduling of periodic tasks, ac-
cording to the periodic task model. A task is presumed to work
in periodic execution in the while loop. In the periodic execu-
tion, the ith probe recorded logs. We define the amount of data
[bytes] that is recorded per probe as di. It will be different for
some probes, so we define the ±Δdi for an additional parameter.
To calculate the total number of logs within a periodic execution,
we define ci, which is the number of probes that are inserted in a
periodic execution. We think that the actual number depends on
the probability pi that the named probe set is totally dependent
on their behavior of the task in the periodic execution. We define
the total number of the probes as n. The total number of gener-
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Fig. 4 Comparison of CPU utilizations.

ated logs is calculated using the formula
∑n

i=1 pi · ci · (di ± Δdi).
By applying the formula, we can calculate the total number of
generated logs per periodic execution of a task. We assume that
real-time tasks are worked more than once in this system, so we
define the total number of real-time tasks as m, each of them are
presumed to work in periodic execution. We define the period ti
as representing the periodic time in which the task is released for
execution. We can calculate the rate of the generated log using
the following equation (3).

m∑

i=1

n∑

j=1

(pi j · ci j) · (di j ± Δdi j)/ti [Byte/sec] (3)

To understand the effectiveness of this formula, we calculated it
with the actual measured parameters. There are seven problems
in this case (change state, f unc trace, syscal exit,

syscall enter,mm.page f ree,mm.add to page cache,

mm.remove f rom page cache).
The probability will be set to one because we want to know
the worst-case volume of logs. The period of all the tasks are
1 ms. Then, we calculate the results using the formula as follows.
62.4∗241/1+19.8∗208/1+19∗131/1+19∗170/1+11.3∗136/1+
0.6 ∗ 146/1 + 0.6 ∗ 152/1 = 26.59 [MB/sec]. The result was very
close to the actual measured parameter (25 MB/sec), therefore we
can confidently use the formula to judge whether or not it will run
within the transmission capacity of the system.

5.3 Low-cost Monitoring Architecture
To achieve performance by low-cost monitoring, we insert a

minimum number of probes into kernel at only a few points.
From these points, a kernel monitoring module collect logs. This
monitoring overhead is around 5% in an average 1 GHz robotics
backend machine, and constant without big jitters. It will be ac-
ceptable in real-time systems, since real-time systems generally
dislike unpredictable overheads. The CPU consume time of anal-
yses will not constantly consume CPU resources because it de-
pends on the type of information and analysis algorithms and
patterns. To reduce the jittered overhead from target real-time
system, we assume the analysis part will be moved from the tar-
get CPU core to other core.

Fig. 5 ART-Linux for multi-core architecture.

In Fig. 4, the simple evaluation that compares the CPU utiliza-
tion in the analysis between using single core and multi-core ar-
chitecture. When the analysis component began to analyze ker-
nel logs, the CPU utilization began to increase. In the case of
a single-core, the analysis cost directly affected the target CPU,
while in case of multi-core, the analysis costs were removed from
the target CPU. We placed the lowest priority task to take care of
kernel monitoring logs and send it to the next core through the
shared memories. Actually, our system can send data to the other
host through the network, however, it is 40 times slower than us-
ing shared memory. Shown in Section 8.3. Based on this evalua-
tion, we propose this system architecture that will be constructed
with multi-core or distributed architecture for that purpose.

5.4 Multi-OS on Multi-Core Architecture Basement System
Since our expected log volumes are so huge, it is not practi-

cal to store the logs in other hosts and use huge amounts of net-
work bandwidth, especially for the embedded systems. Instead,
we need to consider the overhead of the analysis because a real-
time system is sensitive to the scheduling of the overhead. We
consider that once the cost is predictable, it will be accepted.

Based on this idea, we propose to employ multi-OS on a multi-
core architecture with one of the cores assigned exclusively to the
log analysis using ART-Linux with Asymmetric multi-processing
(AMP). The user can install a different operating system on each
processor. To achieve the hard real-time performance, ART-
Linux will apply real-time scheduling of the local scheduler; this
means each core has a different operating system. We install
ART-Linux on the Bootstrap Processor (BSP) as the first oper-
ating system to boot up, and install Linux as a general-purpose
operating system on the Application Processor (AP).

These architectures not only support the real-time task’s pre-
cise periodic execution, but also separate the overhead of log
analysis from the level of hardware. To facilitate the implemen-
tation of a multi-core based operating system, we chose AMP.
This means that, with few exceptions, each kernel will not share
the physical memory, processor or devices. Our proposed archi-
tecture is shown in Fig. 5. Physical memory is divided, without
overlapping areas, into different operating systems. Part of the
physical memory is used to share memory between the operating
systems. As with physical memory, processors are assigned to
each kernel. These assignments are done in a static manner; it
will not be changed during execution time to achieve basement
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dependability. However, part of the device assignment can be
changed dynamically during execution time because the kernels
will not access the same device concurrently.

The reasons for the static assignment of multi-core based
multi-operating systems are as follows: Firstly, we need to con-
sider the exact hard real-time performance that is required in
robotics systems. Because robotics systems are based on the ma-
chine controlling systems for each part, to control these parts with
a realistic speed, at least microsecond control resolution is re-
quired for stopping and starting the arm and wheels correctly.

Secondly, in recent advanced robotics systems, the demand for
high-performance computing has increased. Calculations such
as image and sound analysis require high processor speed and
band bandwidth for the system. Machine leaning and intelligent
control also strengthen its requirements for the high-performance
computing.

Thirdly, safety and accountability requirements in this area are
increasing these days. When an accident happens, the system
should store some evidence to explain the problem to their cus-
tomers. To achieve this, we need to assign a core to store the log
and evidence in the system. To meet the demand of these require-
ments, we present the AMP type of multi-core operating system
and log analysis architecture.

The target real-time OS will only be allowed to consider the
constant overhead of the log transfer task. Our proposed system
architecture is demonstrated in Fig. 1. There are several multi-
core architectures available for real-time systems, both for busi-
ness use and for free. QNX [23], SPUMONE [15] provides a mi-
crokernel architecture that supports both real-time and non real-
time operating systems and applications. These architectures will
be flexible and used without modification of the operating sys-
tems; however, the message-passing overhead will not be ne-
glected. There are other approaches that directly map operating
systems on each of the cores [29]. This approach will benefit per-
formance without the VMM layer. However, it depends on the
core processor architecture. Currently, we work with ART-Linux
that will support hard real-time applications, work on the general
x86 processor and have facilities to use shared memory through
file systems [12]. We apply ART-Linux to our online log analysis
architecture for these reasons.

6. Log Analysis Support

6.1 Problems Log Analysis
To support log analysis, we present a stream analysis engine

framework that support to analyze a log easily. The application
programmer should not bother the diversity of log format and de-
sign of analyzers and it’s management. This framework provides
the basic facilities to analyze logs. This framework is applied for
not only the kernel log, but also user level logs are easily ana-
lyzed.

As we described, we used a log analysis technique for auto-
matic error or fault detection. However, we need to consider sev-
eral problems in order to achieve quick adaptation to the faults.
Log analysis is a very popular technique; however, there are still
problems. To achieve quick adaptation with log analysis, the fol-
lowing problems must be considered: one is the variety of log

Fig. 6 Stream analysis engine overview.

formats that developers need to treat during the input process. Ac-
tually, in the web area, log formats are defined by the RFC 1413,
2326 etc. Log management is needed for dealing with large vol-
umes of computer-generated log messages for a standardized text
format. However, these logs need to be integrated with the unified
format. The second is lack of supporting libraries for improving
the productivity. When a developer develops an analyzer, they
need to understand what type of errors or anomalies should be
detected. It depends on the target problem. Most of the codes are
for detecting errors such as writing text filters and formatting the
text for reporting but sometimes they need to write the network
connections to send the result to the other host. We consider that
these problems come from the lack of log analysis support frame-
work.

6.2 Analysis Framework
To solve the problems, we propose the Stream Analysis Engine

(SAE) which aims to focus on adding the log analysis code. To
achieve this, SAE will provide supports for the analysis with the
following processes. First, it supports to receive logs as an in-
put stream from probe points in underneath system. Second, the
appropriate analyzers that was written by developer analyze the
sequence of events and collect their results. Third, the converter
converts the results from the analyzer for the suitable format for
visualizers. Finally, the sender sends the result for the other tools
such as visualizer or storage host. We illustrated the processing
functions in Fig. 6. With these log processing support libraries, a
developer can focus on the development of analyzer.

To write an analysis and allow the developer to analyze code
more easily, DTrace [4] and System Tap [13] provides the C-like
scripting language. The purpose of these tools is to provide a
scripting language where the syntax is familiar. For the same rea-
son, we apply the Konoha scripting language [16]. The syntax
is similar to C and Java where developers use the object oriented
interfaces and methods for the analysis. Konoha provides type in-
formation for scripting and it will be safer than the other scripting
languages that dose not give the knowledge of type information.
Our team also extended the Konoha library to provide API that
accesses a log stream transparently without dependency on for-
mat, methods for the analyzer, and binding the network socket
interfaces for our script, so that log is treated transparently with
the output streams.
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Sample source code [ sample analyzer.k ]

1 include "sae.k";

2 LOGFILE = "/path/to/sample.log";

3 class Analyzer {

4 Analyzer() {}

5 @Static String[] filter(String input) {

6 /* filter method */

7 }

8 @Static Map[] analyze(String[] input) {

9 /* analyzer method */

10 }

11 void main(String[] args)
12 {

13 StreamAnalysisEngine sae =

14 new StreamAnalysisEngine();

15 Analyzer a = new Analyzer();

16 Func<String=>String[]> sample_filter =

17 delegate(a, filter);

18 Func<String[]=>Map[]> sample_analyzer =

19 delegate(a, analyze);

20 sae.add("sample", sample_filter);

21 sae.add("sample", sample_analyzer);

22 sae.start("sample", "LOG:" + LOGFILE);

23 }

6.3 Implementation of Stream Analysis Engine Compo-
nents

We developed SAE, and it provides the simple API for the
developer who will develop or extend their analyzer such as
add(), start(), convert(), stop(). SAE also provides the filters for
extracting information from logs with Regex and macros that they
can personally define. The SAE consists of four components:
• Receiver: It treats the input data from the logs. In our frame-

work, the SAE objects contain all of the metadata from the
log stream that they read, the analyzer that it starts with
and the socket with which it connects to the viewer. SAE
provides the start() and stop() mechanism that controls the
reading and exit from the logs.

• Analyzer: It receives logs from Receiver and applies the ana-
lyzer algorithm that was written by the developer, then it re-
ceives the result. The detailed procedures are as follows: De-
velop filter method that extracts required events from the log
streams, analyze method that applies to the filtered data and
then analyze the class that contains these two methods. After
creating an example of SAE, the filter and analyze method

should be added to the SAE object.
• Sender: It sends log analysis results to other hosts such as

some databases or a viewer. The amount would be much
smaller than the input log stream. The cost of sending the
result to the other host is not high. We will show the cost of
sending the result in the evaluation.

• Converter: It converts the result of the analysis to other pro-
tocol formats in order to apply the result stream that will be
decoded by the other host easily. convert method will encode
the data according to the given protocol.

We will show the Analyzer Class in the sample code. In the
code, the path to the log file is defined as LOGFILE. Then, the
developer uses the f ilter method to extract the necessary data
from the log stream.

The developer can use this typical method to extract the nec-
essary data. The analyzer method can be applied to check the
state according to the transitional state of a task. If the analyzer

method finds a faulty condition, it will return the fault. Finally,
the results and codes from the analyzer method are passed to
SAE. In the main function, an instance of SAE is created and
added to the f ilter and analyzer method. To define the f ilter and
analyzer as delegator, these instances can be called together. In
the sample code, there is no method for converter because it as-
sumes that you use the default protocol. SAE will detect errors
and faults. To shorten the debugging time, the SAE will take into
account the faults and errors that are reported by the log analysis.

7. Case Studies

Based on those transition models, we detected actual faults in
the experimental system. In the following case studies, firstly we
show the actual problem in the robotics system and then show the
sequence based on the finite-state machine.

7.1 Target System
As a base operating system, we choose ART-Linux. ART-

Linux is a real-time supported operating system based on
Linux. It provides special APIs for achieving hard real-time for
Robotics [12]. A real-time task will be scheduled according to
the general model of the task’s transition state. However, they
always schedule before the non real-time task using a static pri-
ority scheduler with a simple priority driven algorithm [18]. To
classify the algorithms, some of the real-time supported operat-
ing system will prepare the special scheduler for real-time tasks.
In our case, we used a general real-time operating system model
that has three queues such as Real-time Task Queue, Non Real-
time Task Queue and Wait Queue. Generally, real-time tasks
are transferred between these queues. At that time, the model of
the transition states are shown in the right-hand square in Fig. 2.
The model is a projection of the actual real-time system behavior.
Based on the model, the logs are analyzed automatically.

7.2 Experimental Environment
The system environments are the following: In the main robot

system, the logging real-time operating system is installed, it is
a multi-core and multi-operating system as discussed above. The
system can support hard real-time tasks for controlling the servo
controller. On the robot, there are three main types of applications
at work. One is the servo controller that controls the servo task
to move around the floor. The second is a robot camera, which
will detect obstacles in front of it by image histogram analysis. If
the camera finds an obstacle, it will look around. The third is the
other tasks that work on the system.

Normally, during the servo provides periodic operation, the
robot will go straight. If the camera finds an obstacle, it looks
around. Conversely, in anomalous behavior, a delay will occur
because the servo will not provide the correct periodic operation.
Also, the camera will not find the obstacle correctly so the results
will show a conflict.

We will present the following typical examples of fault, all
have different causes of faults:
• Misuse of API: Real-time OS provides the specific API for

utilizing the real-time support. It is required to check that the
invocation of APIs are correct, based on the specification.
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• Response time, scheduling delay: Real-time OS should sup-
port precise and accurate execution of periodic tasks. It is
required to check for errors and variance of delays.

• Priority inversion: Treatment of a common resource between
high priority and low priority tasks is required for a real-time
OS with PI mutex or other support. It is required to check
that it works by using the popular problem of priority inver-
sion.

7.2.1 Fault 1: API Misuse
In our robot, a servo control application (real-time task) needs

to work as a real-time task. In our model, the API for hard real-
time scheduling is art wait. It provides the periodic execution
with a precision timer that can control the task under 1 ms. In
our case, a developer used a non-real-time API in Linux (library
API, usleep()) to control the servo application. It makes the servo
perform a periodic execution every 4 ms because of the general
periodic timer control. Consequently, the servo task worked at 1
/ 4 of its potential.
• Case 1: General API Uses: To avoid this type of problem,

we need to check that the correct sequence of API is invoked
by the real-time task. To achieve this purpose, we firstly
define the correct sequence of the API and transition state
based on Eq. (1),
C1 = �(NonRTRunning) × art enter() → (Running)� &
�(Running) × art exit()→ (NonRTS leep)�
This is the general API sequence. We can check the se-
quence of the state in log. If we find the counter example
as an improper sequence pattern, it means that the task did
not exit normally and we can further investigate its cause.

• Case 2: Periodic task Scheduling (Highest Priority):
Compared to Case 1 and Case 2, we can verify a more de-
tailed sequence of events for the task. In Case1, it only
checks the art enter() and art exit() transition of the task,
however, we need to focus in more if we want to be sure
that the behavior of the periodic task was not correct. To
find Fault 1, we define the additional sequence as Case 2 for
detecting the problem. We define the transition sequence as
follows:
C2 = �(Running) × art wait() → (Wait)� & �(Wait) ×
art wakeup() → (S uspend)�& �(S uspend) × dispatch() →
(Running)�.
We use this sequence to find the pattern from the log. If the
task has the highest priority, this sequence is correct because
if it does not, we need to consider the blocking sequence in
the definition.

• Case 3: Periodic Task Scheduling If the task does not have
the highest priority, we need to consider the blocking se-
quence between the periodic executions. In this case, we
need to define an additional transition sequence C3 as fol-
lows:
C3 = �(Running)× schedule()→ (Blocked)�& �(Blocked)×
art wakeup()→ (S uspend)� & �(S uspend) × dispatch()→
(Running)�.
In this case, the sequence needs to satisfy the condition de-
fined above.

7.2.2 Fault 2: Response Time, Scheduling Delay
Task scheduling is feasible according to the rate monotonic al-

gorithm, which provides the predictable, guaranteed scheduling
for the real-time task set. If there are no variables in the schedul-
ing, the tasks will not miss their deadline. In this case, three tasks
are working on the system so that each task has their computation
time and periods defined as C,T . The highest priority task 1 ms,
10 ms, the middle priority task 1 ms, 5 ms and the low priority
task 4 ms, 20 ms. The results of the utilization are summarized as
1/10 + 1/5 + 4/20 = 0.5.

The utilization is feasible for rate monotonic algorithms. In this
case, we want to know these tasks work without missing dead-
lines. First of all, we can check the periodic task’s response time
delay through use of an extended model of the basic transaction
Eq. (2).
• Case 4: Response Time Accuracy: Periodic task response

time is induced from the transition states
C5 = �(Running, t1) × art wait() → (Wait, t2)�
& �(Wait, t2) × art wakeup() → (S uspend, t3)� &
�(S uspend, t3) × dispatch()→ (Running, t4)�
If these transition sequences are verified, and time �(t4− t1)−
T < 10μ�also is verified, the sequence and time are judged
as correct.

• Case 5-1: Scheduling Delay (Suspend to Running): We
observe two types of scheduling delay in this case: one is
the delay from S uspend → Running. If there are some jit-
ters happened in this case, it should not be allowed because it
implicitly shows the long queue or that something happened
in the real-time queuing task. On the other hand, a fixed
and small delay can be allowed. So we need to pick up the
disallowed case by the following transition model:
C5−1 = �(S uspend, t1) × dispatch()→ (Running, t2)�

• Case 5-2: Scheduling Delay (Blocked to Suspend): The
latter delay shows a different problem. The delay of the
Block → S uspend means that the blocked task takes time
to be released. If the time is long, we need to suspect the
application waited too long for the execution.
C5−2 = �(Blocked, t1) × art wakeup()→ (S uspend, t2)�.
In log analysis, we detect the delay between �(t1) − (t2)�.

7.2.3 Fault 3: Priority Inversion
In our system, we assume three tasks: the highest priority task

is the servo controller, the next is a simple calculation task and the
lowest priority is the joystick controller that writes a controller
instruction from the joystick device to a shared resource. The
servo controller will read the bit, which is written by the joystick
in the shared resource. If the joystick did not write data for it,
it will sleep until the next period. Priority inversion should be
avoided by priority inheritance. ART-Linux provides priority in-
heritance by PI mutex lock. The joystick controller has low pri-
ority whereas the servo controller has high priority. If the joystick
writes a bit for the shared resource with PI mutex lock, priority
inheritance will be occur to finish the task faster.
• Case 6: Lock Holding and Priority Inheritance Check:

Periodic task P1 blocked by competitive task’s P2 resource
access in transition, we check the priority and then if the
priority is higher than the counter task, priority inheritance
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Fig. 7 Pen2 robot machine.

worked. If not, wait until the lock is released. Both of the re-
source and priority parameters are checked at the each transi-
tion state for confirming successfully inherit priority or not.
C6 = �(Running) × schedule() → (Blocked)� &
�PI mutex lock&P1 > P2� ∨ �PI mutex lock&P1 < P2�
& �(Blocked) × art wakeup() → (S uspend)� &
�(S uspend) × dispatch()→ (Running)�

8. Evaluation

In this section, first we evaluate the effectiveness of our pro-
posed method for detecting faults with kernel log analysis then we
show the performance results of log transfer and analysis. Based
on these results, we evaluate the approximate reaction time for
robotics systems, and conclude with the planning log generation
speed in our prototype system.

8.1 Environment
For evaluation we use an actual robotics system called Pen2

that is presented in Fig. 7. It has an Intel Core2 E7600 3.06 GHz
CPU, 4 GB memory, and SSD (64 Gb). It was originally devel-
oped as an autonomous robot with an omni-directional micro-
phone by Digital Human Research Center in AIST. We added a
camera module to cope with the autonomous controller and to de-
tect and avoid collisions with obstacles. We set up our prototype
system that was installed on the one-core for the real-time operat-
ing system (ART-Linux-2.6.32-amp version), and the normal AP
kernel (ART-Linux also provides non real-time SMP kernel) on
the other core.
8.1.1 Composition of System

Within the three applications, we set static real-time priorities
for servo controller tasks that provide control functions to achieve
the feedback control of the Pen2 machine. It controls the trajec-
tory of the two wheels with a 1 ms period. The input is the rota-
tion speed of the motor and advancement of the vehicle. Motor
speed is controlled by hardware PWM (period 25 μs) whose input
is the rotational speed of the motor. If there is an input that comes
from a fault detector, a safety control mechanism will work that
is running with a period of 1 ms.

In order to perform the execution period with such high preci-
sion, the developer should use real-time API for a hard real-time
task that is provided by ART-Linux. We show a simple example
that calls on the API for this purpose in List 8.1.1.
8.1.2 Kernel Trace-point and Data Logging

In order to collect kernel logs from ART-Linux, we set up a
hook inside in the kernel with a calling interface of LTTng [6].

LTTng is a type of tracer that directly inserts a hook point in

List 8.1.1 : Example of servo controller task [servo control.k]

1 void artsv_servo(void)
2 {

3 if (art_enter (ARTSV_HIGH_PRIORITY ,
4 ART_TASK_PERIODIC ,

5 ARTSV_PERIOD_SERVO) == -1) {

6 perror(‘‘art_enter error’’);

7 exit(1);

8 }

9 while (artsv_enable_flag) {
10 art_wait();

11 /* do servo work */

12 }

13 }

List 8.1.2 ART-Linux dispatch function in kernel [linux/kernel/art task.c ]

1 int __art_dispatch(struct thread_info *prev_thread
,

2 art_task_t *prev)

3 {

4 /* select highest priority task from art_run_queue

*/

5 switching:

6 if (next_thread != prev_thread) {
7 next_thread ->flags|=prev_thread ->flags

8 TIFNEED_RESCHED;

9 prev_thread ->flags&=˜TIF_NEED_RESCHED;

10 lttng_trace (1);

11 art_context_swithch(prev_thread ->task,

12 next_thread ->task);

13 return 1;
14 }

the target kernel. Compared with a tracer that uses exceptions,
this type can minimize the overhead. However, even if the over-
head is small, this method also will produce a constant overhead
from those hook points. To minimize the constant overhead, we
set up the minimum hook point that was embedded only in the

dispach() function in front of the context switch of the priority
scheduler. We show the place that we set up the hook point in
List 8.1.2. This function is called by several upper functions that
need to change the transition state of real-time tasks.

We assume that all of the state transitions of real-time tasks
we showed in Section 4.2.1 change through the context switch in
ART-Linux. That was why only one hook point is enough for our
analysis method. We show the sample logs in Fig. 8 that were
generated by kernel hook point. The log includes the number of
current and next state transitions and event (function) name, pro-
cess id, priority, and time. We can check whether the sequences
of real-time tasks are correct or not by using these kernel logs
with the proposed method in Section 7.

As we described in Section 5.2, the speed of generation of ker-
nel would be very high if we set several hook points for each
system call in kernel such as 25 MB/sec. In such a time, it is dif-
ficult to detect an error event from these large logs with a manual
approach. In this case, our proposed automatic methods of analy-
sis are effective in detecting errors. In the following sections, we
will describe the results of our evaluation of this environment.

8.2 Detecting Faults
In our case studies, we detect faults by using the system de-

scribed above sections. API misuse in Case 1, and scheduling
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Fig. 8 Example log for analysis.

delay with feasibility study misses and over-interrupted periodic
task delay in Case 4.

We applied each pattern checking modules to kernel logs and
detected the deviated patterns from the patterns defined in the pre-
vious Section 7. In our system, if the analyzer finds an error in the
system, it shows a warning. Each analyzer will judge an incorrect
behavior or pattern as an anomaly.

In the Section 7 we described the type of fault in the subsec-
tions. For example, fault 1 is a type of API misuse in Section 7.2.1,
and fault 2 is a type of fault that included a response time and
scheduling delay in Section 7.2.2. Fault 3 is a type of fault that
comes from priority inversion. We described that in Section 7.2.3.

Fault 1 is actually detected by static analysis as opposed to
online monitoring. However, it is difficult to detect fault 2, tim-
ing faults, fault 3, and the combination of faulty conditions. For
example, we discussed the priority inversion problem. The two
types of analyzers detect this problem. Even if the Case 6 ana-
lyzer detects that priority inherit has been successfully done after
lock was released, the Case 4 analyzer detects a long response
time delay before priority inheritance. Based on the results of
both analyzers, we can find the root cause of the problem.

Generally, if the priority inheritance is missed, then long laten-
cies appear in the high priority task. In this case, we can detect
priority inversion. Upon detailed inspection, we can detect that
the root cause is the wrong implementation of the low priority
joystick task invoke art wait()(sleep) function soon after holding
the PI mutex lock for the shared resource. It induced the prob-
lem that ART-Linux kernel did not inherit the higher priority to
the low priority task, since the kernel cannot inherit the priority
to the task that slept in the local queue. For encountering these
task, even if a high priority task, it should wait until the low pri-
ority task that slept in the local queue will wake up and release
its lock. During the sleep time, the priority inheritance has not
occurred. As a result, priority inversion was aroused when the
middle priority task worked. It was the specification matter that
the developer did not write that the task should not sleep after
holding the lock, and the application developer that did not un-
derstand the specification.

This type of problem is difficult to identify in the actual sys-
tem, however, the automatic support for log analysis will help the
developer, who needs to identify the problem as soon as possi-
ble. In our system, each analyzer will report the result of a log
analysis.

8.3 Performance of Log Transfer
In this section, we compare the two methods that make com-

Fig. 9 Log transfer rate.

munication possible in the OS. One is shared memory, and the
other is the socket. The experimental machine is a MacBook
Pro, CPU is 2.13 GHz Intel Core 2 Duo, and memory is 2 GB
1067 MHz DDR3. The reason for using this hardware is eas-
ily simulate the Pen2 machine, since this machine provides Intel
Core2 and high speed shared memory, and portable for AIST lab-
oratories. For this machine, we installed ART-Linux-2.6.32-amp
version on the one-core for the real-time operating system, and
the normal AP kernel (ART-Linux also provides non real-time
SMP kernel) on the other core.

We set up multi-OS architecture and developed the program
that writes logs to the shared memory and reads shared memory
from the other operating system. We set a high-resolution time
stamp count RDTSC to check the time of the application. The
result is shown in Fig. 9. Shared memory data transfer shows
1 GB per second, while socket communication transfers the data
at 25 MB per second. Shared memory is implemented on RAM,
the speed that the memory is written at is very high, compared to
the socket that copies the buffer from user to kernel and kernel
to user through the Ethernet. In Section 5, we showed the ex-
perimental result of collecting logs. The generated log speed is
25 MB/sec, so, if we transfer the log to the other host, we find we
should use shared memory.

We also evaluate the average cost to transfer the log. It was,
on average, 7%. Compared to the average cost, which increases
with the number of analyzers of around 5% per analyzer, it will
keep down the cost in the target system. If we use the maximum
transfer rate of shared memory, we can approximate, based on
the generated log speed and time period of a task, that a 33.2 μs
period is permitted for a real-time task’s logging.
8.3.1 Overhead

The average cost of an analyzer includes the work of process-
ing and analyzing logs is, on average, 5%. This overhead would
lineraly increase accordance to the increase of analyzer. Our sys-
tem separated the analyzer overhead from the target core, suc-
ceessed to limit the overhead of the target machine to less than
5% in our evaluation.

A task that transfers the kernel logs to the log analysis core
did not disturb the execution of real-time task, since the task was
worked as a background task with lower priority than the real-
time tasks.
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Fig. 10 Average time of different window size.

8.4 Performance of Log Analysis
Using the same machine and environment described in Sec-

tion 8.3, we evaluate the performance of log analysis.
We added the bug code to the robot program (1) based on the

model, developed four faults for both of kernel and user appli-
cation (2) added the developed faults to the servo program (3)
run the robot system with our logging system also works (4) the
results will be stored to the evidence engine, which moves the
servo by sensing the result. Then, we wrote an analyzer using our
framework [30] to detect bugs that will not call the API correctly.
This means they will be caused by the abnormal sequence call in
the transition. Then we set up the framework system and started
the logger.

Figure 10 shows average processing time of each SAE compo-
nents, such as Receiver, Filter, Analyzer, Converter, Sender. In
this figure, x-axis indicates window size (Mbytes) and the y-axis
indicates the average processing time of transferred kernel mon-
itoring log. Obviously, in these components, the Analyzer takes
the longest time. It consumes the time for judgment whether the
normal pattern or not from function calls and event sequences
in the log. Analyzer result shows that it does not consistently
increase with increase of window size. There are variations in
each size. We consider it comes from the differences in contained
data type, not comes from the volume of logs. Since next Fig. 11
shows the result of the processing size increasing almost linearly
with the increasing of window size. The results differ depend-
ing on the contained data type of log that lots of pattern matches
patterns or not.

Similar variation is seen in Converter in that it’s processing
time depends on the result of Analyzer. Sender and Receiver

time are small in this result. Both values occupy 7% in the SAE.
Figure 11 shows average processing size (Mbytes) for different
window size. X-axis indicates window size (Mbytes), and y-axis
indicates average log processing size (Mbytes)in each SAE com-
ponent.

Compared to the average time, which we showed as Fig. 10,
the average processing size has linearly increased along with the
window size. It means that the size of the window did not affect
the analysis. On the other hand, there are differences of 7 Mbytes
between the result of Receiver and Sender at most. This means
that Filter could have reduced the data. It also means that the filter
can reduce the volume of data by implementing suitable filters.

Fig. 11 Average size of different window size.

Fig. 12 Average speed of different window size.

Figure 12 shows the average speed (Mbytes) in different win-
dow size. The x-axis indicates the window size (Mbytes) and
y-axis indicates the average speed (Mbytes) of log processing in
each SAE component. The result shows that regardless of the
window size, these speeds are nearly constant. It indicates that we
can successfully separate the component interface as an appropri-
ate unit. In the results, the speed of Receiver is fastest in these
components and it processes data at an average of 350 MB/sec.
The process of the Receiver is consist with just accepting data
from other hosts, while Analyzer and Converter parse and check
data according with internal models.

8.5 Reaction Time
The assumption of reaction time for our proposed system is

fundamental for the design requirements involving log genera-
tion, transfer, and analysis speed. In this section, we will consider
this time. As we described in Section 8.1.1, our robot system has
a control mechanism to stop the motor within 1 ms after it accepts
any signal from safety control.

To understand the reaction time using our proposed system,
we can briefly calculate the time that it takes to stop with our log
transfer and analysis system is induced by calculating with the pa-
rameters such as the rate of amount of transferred logs (Mbytes),
and Transfer speed of shared memory (Mbytes/sec) plus the rate
of amount of log to be processed (Mbytes) and processing speed
of SAE (Mbytes/sec), then plus execution time of task that doing
this work. The generalized formula is as follows.

React T ime = Trn Log/Trn S pd + Pros Log/Pros S pd + α
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Table 1 Parameters.

Name Means Units
React Time Reaction Time sec
Trn Log Amount of transferred logs Mbytes
Trn Spd Transfer speed of shared memory Mbytes/sec
Pros Log Amount of log to be processed Mbytes
Pros Spd Procesing speed of SAE Mbytes/sec

The assumed the parameters are described in Table 1. There are
two points we need consider to use this formula. The first, in our
case, we need to not only consider the transfer time to analysis
core, but also consider the return time to the target core, since
the reaction program worked on the target core. However, the
amount of data returned back from the analysis core will be very
small compared to the transfer logs from the target core such as
an error detect signal. Therefore, we neglect this parameter from
the formula. The second, we need to consider the method of log
processing and the analysis mechanism, such as a single process-
ing or a parallel one. Currently, the formula will only consider
the single processing. In the future, we need consider the parallel
or threaded processing of log analysis to improve the efficiency.

To calculate the approximate reaction time, we apply the re-
sults of our previous experiences in Sections 8.3, 8.4. The trans-
fer speed of shared memory resulted from Section 8.3 is about
1,000 Mbytes/sec on average. The average processing speed of
SAE in Section 8.4 is the sum of the five processing functions:
Receiver, Filter, Analyzer, Converter, Sender - 588.3 Mbytes/sec.
The average execution time of the program is too small to be
neglected in our case, because the program just called APIs to
write logs to shared memory. The calculation results in a reaction
time of 1 Mbytes of data and by substituting these values into the
formula is approximately 1 Mbytes / 1,000 Mbytes + 1 Mbytes
/ 588.3 Mbytes = 0.0026998 sec (about 2.69 ms). Even if these
calculation results are taken on the lower power machine (Intel
Core2Duo 2.3 GHz) than the Pen2 machine, it would be the appli-
cable for approximate calculation of worst case for higher power
machine.

In our experiment, the average speed of kernel log generation
is from 10 to 20 Mbytes/sec (on average 17.5 Mbytes/sec). If we
re-calculate the result with this value for the formula, the reaction
time is about 27–67 ms (on average 47 ms). In order to judge that
we need about 50 ms for processing 20 Mbytes/sec kernel log, we
need to consider the safety control requirements of the robot. In
our experimental study, we use the Pen2 robot machine that had
a feedback control mechanism within the hardware described in
Section 8.1.1.

The safety mechanism in the servo controller of Pen2 that can
stop the motors of the wheels within a 1 ms period will come into
play after any emergency signals are received. The maximum
speed of the Pen2 robot is 2 m/sec. This means that the robot will
move a distance of 2 mm in 1 ms, and of 20 mm in 10 ms. The
distance required to stop will depend on the friction between the
wheels and the ground. In our laboratory, the floor is covered by
linoleum so the robot stops after about 100 mm (taking into ac-
count the slip that will occur, the error is +/− 30 mm). Therefore,
it will be difficult to stop after encountering an obstacle, how-
ever, it is acceptable to stop after sensing the distance between

the obstacles in 50 ms. Since the Pen2 machine can move at a
maximum speed of 2 m/sec, it needs 20–40 ms to stop and there-
fore will require a maximum of 130 mm distance. If we can send
a stop control message before this time, it will stop safely.

Considering these requirements, our calculated result of about
50 ms with 20 Mbytes/sec logs, 25 ms with 10 Mbytes/sec logs
would be acceptable for the Pen2 robot for safety control. For
example, if you assume a car going at 100 km/hour, the speed of
this car is 27.8 m/sec. It means it has moved 27.8 mm forward
in 1 ms, 278–1,390 mm in 10–50 ms. From this point, a car is
required to stop 40–50 m after accepting this reaction command.
That means that it is necessary to consider whether further tun-
ing should be considered for practical usage. On the other hand,
it is known that for use in industry it would be required to stop
within 1 ms of detecting an obstacle with sensors. If we reduce
our logs from 20 Mbytes/sec to 1 Mbytes/sec (1/20) taking efforts
to reduce hook point or events, our proposed system might have
a use in industrial robotics.
8.5.1 Planning Log Volume and Analysis

As we mentioned in Section 5.2, in order to avoid the perfor-
mance degradation caused by buffer overflow of the log, it is nec-
essary to adjust the amount of log so as to satisfy the processing
and generation speed of logs as Generation Speed ≤ Processing

Speed.
In our case, the transfer speed of logs is very high: 1 Gbytes/sec

(theoretically 12.8 GB/sec in DDR2), so we need to focus on the
processing speed of processing logs in the analysis core. In this
experiment, our log generation speed is 10–25 Mbytes/sec (on av-
erage 17.5 Mbytes/sec). This was less than the processing speed
of the SAE system that provides 588.3 Mbytes/sec on average.
Therefore, it is possible to avoid buffer overflow between the
cores.

The average speed of SAE, as shown in Fig. 12, was almost
constant and did not depend on the window size. In our experi-
ment, we need to assume the typical Analyzer that includes pat-
tern match code, on average abount eight to ten, except for the pri-
ority inversion detection. We assume the number of patterns, on
average, these numbers in our proposed method for the Analyzer

to detect a wrong sequence of logs. We needed to check both of
events and transitions of tasks that average four or five transitions
par case. However, if the system would be complex, and more
patterns should be included in the Analyzer, or the number of the
Analyzer should be increased to check for wrong sequences in the
system, the total speed of the processing logs will be decreased.
Before using our system, this type of planning is necessary for
avoiding buffer overflow of log processing. As a next step, we
plan to develop a simulator that adjusts the parameter of log gen-
eration and processing speed with necessary parameters such as
hook point and number of events that should be checked their
patterns.

9. Conclusion

In this paper, we proposed an online kernel monitoring and log
analysis method and framework. Based on it, we developed a pro-
totype system to satisfy the requirements of the advanced embed-
ded system. The contributions of our approach are the following:
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Develop (1) a log analysis method based on transition modeling
of real-time tasks, and (2) an online logging and analysis system
where the monitored application and systems are analyzed con-
currently without disturbing the real-time execution of monitored
applications. These tools will provide support for the engineer
to perform root cause analysis. In the evaluation, we could show
the effectiveness of our system that can detect faults including a
serious one, which was not detected for ten years in ART-Linux.
Also the performances results are considered to be acceptable in
our approximate calculation based on the experiment. However,
it is still difficult to detect the root case of failure within the theo-
retical time; this will be an issue for future work.
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