
Journal of Information Processing Vol.20 No.4 854–860 (Oct. 2012)

[DOI: 10.2197/ipsjjip.20.854]

Regular Paper

Length-preserving CBC Enciphering Scheme
and Its Security Analysis

Hidenori Kuwakado1,a)

Received: November 28, 2011, Accepted: June 1, 2012

Abstract: We propose a length-preserving enciphering scheme that achieves PRP security and streamable decryption.
No enciphering scheme satisfying these properties is known. Our enciphering scheme is suitable for secure commu-
nication on narrowband channels and memory-constrained devices. Although length-preserving enciphering schemes
satisfying the SPRP security, which is stronger than the PRP security, are known, it is impossible to support the SPRP
security and the streamability at the same time. Namely, the memory to store an entire plaintext/ciphertext is required.
When the decryption is performed with memory-constrained devices, the PRP security is the strongest concept of
achievable security.

Keywords: blockcipher, mode of operation, length-preserving, pseudorandom permutation

1. Introduction

1.1 Background
Due to development of sensor devices and small wireless

devices, technologies for achieving secure communication on
resource-constrained networks are much in demand these days.
Lightweight cryptography is an important primitive for achieving
secure communication on resource-constrained networks. In par-
ticular, lightweight blockciphers/hash functions have been stud-
ied actively [1], [4], [5], [8], [9], [13], [18]. Since a blockcipher is
a permutation on small domain, a mode of operation is required
to encrypt large data. Use of the mode of operation often causes
length-expansion of data. For example, the CBC mode requires
an initialization vector and the CTR mode requires a counter.
In general, the length-expansion is not desirable for narrowband
channels. There are cases where length-preservation is a require-
ment due to technical or economic constrains.

The strongest notion of security for a length-preserving en-
cryption scheme is strong pseudorandom permutation (SPRP)
and tweakable SPRP. Motivated by the application to disk en-
cryption, constructions of tweakable SPRP have been proposed.
We took notice of the fact that the SPRP constructions are not
streamable. Namely, no part of a ciphertext is obtained before
reading through a plaintext, and no part of a plaintext is ob-
tained before reading through a ciphertext. This is undesirable
for memory-constrained devices because memory to store entire
data is required. This also implies that the SPRP constructions
are not suitable for real-time communication. In such cases, one
may want to use an encryption scheme that achieves a stronger
notion of security (i.e., PRP) than the strongest notion of secu-
rity (i.e., SPRP). If the PRP security is sufficient for applications,
then it may be possible to decrypt a ciphertext streamably. To

1 Kobe University, Kobe, Hyogo 657–8501, Japan
a) kuwakado@kobe-u.ac.jp

the best of our knowledge, there is no mode of operation satisfy-
ing (1) length-preserving, (2) streamable decryption, and (3) PRP
security.

1.2 Our Contribution
This paper proposes a mode of operation satisfying the three

properties above (called LPCBC). LPCBC uses a blockcipher
and a pseudorandom function as underlying primitives. Roughly
speaking, LPCBC is a reversing CBC mode such that an initial-
ization vector is replaced with the output of the pseudorandom
function (Fig. 1). LPCBC does not require that the length of a
plaintext be a multiple of the block size. In order to achieve
streamable decryption, the pseudorandom function is required
to be streamable. For example, HMAC is a streamable pseudo-
random function. Under the assumption that a blockcipher is a
PRP for independent two keys, we analyze the PRP security of
LPCBC.

1.3 Related Works
The ECB mode is a length-preserving and streamable encipher-

ing scheme. It is well-known that the ECB mode has drawbacks
on security. Other modes of operation (e.g., the CBC mode, the
CTR mode) are not length-preserving.

Length-preserving enciphering scheme has been studied for
disk encryption. Disk encryption may be somewhat different
from the encryption for secure communication. Disk encryption
handles only data such that the size is a multiple of the block
size of an underlying blockcipher. Disk encryption is required to
be tweakable, but is not required to be streamable. Hence, disk
encryption is usually a tweakable SPRP. Constructions of tweak-
able SPRP can be classified into three types. The first type is the
ECB mode between two invertible universal hash functions (or ε-
almost XOR universal functions). The Naor-Reingold mode [15],
TET [11], and HEH [16] are of this type. The second type is the

c© 2012 Information Processing Society of Japan 854

Journal of Information Processing Vol.20 No.4 854–860 (Oct. 2012)

Fig. 1 Length-preserving CBC mode (m = 4).

CTR mode between universal hash functions. HCTR [19] and
HCH [6] are of this types. The third type consists of two layers of
encryption. CMC [12] and EME* [10] are of this types. Unlike
other two types, the third type does not require a universal hash
function. Universal hash functions (or ε-almost XOR universal
functions) are often used for constructing a SPRP, and their algo-
rithms are not complicated. However, we only know a few ap-
plications in which the universal hash function is implemented.
On the other hand, cryptographic hash functions such as SHA are
widely implemented in applications. This situation encourages
us to use cryptographic hash functions instead of universal hash
functions.

Bellare and Rogaway [3] have proposed a length-preserving
encryption based on the CBC mode and the CBC-MAC. Actu-
ally, our scheme is somewhat analogous to their scheme. Their
scheme and our scheme differ in the following respects.
(1) Their scheme computes the CBC-MAC of an entire plain-

text. Our scheme computes the MAC of a part of a plaintext.
(2) To the best of our knowledge, the security proof of their

scheme is not given. Precisely speaking, their scheme is not
a SPRP, but it is unknown whether their scheme is a PRP or
not. The security proof of our scheme is given in this paper.

(3) Their scheme only handles a plaintext such that the length is
a multiple of the block size. Our scheme does not have such
a limitation.

Minematsu and Tsunoo [14] have proposed a hybrid symmet-
ric encryption. In their article, they showed a hybrid large block
PRP, which consists of a PRP, a weak PRF, and an ε-almost XOR
universal function. The hybrid large block PRP has a structure
similar to the Feistel structure. The hybrid large block PRP is not
streamable since the first block of a plaintext cannot be obtained
only from the first block of a ciphertext.

2. Definition

Let E : KE ×DE → DE be a keyed permutation. We define the
advantage of A in distinguishing E from a random permutation π

onDE as follows:

Advprp
E (A) = Pr

[
K

$← KE : AEK ⇒ 1
]

− Pr
[
π

$← Perm(DE) : Aπ ⇒ 1
]
, (1)

where Perm(DE) is the set of all permutations on DE. If
Advprp

E (A) is small for any reasonable A, then E is called a pseu-

dorandom permutation. We also define the advantage of A in
distinguishing E with two keys from two random permutations
onDE as follows:

Advtkprp
E (A) = Pr

[
K1

$← KE,K2
$← KE : AEK1 ,EK2 ⇒ 1

]
−Pr

[
π1

$← Perm(DE), π2
$← Perm(DE) : Aπ1 ,π2 ⇒ 1

]
.

Let F : KF × DF → RF be a keyed function. We define the
advantage of A in distinguishing F from a random function ρ as
follows:

Advprf
F (A) = Pr

[
K

$← KF : AFK ⇒ 1
]

− Pr
[
ρ

$← Func(DF ,RF) : Aρ ⇒ 1
]

where Func(DF ,RF) is the set of all functions from DF to RF .
If Advprf

F (A) is small for any reasonable A, then F is called a
pseudorandom function.

Suppose that a permutation E uses a function λ and two per-
mutations μ, ν as subroutines, denoted by Eλ,μ,ν. Theorem 1 de-
scribed below implies that it is sufficient to analyze the security
of Eρ,φ,ω using a random function ρ and two random permutations
φ, ω instead of the security of EFK1 ,EK2 ,EK3 using a pseudorandom
function F and a blockcipher E.

Theorem 1 Suppose that λ is a function from Rλ to Dλ and
μ, ν are permutations on D. Let ρ be a random function chosen
from Func(Rλ,Dλ) and let φ, ω be independently random permu-
tations chosen from Perm(D). Let F be a pseudorandom func-
tion KF × Rλ → Dλ, and let E a blockcipher KE × D → D.
Suppose that K1 is chosen from KF at random and K2,K3 are in-
dependently chosen from KE at random. Let A be an adversary
to Eλ,μ,ν. Then, there exist adversaries B,C satisfying

Advprp

EFK1
,EK2

,EK3
(A)≤Advprp

Eρ,φ,ω (A)+2Advprf
F (B)+2Advtkprp

E (C),

(2)

where the extra computational resource of B (or C) is bounded by
some small constant multiplied by the number of oracle queries
made by B (or C).
Proof. We first construct an adversary B attacking the security of
F as follows. Let OB be B’s oracle that is either FK1 or ρ. After
choosing random permutations φ, ω, B simulates EOB,φ,ω and runs
A as a subroutine. B finally outputs the value that A outputs. The
number of queries made by B is equal to that made by A. The
extra work which B does over A is to perform the algorithm of E.
The probability that B outputs 1 is given by

Pr
[
BOB ⇒ 1|OB = FK1

]
= Pr

[
AE

FK1
,φ,ω ⇒ 1

]
,

Pr
[
BOB ⇒ 1|OB = ρ

]
= Pr

[
AE

ρ,φ,ω ⇒ 1
]
.

Using the equations above, we write the advantage of B as

c© 2012 Information Processing Society of Japan 855

Journal of Information Processing Vol.20 No.4 854–860 (Oct. 2012)

Advprf
F (B) = Pr

[
BFK1 ⇒ 1

]
− Pr

[
Bρ ⇒ 1

]
= Pr

[
BOB ⇒ 1|OB = FK1

]
Pr

[OB = FK1

]
−Pr

[
BOB ⇒ 1|OB = ρ

]
Pr

[OB = ρ
]

=
1
2

(
Pr

[
BOB ⇒ 1|OB = FK1

]
− Pr

[
BOB ⇒ 1|OB = ρ

])
=

1
2

(
Pr

[
AE

FK1
,φ,ω ⇒ 1

]
− Pr

[
AE

ρ,φ,ω ⇒ 1
])
. (3)

We next construct an adversary C attacking the security of E as
follows. Let OC be C’s oracle which is either (EK2 , EK3) or (φ, ω).
After choosing a key K1 fromKF at random, C simulates EFK1 ,OC

and runs A as a subroutine. C finally outputs the value that A out-
puts. The number of queries made by C is equal to that made by
A. The extra work which C does over A is to perform E and F.
The probability that C outputs 1 is given by

Pr
[
COC ⇒ 1|OC = (EK2 , EK3)

]
= Pr

[
AE

FK1
,EK2

,EK3 ⇒ 1
]
,

Pr
[
COC ⇒ 1|OC = (φ, ω)

]
= Pr

[
AE

FK1
,φ,ω ⇒ 1

]
.

Using the equations above, we write the advantage of C as

Advtkprp
E (C) = Pr

[
CEK2 ,EK3 ⇒ 1

]
− Pr

[
Cφ,ω ⇒ 1

]
= Pr

[
COC ⇒ 1|OC = (EK2 , EK3)

]
Pr

[OC = (EK2 , EK3)
]

−Pr
[
COC ⇒ 1|OC = (φ, ω)

]
Pr

[OC = (φ, ω)
]

=
1
2

(
Pr

[
COC ⇒ 1|OC = (EK2 , EK3)

]
−Pr

[
COC ⇒ 1|OC = (φ, ω)

])
=

1
2

(
Pr

[
AE

FK1
,EK2

,EK3 ⇒ 1
]
− Pr

[
AE

FK1
,φ,ω ⇒ 1

])
. (4)

Adding Eq. (3) to Eq. (4) yields

Advprf
F (B) + Advtkprp

E (C)

=
1
2

(
Pr

[
AE

FK1
,EK2

,EK3 ⇒ 1
]
− Pr

[
AE

ρ,φ,ω ⇒ 1
])

=
1
2

(
Pr

[
AE

FK1
,EK2

,EK3 ⇒ 1
]
− Pr

[
Aπ ⇒ 1

]
+Pr

[
Aπ ⇒ 1

] − Pr
[
AE

ρ,φ,ω ⇒ 1
])

=
1
2

(
Advprp

EFK1 ,EK2
,EK3

(A) − Advprp
Eρ,φ,ω (A)

)
,

where π is a random permutation on the domain of E. Hence, we
obtain

Advprp

EFK1 ,EK2
,EK3

(A)=Advprp
Eρ,φ,ω (A)+2Advprf

F (B)+2Advtkprp
E (C).

There may be adversaries B′, C′ that are better than B,C and have
the same computational resource as B,C.

3. Length-preserving CBC Mode

This section describes a new length-preserving enciphering
scheme (LPCBC) that is constructed from pseudorandom func-
tion F : KF × {0, 1}	−n→{0, 1}n and blockcipher E : KE ×
{0, 1}n→{0, 1}n. The enciphering scheme has key spaceKF×KE×
KE . The plaintext space and the ciphertext space are {0, 1}	 where
	 ≥ n. We assume that 	 is fixed. Let t = n − (mod n) mod n.

We describe the encryption E and the decryptionD of LPCBC
below and illustrate an example of LPCBC in Fig. 1. Roughly

speaking, LPCBC is a reversing CBC mode such that an initial-
ization vector is replaced with the output of pseudorandom func-
tion F.
Encryption EK1 ,K2 ,K3 (P) where (K1,K2,K3) ∈ KF × KE × KE

and P ∈ {0, 1}	.
1. Divide P into m blocks P1, P2, . . . , Pm such that P1 is an

(n − t)-bit block and all other blocks are n-bit blocks
2. Cm+1←FK1 (P1 ‖ P2 ‖ . . . ‖ Pm−1).
3. For i = m to 1 do

if i = m, then Cm←EK2 (Pm ⊕Cm+1),
if m > i > 2, then Ci←EK3 (Pi ⊕Ci+1),
if i = 2, then C′2←EK3 (P2 ⊕C3), C2← (the right n − t bits

of C′2),
if i = 1, then Ci←EK3 ((0t ‖ P1) ⊕C′2).

4. Return C1 ‖ C2 ‖ C3 ‖ . . . ‖ Cm as a ciphertext C.

Decryption DK1 ,K2 ,K3 (C) where (K1,K2,K3) ∈ KF × KE × KE

and C ∈ {0, 1}	.
1. Divide C into m blocks C1,C2, . . . ,Cm such that C2 is an

(n − t)-bit block and all other blocks are n-bit blocks.
2. U←DK2 (C1) ⊕ (0t ‖ C2), P1←(the right (n − t) bits of U),

and V←(the left t bits of U).
3. For i = 2 to m do

if i = 2, then P2←DK2 (V ‖ C2) ⊕C3,
if 2 < i < m, then Pi←DK2 (Ci) ⊕Ci+1,
if i = m, then Pm←DK2 (Cm) ⊕ FK1 (P1 ‖ . . . ‖ Pm−1).

4. Return P1 ‖ P2 ‖ . . . ‖ Pm as a plaintext P.
In order to handle any length of a plaintext, LPCBC uses ci-

phertext stealing [7], [17] for the first two blocks. In the decryp-
tion, any plaintext block Pi except for the last plaintext block Pm

can be computed only from two ciphertext blocks Ci,Ci+1. No-
tice that it is unnecessary to keep plaintext blocks P1, . . . , Pm−1 if
F is a streamable pseudorandom function such as HMAC.

4. Security Analysis

4.1 Main Theorem
Let E be the encryption of LPCBC for an 	-bit plaintext P1 ‖

P2 ‖ . . . ‖ Pm where m ≥ 2. Figure 2 describes the pseudo code
of Ê. In Fig. 2, a function λ corresponds to the pseudorandom
function FK1 , a function μ corresponds to the blockcipher EK2 ,
and a function ν corresponds to the blockcipher EK3 . We analyze
the security of E such that λ is a random function ρ, μ and ν are
independently random permutations φ, ω because of Theorem 1.
We will prove the following theorem in Section 4.2.

Theorem 2 Consider any adversary A that makes
at most q queries to E or π. Here, E’s oracles are

ρ
$← Func({0, 1}n(m−1), {0, 1}n), φ

$← Perm({0, 1}n), and

ω
$← Perm({0, 1}n), and π is chosen from Perm({0, 1}nm) at

random. The advantage of A is given by

Advprp
Eρ,φ,ω (A) = Pr

[
AE

ρ,φ,ω ⇒ 1
]
− Pr

[
Aπ ⇒ 1

]
.

Suppose that 1 ≤ q ≤ 2(n+1)/2 and m, n ≥ 2. Then, we have

0.14(q − 2)(q − 3)
2n+1

≤ Advprp
Eρ,φ,ω (A) ≤ 6q(q − 1) + q′(q′ − 1)

2n+1

(5)

where q′ = q(m − 1).

c© 2012 Information Processing Society of Japan 856

Journal of Information Processing Vol.20 No.4 854–860 (Oct. 2012)

1: function E(P1, . . . , Pm)

2: Q← P1 ‖ . . . ‖ Pm−1

3: Cm+1 ← λ(Q)

4: Zm ← Pm ⊕Cm+1

5: Cm ← μ(Zm)

6: for i = m − 1 to 1 do

7: if i � 1 then

8: Zi ← Pi ⊕Ci+1

9: else

10: Z1 ← (0t ‖ P1) ⊕C′2
11: end if

12: Ci ← ν(Zi)

13: if i = 2 then

14: C′2 ← C2

15: C2 ← the right (n − t) bits of C′2
16: end if

17: end for

18: return C1, . . . ,Cm

19: end function

Fig. 2 The pseudo code of E.

1: function λ(Q)

2: L
$← {0, 1}n

3: return L
4: end function

1: function μ(Zm)

2: U
$← {0, 1}n

3: return U
4: end function

1: function ν(Zi)

2: V
$← {0, 1}n

3: return V
4: end function

Fig. 3 Game 1.

1: function λ(Q)

2: L
$← {0, 1}n

3: return L
4: end function

1: function μ(Zm)

2: U
$← {0, 1}n

3: return U
4: end function

1: function ν(Zi)
2: if ν[Zi] =⊥ then

3: V
$← {0, 1}n

4: ν[Zi]← V
5: else
6: V ← ν[Zi]
7: bad1 ← true
8: end if
9: return V

10: end function
Fig. 4 Game 2.

LPCBC is not a SPRP because P1 is determined only by C1 and
C2. Namely, if C1 and C2 are fixed in the decryption, then P1 is
fixed. If an adversary is allowed to have access to the decryption
oracle, then the adversary can easily distinguish LPCBC from a
random permutation. In order to achieve streamable decryption,
we have to give up constructing a SPRP.

4.2 Proof of Theorem 2
The pseudo code of E in Fig. 2 is common in all six games. The

games shown in Fig. 3 – Fig. 8 differ in the definition of functions
λ, μ, ν. The last game (i.e., Game 6) is the pseudo code of Eρ,φ,ω.

Game 1: We define Game 1 as Fig. 3. In Game 1, each Ci is
always chosen from {0, 1}n uniformly even if the same input is
given to ν. Noting that A does not make the same query, we have

1: function λ(Q)

2: L
$← {0, 1}n

3: return L
4: end function

1: function μ(Zm)

2: U
$← {0, 1}n

3: return U
4: end function

1: function ν(Zi)
2: if ν[Zi] =⊥ then

3: V
$← {0, 1}n

4: if V ∈ V then

5: V
$← {0, 1}n \ V

6: V ← V ∪ {V}
7: bad2 ← true
8: end if
9: ν[Zi]← V

10: else
11: V ← ν[Zi]
12: bad1 ← true
13: end if
14: return V
15: end function

Fig. 5 Game 3.

1: function λ(Q)
2: if λ[Q] =⊥ then

3: L
$← {0, 1}n

4: λ[Q]← L
5: else
6: L← λ[Q]
7: end if
8: return L
9: end function

1: function μ(Zm)

2: U
$← {0, 1}n

3: return U
4: end function

1: function ν(Zi)
2: if ν[Zi] =⊥ then

3: V
$← {0, 1}n

4: if V ∈ V then

5: V
$← {0, 1}n \ V

6: V ← V ∪ {V}
7: bad2 ← true
8: end if
9: ν[Zi]← V

10: else
11: V ← ν[Zi]
12: bad1 ← true
13: end if
14: return V
15: end function

Fig. 6 Game 4.

Pr
[
AGame1 ⇒ 1

]
− Pr

[

$← Func({0, 1}nm, {0, 1}nm) : A
 ⇒ 1
]

= 0. (6)

Game 2: We define Game 2 as Fig. 4. In Fig. 4, a table μ[Zi] is
initialized with ⊥ and a flag bad1 is initialized with false. The
flag is set to true if and only if Game 2 behaves differently from
Game 1, that is, the same input Zi is given to ν.

Pr
[
AGame2 ⇒ 1

]
− Pr

[
AGame1 ⇒ 1

]
≤ Pr [A sets bad1] (7)

Let P(j)
i be the i-th plaintext block of the j-th query made by A.

Corresponding variables are denoted by superscript notation (j).
Let r be the number of invocations of ν. Given r, (i, j) is uniquely
determined by r = (j − 1)(m − 1) + (m − i) because the adversary
is allowed to make queries only to E and is not allowed to make
queries to subroutines λ, μ, ν. In order to describe the correspon-
dence, we define functions rtoi(r), rtoj(r) as

c© 2012 Information Processing Society of Japan 857

Journal of Information Processing Vol.20 No.4 854–860 (Oct. 2012)

1: function λ(Q)
2: if λ[Q] =⊥ then

3: L
$← {0, 1}n

4: λ[Q]← L
5: else
6: L← λ[Q]
7: end if
8: return L
9: end function

1: function μ(Zm)
2: if μ[Zm] =⊥ then

3: U
$← {0, 1}n

4: μ[Zm]← U
5: else
6: U ← μ[Zm]
7: bad3 ← true
8: end if
9: return U

10: end function

1: function ν(Zi)
2: if ν[Zi] =⊥ then

3: V
$← {0, 1}n

4: if V ∈ V then

5: V
$← {0, 1}n \ V

6: V ← V ∪ {V}
7: bad2 ← true
8: end if
9: ν[Zi]← V

10: else
11: V ← ν[Zi]
12: bad1 ← true
13: end if
14: return V
15: end function

Fig. 7 Game 5.

1: function λ(Q)
2: if λ[Q] =⊥ then

3: L
$← {0, 1}n

4: λ[Q]← L
5: else
6: L← λ[Q]
7: end if
8: return L
9: end function

1: function μ(Zm)
2: if μ[Zm] =⊥ then

3: U
$← {0, 1}n

4: if U ∈ U then
5: U

$← {0, 1}n \ U
6: U ← U ∪ {U}
7: bad4 ← true
8: end if
9: μ[Zm]← U

10: else
11: U ← μ[Zm]
12: bad3 ← true
13: end if
14: return U
15: end function

1: function ν(Zi)
2: if ν[Zi] =⊥ then

3: V
$← {0, 1}n

4: if V ∈ V then

5: V
$← {0, 1}n \ V

6: V ← V ∪ {V}
7: bad2 ← true
8: end if
9: ν[Zi]← V

10: else
11: V ← ν[Zi]
12: bad1 ← true
13: end if
14: return V
15: end function

Fig. 8 Game 6.

i = rtoi(r) = m − (r mod (m − 1)), j = rtoj(r) =
⌊ r

m − 1

⌋
.

By using the functions, superscript [r] is often used instead of
(i, j). For example, P(j)

i is identical to P[r]. Let B1[r] be the event
that C[a] = C[b] for 1 ≤ ∃ a < ∃ b < r. Supposing that B1[r−1] does
not occur, we evaluate the probability that B1[r] occurs, which is
the probability that Z[r] collides with Z[a] for 1 ≤ ∃ a ≤ r − 1.
We have no idea how P[r] was chosen because it depends on A.
However, one of the following cases holds.
(1) P[r] is the (m − 1)-th block (i.e., rtoi(r) = m − 1):

Let j = rtoj(r). C(j)
m is chosen from {0, 1}n at random due to

function μ. Hence, Z(j)
m−1 is uniformly distributed on {0, 1}n

regardless of P(j)
i .

(2) P[r] is a subsequent block (i.e., 1 ≤ rtoi(r) ≤ m − 2):
Let i = rtoi(r) and j = rtoj(r). Since the value of Z[r−1] is
fresh by our assumption of B1[r−1], C[r−1] is uniformly dis-
tributed on {0, 1}n. It follows that Z[r] is also distributed on
{0, 1}n uniformly because C[r−1] was chosen after A chose
P[r].

In both of cases, we obtain

Pr
[
B1[r]|B1[r−1]

]
≤ r − 1

2n
.

When A makes q queries to E, function ν is invoked q(m − 1)
times. Hence, the probability that bad1 is set to true is given by

Pr [A sets bad1]

≤
q(m−1)∑

r=1

Pr
[
B1[r]|B1[r−1]

]
≤ q(m − 1)(q(m − 1) − 1)

2n+1
.

Substituting the inequality above into Eq. (7) yields

Pr
[
AGame2 ⇒ 1

]
− Pr

[
AGame1 ⇒ 1

]
≤ q(m − 1)(q(m − 1) − 1)

2n+1
.

(8)

Game 3: We define Game 3 as Fig. 5. In Fig. 5, a set V is
initialized with the empty set, and a flag bad2 is initialized with
false. The flag is set to true if and only if Game 3 behaves dif-
ferently from Game 2.

Pr
[
AGame3 ⇒ 1

]
− Pr

[
AGame2 ⇒ 1

]
≤ Pr [A sets bad2] (9)

Let B2[r] be the event that bad2 is set to true in r invocations of
ν. Suppose that B2[r−1] does not occur. Then, the probability that
B1[r] occurs is

Pr
[
B2[r]|B2[r−1]

]
≤ r − 1

2n
.

When A makes q queries to E, function ν is invoked q(m − 1)
times. Hence, the probability that bad2 is set to true is given by

Pr [A sets bad2]

≤
q(m−1)∑

r=1

Pr
[
B2[r]|B2[r−1]

]
≤ q(m − 1)(q(m − 1) − 1)

2n+1
.

Substituting the inequality above into Eq. (9) yields

Pr
[
AGame3 ⇒ 1

]
− Pr

[
AGame2 ⇒ 1

]
≤ q(m − 1)(q(m − 1) − 1)

2n+1
.

(10)

Game 4: We define Game 4 as Fig. 6. In Fig. 6, a table λ[Q]
is initialized with ⊥. From the viewpoint of A, Game 4 is identi-
cal to Game 3 because ciphertext (C1, . . . ,Cm) is independent of
λ(Q).

Pr
[
AGame4 ⇒ 1

]
− Pr

[
AGame3 ⇒ 1

]
= 0 (11)

Game 5: We define Game 5 as Fig. 7. In Fig. 7, a table μ[Zm] is
initialized with ⊥ and a flag bad3 is initialized with false. The
flag is set to true if and only if Game 5 behaves differently from
Game 4.

c© 2012 Information Processing Society of Japan 858

Journal of Information Processing Vol.20 No.4 854–860 (Oct. 2012)

Pr
[
AGame5 ⇒ 1

]
− Pr

[
AGame4 ⇒ 1

]
≤ Pr [A sets bad3] (12)

Let B3[q] be the event that A sets bad3 in q queries to E. Suppos-
ing that B3[q−1] does not occur, we evaluate the probability that

B3[q] occurs, denoted by Pr
[
B3[q]|B3[q−1]

]
. The assumption im-

plies that Z(1)
m ,Z

(2)
m , . . . , Z

(q−1)
m are different each other. In order to

make B3[q] occur, A must choose P(q)
m satisfying

P(q)
m = P(k)

m ⊕ λ(Q(k)) ⊕ λ(Q(q)). (13)

for 1 ≤ ∃ k ≤ q − 1. That is, A has to guess the value of
λ(Q(k)) ⊕ λ(Q(q)). Notice that λ(Q(k)) and λ(Q(q)) are unknown
to A and we have no idea how P(k)

m was chosen. However, one of
the following three cases holds when k is fixed.
(1) Q(q) = Q(k):

It follows that P(q)
m = P(k)

m because λ(Q(q)) = λ(Q(k)). This
case does not occur since A does not repeat the same query.

(2) Q(q) � Q(k) ∧ Q(q) = Q(t) for 1 ≤ ∃ t ≤ q − 1, t � k:
The condition means that Q(q) is an already-answered query.
Since λ(Q(t)) and λ(Q(k)) are independently chosen from
{0, 1}n, λ(Q(k)) ⊕ λ(Q(q)) is uniformly distributed on {0, 1}n.
The probability that A succeeds in guessing λ(Q(k))⊕λ(Q(q))
is at most 2−n.

(3) Q(q) � Q(t) for 1 ≤ ∀ t ≤ q − 1:
The condition means that Q(q) is fresh. Since λ(Q(q)) is cho-
sen from {0, 1}n independently from λ(Q(k)), λ(Q(k))⊕λ(Q(q))
is uniformly distributed on {0, 1}n. The probability that
Eq. (13) holds is at most 2−n.

We hence obtain

Pr
[
B3[q]|B3[q−1]

]
≤ q − 1

2n−1
.

The probability that A sets bad3 in q queries is given by

Pr [A sets bad3] ≤
q∑

i=1

Pr
[
B3[i]|B3[i−1]

]
≤ q(q − 1)

2n
.

Substituting the inequality above into Eq. (12) yields

Pr
[
AGame5 ⇒ 1

]
− Pr

[
AGame4 ⇒ 1

]
≤ q(q − 1)

2n
. (14)

Game 6: We define Game 6 as Fig. 8. In Fig. 8, a set U is
initialized with the empty set, and a flag bad4 is initialized with
false. The flag is set to true if and only if Game 6 behaves
differently from Game 5.

Pr
[
AGame6 ⇒ 1

]
− Pr

[
AGame5 ⇒ 1

]
≤ Pr [A sets bad4] (15)

When A makes q queries to E, the probability that A sets bad4 is

Pr [A sets bad4] ≤ q(q − 1)
2n+1

.

Substituting the inequality above into Eq. (15) yields

Pr
[
AGame6 ⇒ 1

]
− Pr

[
AGame5 ⇒ 1

]
≤ q(q − 1)

2n+1
. (16)

Finally, recalling that

Pr
[

$← Func({0, 1}nm, {0, 1}nm) : A
 ⇒ 1
]

− Pr
[
π

$← Perm({0, 1}nm) : Aπ ⇒ 1
]
≤ q(q − 1)

2n+1
,

we obtain the upper bound on the advantage of A from the dif-
ferences between two games (i.e., Eqs. (6), (8), (10), (11), (14),
(16)) as follows:

Advprp
E (A)=Pr

[
AGame6⇒1

]
−Pr

[
π

$← Perm({0, 1}nm) : Aπ⇒1
]

≤ 6q(q − 1) + q′(q′ − 1)
2n+1

,

where q is the number of queries to E and q′ = q(m − 1). The
inequality above is the right-hand inequality of Eq. (5).

We next evaluate the lower bound of the advantage of A. Con-
sider the following algorithm such that A makes q queries to an
oracle O ∈ {Eρ,φ,ω, π}.
(1) Let P(j)

m = 0n for 1 ≤ j ≤ q − 2. Choose P(j)
1 , . . . , P

(j)
m−1 at

random for j = 1, 2, . . . , q − 2. Make queries (P(j)
1 , . . . , P

(j)
m)

to O for j = 1, 2, . . . , q − 2. Let C(j)
m be the m-th ciphertext

block for the j-th query.
(2) Find j, j′ such that C(j)

m = C(j′)
m for 1 ≤ j < j′ ≤ q − 2.

(3) If such j, j′ are found, then make the (q − 1)-
th query (P(j)

1 , . . . , P
(j)
m−1, 10n−1) and the q-th query

(P(j′)
1 , . . . , P

(j′)
m−1, 10n−1) to O. If C(q−1)

m = C(q)
m , then

return 1, otherwise return 0.
(4) If such j, j′ are not found, then return 0;

Suppose that O = Eρ,φ,ω. According to Fact 14 in the article
written by Bellare et al. [2], the probability that A finds such j, j′

is

Pr
[
A finds such j, j′

] ≥ 0.3 · (q − 2)(q − 3)
2n

.

The inequality above requires the assumption that 1 ≤ q ≤
2(n+1)/2. When A finds such j, j′, A always outputs 1. Hence,
we have

Pr
[
AO ⇒ 1 | O = E

]
≥ 0.3(q − 2)(q − 3)

2n
. (17)

Suppose that O = π. The probability that A finds such j, j′ is

Pr
[
A finds such j, j′

] ≤ (q − 2)(q − 3)
2n+1

When A finds such j, j′, the probability that A outputs 1 is

Pr
[
AO ⇒ 1 | A finds such j, j′

]
≤ 2n(m−1) − 1

2nm − (q − 1)
.

Hence, we have

Pr
[
AO ⇒ 1 | O = π

]
≤ (q − 2)(q − 3)

2n+1
· 2n(m−1) − 1

2nm − (q − 1)
.

Since Pr
[
O = Eρ,φ,ω

]
= Pr [O = π] = 1/2, the advantage of A is

given by

Pr
[
AE ⇒ 1

]
− Pr

[
Aπ ⇒ 1

]
≥ 1

2
· 0.3(q − 2)(q − 3)

2n
− 1

2
(q − 2)(q − 3)

2n+1
· 2n(m−1) − 1

2nm − (q − 1)

≥ (q − 2)(q − 3)
2n+1

(
0.3 − 1

2
· 2n(m−1) − 1

2nm − (q − 1)

)

≥ 0.14(q − 2)(q − 3)
2n+1

,

where the last inequality holds for n ≥ 2. The inequality above
is the left-hand inequality of Eq. (5). This completes the proof of
Theorem 2.

c© 2012 Information Processing Society of Japan 859

Journal of Information Processing Vol.20 No.4 854–860 (Oct. 2012)

5. Concluding Remarks

This paper proposes a length-preserving enciphering scheme
that achieves the PRP security and the streamable decryption.
Our enciphering scheme is suitable for secure communication on
narrowband channels and memory-constrained devices. Our en-
ciphering scheme requires a streamable pseudorandom function
and a blockcipher as primitives. For example, the streamable
pseudorandom function is instantiated with HMAC. Our enci-
phering scheme requires three keys, which might be a problem in
some application. Reducing the number of keys might therefore
be significant in improving usability.

References

[1] Aumasson, J.-P., Henzen, L., Meier, W. and Naya-Plasencia, M.:
QUARK: A lightweight hash, Cryptographic Hardware and Embed-
ded Systems – CHES 2010, Lecture Notes in Computer Science,
Vol.6225, pp.1–15 (2010).

[2] Bellare, M., Desai, A., Jokipii, E. and Rogaway, P.: A Concrete Secu-
rity Treatment of Symmetric Encryption: Analysis of the DES Modes
of Operation, pp.1–31 (2000), available from
〈http://www-cse.ucsd.edu/users/mihir/papers/sym-enc.html〉.

[3] Bellare, M. and Rogaway, P.W.: Block cipher mode of operation for
secure, length-preserving encryption, United States Patent 5673319
(1997).

[4] Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M., Seurin, Y. and Vikkelsoe, C.: PRESENT: An Ultra-
Lightweight Block Cipher, Cryptographic Hardware and Embedded
Systems – CHES 2007, Lecture Notes in Computer Science, Vol.4727,
pp.450–466 (2007).

[5] Cannière, C., Dunkelman, O. and Knežević, M.: KATAN and
KTANTAN – A Family of Small and Efficient Hardware-Oriented
Block Ciphers, Cryptographic Hardware and Embedded Systems –
CHES 2009, 11th International Workshop, Lecture Notes in Computer
Science, Vol.5747, pp.272–288 (2009).

[6] Chakraborty, D. and Sarkar, P.: HCH: A New Tweakable En-
ciphering Scheme Using the Hash-Counter-Hash Approach, Cryp-
tology ePrint Archive, Report 2007/028 (2007), available from
〈http://eprint.iacr.org/〉.

[7] Daemen, J.: Cipher and Hash Function Design Strategies Based on
Linear and Differential Cryptanalysis, PhD Thesis, Katholieke Uni-
versiteit Leuven (1995).

[8] Guo, J., Peyrin, T. and Poschmann, A.: The PHOTON Family of
Lightweight Hash Functions, Advances in Cryptology – CRYPTO
2011, Lecture Notes in Computer Science, Vol.6841, pp.222–239
(2011).

[9] Guo, J., Peyrin, T., Poschmann, A. and Robshaw, M.: The LED
Block Cipher, Cryptographic Hardware and Embedded Systems –
CHES 2011, Lecture Notes in Computer Science, Vol.6917, pp.326–
341 (2011).

[10] Halevi, S.: EME*: Extending EME to Handle Arbitrary-Length Mes-
sages with Associated Data, Progress in Cryptology – INDOCRYPT
2004, Lecture Notes in Computer Science, Vol.3348, pp.315–327
(2004).

[11] Halevi, S.: Invertible Universal Hashing and the TET Encryption
Mode, Advances in Cryptology – CRYPTO 2007, Lecture Notes in
Computer Science, Vol.4622, pp.412–429 (2007).

[12] Halevi, S. and Rogaway, P.: A Tweakable Enciphering Mode, Ad-
vances in Cryptology – CRYPTO 2003, Lecture Notes in Computer
Science, Vol.2729, pp.482–499 (2003).

[13] Knudsen, L., Leander, G., Poschmann, A. and Robshaw, M.J.B.:
PRINTcipher: A Block Cipher for IC-Printing, Cryptographic Hard-
ware and Embedded Systems – CHES 2010, Lecture Notes in Com-
puter Science, Vol.6225, pp.16–31 (2010).

[14] Minematsu, K. and Tsunoo, Y.: Hybrid Symmetric Encryption Us-
ing Known-Plaintext Attack-Secure Components, Information Secu-
rity and Cryptology – ICISC 2005, Lecture Notes in Computer Sci-
ence, Vol.3935, pp.242–260 (2006).

[15] Naor, M. and Reingold, O.: A Pseudo-Random Encryption Mode
(2001), available from 〈http://www.wisdom.weizmann.ac.il/˜naor/
PAPERS/nr-mode.ps〉

[16] Sarkar, P.: Improving Upon the TET Mode of Operation, Information
Security and Cryptology – ICISC 2007, Lecture Notes in Computer
Science, Vol.4817, pp.180–192 (2007).

[17] Schneier, B.: APPLIED CRYPTOGRAPHY (Second Edition), John

Wiley & Sons, Inc. (1996).
[18] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T. and

Shirai, T.: Piccolo: An Ultra-Lightweight Blockcipher, Cryptographic
Hardware and Embedded Systems – CHES 2011, Lecture Notes in
Computer Science, Vol.6917, pp.342–357 (2011).

[19] Wang, P., Feng, D. and Wu, W.: HCTR: A Variable-Input-Length En-
ciphering Mode, Information Security and Cryptology, Lecture Notes
in Computer Science, Vol.3822, pp.175–188 (2005).

Hidenori Kuwakado received his B.E.,
M.E. and D.E. degrees from Kobe Uni-
versity in 1990, 1992, and 1999 respec-
tively. He worked for Nippon Telegraph
and Telephone Corporation from 1992 to
1996. From 1996 to 2002 he was a Re-
search Associate in the Faculty of Engi-
neering, Kobe University. From 2002 to

2007, he was an Associate Professor in the Faculty of Engineer-
ing, Kobe University. Since 2007, he has been an Associate Pro-
fessor in Graduate School of Engineering, Kobe University. His
research interests are in cryptography and information security.

c© 2012 Information Processing Society of Japan 860

