
Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

[DOI: 10.2197/ipsjjip.20.694]

Regular Paper

Kurodoko is NP-Complete

Jonas Kölker1,a)

Received: August 1, 2011, Accepted: March 2, 2012

Abstract: In a Kurodoko puzzle, one must colour some squares in a grid black in a way that satisfies non-overlapping,
non-adjacency, reachability and numeric constraints specified by the numeric clues in the grid. We show that deciding
the solvability of Kurodoko puzzles is NP-complete.

Keywords: puzzles, Combinatorics, Computational Complexity, NP-completeness

1. Introduction and Definitions

Pen-and-paper puzzles are a popular pastime. Many puzzles
are available in book form [3], as web applications [7] and as
downloadable software applications [6].

A recent survey paper [1] reviews the complexity results of
many such pen-and-paper puzzles, in addition to the complex-
ity of games and the relationship between those complexities.
Many commonly played puzzles are NP-complete. Also, for
many kinds of puzzles it is NP-complete to find a second solu-
tion to an instance, given a first solution. This Another Solution

Problem hardness is studied in Ref. [8]. Another collection of
hardness results is Ref. [2].

One particular puzzle for which the hardness is not known is
that of Kurodoko. According to Ref. [7] Kurodoko was invented
by the Japanese publisher Nikoli [4]. The name comes from
“kuro” meaning black and “doko” meaning where, i.e., “where
[are the] black [squares]?.” We will show that solving Kurodoko
is NP-complete. From a bird’s eye view, our proof is very much
similar to many other puzzle hardness proofs, in that we produce
subpuzzles which capture some part of the problem we reduce
from, then combine these subpuzzles in ways that make the global
solutions derived from local solutions correspond to solutions to
the problem we reduce from.

Kurodoko is played on a rectangular grid of size w × h, V :=
{0, . . . , w− 1} × {0, . . . , h− 1}. The squares are initially blank, ex-
cept for a subset of squares C ⊆ V which contain clues, integers
given by a function N : C → {1, . . . , w + h − 1}. We can think of
the rectangular grid as a grid graph G = (V, E), where (v, v′) ∈ E

if and only if v and v′ are horizontally or vertically adjacent, i.e.,
E := {((r, c), (r′, c′)) | |r − r′| + |c − c′| = 1}.

The player’s task is to come up with a set of black squares
B ⊆ V , the rest being white, W := V \ B, such that the following
four rules are satisfied:
(1) The clue squares are all white, C ⊆ W (or equivalently,

B ∩C = ∅).

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
a) epona@cs.au.dk

(2) None of the squares in B are adjacent to any other square in
B. i.e., (B × B) ∩ E = ∅.

(3) All white squares are connected via paths of only white
squares, i.e., the induced subgraph on the white squares
GW = (W, E ∩ (W ×W)) is connected.

(4) The number at each clue square equals the number of white
squares reachable from that square, going in each of four
compass directions and never off the board nor through a
black square, i.e., ∀(r, c) ∈ V : N(r, c) = hz+ vt − 1 where hz

is the length of the longest horizontal run of white squares
going through (r, c), i.e., hz := max{k ∈ N | ∃b : 0 ≤ b ≤ c ≤
b+ k− 1 < w∧ {(r, b+ i)}ki=0 ⊆ W}. Similarly, vt is the length
of the longest such vertical run. We say that (r, c) touches

the squares in these runs, including itself.
We show that the Kurodoko Decision Problem, “given w, h, C

and N and, is there a set B ⊆ V satisfying the above criteria?,” is
NP-complete. We take w and h to be represented as binary en-
codings, C as a list of points (vertices) and N as a list of integers;
the i’th integer in the list representing N is the function’s value at
the i’th point in the list representing C.

To help the reader gain an understanding of these rules and
their implications we offer a simple observation:
Theorem 1. If (w, h,C,N) is solvable and ∃v ∈ C : N(v) = 1,

then 1 ∈ {w, h} and w + h ≤ 4.

Proof. Let (w, h,C,N) be given and suppose that w, h ≥ 2. Let
v be given with N(v) = 1. Then, since w ≥ 2, either v has a right
or left neighbour, or both; let us call any one such neighbour v′.
Since h ≥ 2 this neighbour v′ has a neighbour below or above,
or both. In either case, call such a neighbour v′′. By rule 4, all
neighbours of v must be black. By rule 2, all those neighbours’
neighbours must be white, including v′′. But since v is surrounded
by black squares, there cannot be a path from v to v′′ that steps
on only white squares, violating rule 3. Therefore, w and h can’t
both be at least 2; assume by symmetry that h < 2. It cannot be
that h = 0 or there would be nowhere for v to be found (V = ∅), so
h = 1. Assume w > 3; then v must either be a corner square with
a black neighbour, or have two black neighbours, at least one of
which has a white neighbour that isn’t v. In either case, there is

c© 2012 Information Processing Society of Japan 694

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

at least one white square that doesn’t have a white-only path to v,
which rule 3 requires. So w ≤ 3, and hence w + h ≤ 4. �

2. Proof of NP Membership

We are now ready to state and prove the first part of our claim
of NP-completeness.
Theorem 2. The Kurodoko Decision Problem is in NP.

Proof. We show there is a polynomial time witness-checking
algorithm. The witnesses will be solution candidates, i.e., candi-
dates for B represented as a list of points. Given such a list, we
can easily verify rule 1 in time O(|B| |C|), by two nested loops.
We can also verify rule 2 easily in time O(|B|2) by testing for ev-
ery (r, c) and (r′, c′) in B that |r − r′| + |c − c′| � 1. Verifying
rule 4 is also fairly easy: for each clue square v, find the closest
black square in each of the four compass directions. Then, com-
pute hz + vt − 1 and check that it equals N(v). This takes time
O(|C| |B|).

To check rule 3 if w > 2 |B| + 1 or h > 2 |B| + 1, compress
the grid by merging adjacent rows that don’t contain any black
squares and do the same for columns. Then w, h ≤ 2 |B|+1. Find a
white square by going through each square until a white square is
found. If no white square is found, accept if and only if w = h = 1
(if not w = h = 1 then rule 2 is violated). If a white square vw
is found, verify by DFS that each white square has a path to vw
(or equivalently, that the number of white squares reachable from
vw plus the number of black squares equals the total number of
squares). Accept if and only if this is satisfied. �

We note that if w and h were given in unary then the compres-
sion step would not be necessary since the size of the board would
be polynomial in the length of the input. The rest of this article is
devoted to proving the next theorem.
Theorem 3. The Kurodoko Decision Problem is NP-hard.

3. Overview of the Hardness Proof and Reduc-
tion

We prove the NP-hardness of Kurodoko-solvability, by show-
ing how to compute a reduction from one-in-three-SAT. This
problem was shown to be NP-complete in Ref. [5].

We do the reduction by describing a set of gadgets, a set
of 17 × 17 square-of-squares containing clues, which are very
amenable to combination and act in circuit-like ways, e.g., as
wires, bends, splits, sources, sinks and so forth. These are com-
bined to form three kinds of components: one kind acting like
SAT variables, a second kind acting like SAT clauses, and a third
kind acting like a matching between the components of the two
first kinds, such that each clause component gets routed to the
components corresponding to exactly those variables referenced
in the clause. When taken as a whole we refer to the gadgets as
the board (as in “printed circuit board”).

We will show that in every solution to the Kurodoko instance
resulting from the reduction, the gadgets will behave according
to fairly simple descriptions which capture their circuit proper-
ties (e.g., wires behave like the identity function). This in turn
implies that the components each behave according to a descrip-
tion which captures the connection to that SAT problem, such that

SAT problem must have a solution.
For the reverse direction, we show how to compute a Kurodoko

solution from a given SAT solution, and verify that this Kurodoko
solution is indeed a solution, i.e., that it satisfies the four rules
which define solutions.

4. The Reduction

In this section, we describe in more detail first the gadgets, then
how to manipulate and combine them into components. Next, we
describe which components we combine gadgets into, how the
components are combined into boards, and finally how to han-
dle a deferred issue which requires global information about the
board. In Appendix A.1 we provide an implementation of the
reduction in order to ensure there is no ambiguity.

4.1 Gadgets
The reduction uses nine different gadgets named Wire, Nega-

tion, Variable, Zero, Xor, Choice, Split, Sidesplit and Bend. As
an example see Fig. 1 for an illustration of the Wire gadget.

Diagrams of the remaining gadgets are provided in Ap-
pendix A.2. Note that in all of them, the outermost rows and
columns are either empty, or contain the centered sequence {a
question mark, no clue, the clue 2, no clue, a question mark}.

Formally, we can think of the Wire gadget as a Kurodoko in-
stance wire = (17, 17,C,N), where C is the set of clue squares
and N is the set of clue values. Some squares v? contain ques-
tion marks; formally, we give them the value 1 for now. Their
true value will be established once the pattern of how gadgets are
combined is known, which depends on the SAT instance given to
the reduction. When we speak of deductions about the board, we
mean with the true value in place.

The eight marked squares ({n, w, e, s}{i,o}) are not elements of C,
and are in fact not a part of the gadget. The behavior of the gad-
gets can be succinctly described in terms of the colours of these
squares. We think of di as an input square (for d = n, w, e, s) and
do as an output square. In some sense we want to think of the
square in the center row or column immediately outside the gad-
get as the true output square, but this square will have the same
colour as do. We treat black as 1 and white as 0. With this, we
offer a description of the gadgets:

? 2 ?

ni
no

? 2 ?

? 2 ?

wi wo eo ei

2 ? 3 ? 2

? 2 ?

so

si
? 2 ?

Fig. 1 The Wire gadget.

c© 2012 Information Processing Society of Japan 695

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

• Wire: no = si: the north output equals the south input.
• Negation: no = 1 − si: the north output is the opposite of the

south input.
• Variable: no ∈ {0, 1}: the north output is always 0 or 1.
• Zero: no = 0: the north output is always 0.
• Xor: no = ei ⊕ wi, the north output equals the xor of the east

and west inputs.
• Choice: wi + si + ei = 1, exactly one input is 1.
• Split: wo = eo = si: the west and east output equals the south

input.
• Sidesplit: no = eo = si: the north and east output equals the

south input.
• Bend: eo = si: the east output equals the south input.

We claim now—and prove later—that in any instance created by
our reduction, these relationships have to hold or the instance
doesn’t have a solution.

4.2 Manipulation and Combination of Gadgets
We note that the gadgets are square and can be mirrored and ro-

tated. For compactness, let us introduce some notation for this: if
G is a gadget, then G+ is G rotated 90◦ clockwise, G− is G rotated
90◦ counterclockwise, G2 is G rotated 180◦ and G is G mirrored
through a vertical line. We call gadgets by their first letter, except
for Split which we refer to as T (in Appendix A.2, it looks like a
tee).

Rotating and mirroring gadgets has the expected consequences
to their operation. For example, if we mirror and then rotate
clockwise a Bend gadget, the result is a gadget that takes an
input on the west edge and outputs this on the north edge, i.e.,
no(B

+
) = wi(B

+
). Note that this is different from B+, where

so = ei.
Note that if an input square xi is adjacent to a clue 2, then its

adjacent output square xo must contain the opposite colour of the
input square, xi⊕ xo = 1, or else rule 2 (two blacks) or rule 4 (two
whites) would be violated. This implies a curious property of the
wire gadget: so = 1 − si = 1 − no = ni; that is, it works in the
other direction too. The same is true for Bend and Negation. For
the Xor gadget, we see that no = ei ⊕ wi ⇒ no ⊕ ei = wi ⇒
(1 ⊕ no) ⊕ ei = 1 ⊕ wi ⇒ ni ⊕ ei = wo.

This is why there is no Side-Xor: for X+ we have no = si ⊕ ei,
i.e., X+ works as a hypothetical Side-Xor would. Likewise, X−

behaves as a Side-Xor, in that no = si ⊕ wi.
Let us next define what it means to combine multiple gadgets.

Let’s say we have a set K = {(g, r, c)i}ki=1 of k gadgets, the i’th
gadget g = (wg, hg,Cg,Ng) having coordinates (r, c) ∈ N2 on the
combined board. Then, in the combined instance,

hK = max{16r + wg | ((wg, hg,Cg,Ng), r, c) ∈ K}
wK = max{16c + hg | ((wg, hg,Cg,Ng), r, c) ∈ K}
CK =

⋃

(g,r,c)∈K
{(16r + i, 16c + j) | (i, j) ∈ Cg}

Furthermore, for each (r, c) ∈ CK where r = 16i + r′ and
c = 16 j + c′ and 0 ≤ r′, c′ ≤ 16 and (g, i, j) ∈ K we have
NK(r, c) = Ng(r′, c′).

In other words the gadgets are placed next to one another, such
that the rightmost column of each gadget overlaps the leftmost

column of its right neighbour, and similarly in each other com-
pass direction. The set of clues in the instance (wK , hK ,CK ,NK)
is the union of the clues in each of the gadgets, suitably trans-
lated. For this to be well-defined, the clue values in the overlap
areas must agree between the two overlapping gadgets.

If two overlap areas are empty (in both gadgets), this clearly
isn’t an issue. If one gadget is non-empty in the overlap, it simply
“overwrites” the (overlap-)empty gadget, although this will never
happen. If they are both non-empty, then they are in fact equal in
the overlap area, per our previous remark about their outermost
row and column structure. So this will always be well-defined.

4.3 Components and the Board
We have just seen how to combine a collection of gadgets K

into an instance (wK , hK ,CK ,NK). As it happens, components are
just such instances. Let us consider as an example the clause
component. It has several variants; we show first the variant cor-
responding to a clause (x, y, z):

B W+ C W− B

W W W

Next the variant for a clause (x,¬y):

B W+ C W− B

W N W

Finally the same clause, with variables gadgets added to show
the component in a context:

B W+ C W− B

W N W

Vx Vy Z

Formally speaking, the first clause component can be described
as a combination (by the above rule) of {(B, 0, 0), (W+, 0, 1),
(C, 0, 2), (W−, 0, 3), (B, 0, 4), (W, 1, 0), (W, 1, 2), (W, 1, 4)}.

Hopefully it is clear how these work. Assuming the W- and N-
gadgets have neighbours to the south which provide input (as in
the latter example), this input goes through the W or N and either
directly into the C gadget, or through a bend that points it towards
the C which it reaches after going through either W+ or W−. The
pattern is this: the top row is identical in all variants of the clause
component. In the bottom row, columns one and three are always
empty. For a clause with k variables where k < 3, the rightmost
3−k even-indexed columns contain W-gadgets (these will be con-
nected to a Z input elsewhere). The remaining columns contain
W or N, depending on whether the corresponding variable in the
clause is negated or not. For instance, the central N is the middle
component is there (rather than a W as in the left component) be-
cause y is negated. The rightmost W is connected to a Z since the
clause only has two variables.

Next we show the zero component. This one is rather simple:

Z

As we will see later, instances of this will be connected to

c© 2012 Information Processing Society of Japan 696

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

clause components for those clauses that refer to less than three
variables.

Next, let us consider the variable component. Its structure de-
pends on how many times the variable is used. We show the struc-
ture for variables used once, twice, thrice and four times:

V

S W+ B
+

W W

S W+ W+ W+ B
+

W

S W+ W+ W+ W+ W+ B
+

V

S W+ B
+

V

S W+ B
+

W

S W+ W+ W+ B
+

V

Once again, it should hopefully be clear what happens. The
output produced by V is repeatedly split to go both up and to
the right. The copies continue to the right until they can be bent
upwards and continue up, such that the variable component pro-
duces k equal outputs with a non-outputting square between each
output.

Also, the structural pattern should be fairly clear: a variable
used k times produces a component of height k and width 2k − 1.
The bottom row always has a V in its leftmost square—only this,
and nothing more. Other than this, row i from the top has (from
left to right) an S , then 2i + 1 times W+, then B

+
, then k − i − 1

times {nothing, followed by W}.

Finally, we have the routing component. This is built up of
multiple copies of two kinds of subcomponents, wires and swaps:

W

W

X+ T X−

S X S

Clearly the (northern) output of the wire component is the
southern input. Let a denote the input to S and b the input to
S . Then the output of X is a ⊕ b. This is fed through T as input
to both X+ and X−; the input to X+ is a (from S) and a ⊕ b (from
T), and so the northern output must be a ⊕ (a ⊕ b) = b. Similarly,
the northern output of X− is a.

In order to best motivate the structure of the routing compo-
nent, we need to look at the structure of the Kurodoko instance
produced by the reduction. In the top, there will be one clause
component for every clause in the SAT instance; each pair of adja-
cent components has one column of “air,” unused space, between
them. At the bottom, there is one variable component for every
variable that occurs in a clause somewhere (with the appropriate
number of repetitions built into the variable component), as well
as k zero components, where k is the amount of “extra space” in
the clauses, k = 3m−∑m

j=1

∣∣∣C j

∣∣∣, three times the number of clauses
minus the total number of literals.

What the routing component does is essentially label each out-
put of the bottom part with the index of its goal column and then
sort the signals.

Internally, create an array A (initially 3m copies of ⊥) corre-
sponding to the outputs of the bottom part of the board. For
i = 1, . . . , 3m, if the � i

3 �’th clause has at least (i mod 3) + 1 vari-
ables, store i in the leftmost non-⊥ entry of A which corresponds
to the (1 mod 3 + 1)’th variable; if not, store i in the leftmost
non-⊥ entry of A which corresponds to a zero component.

Then, run some comparison-based sorting algorithm which
only compares adjacent elements *1. For t = 1, . . . , tmax, place
a row of swap and wire subcomponents on top of the bottom part
of the board, putting swap subcomponents between entries that
are swapped at time t and wire subcomponents at entries that are
left unchanged at time t. Here, tmax is the smallest number such
that the algorithm never makes more than tmax layers of swaps. In
the case of the odd-even transposition sorting network, tmax is 3m,
the number of elements to be sorted. Note that once A is sorted
we are free to stop early (i.e., the height of the routing component
may depend on more features of the SAT instance than just its
size).

These are the components. They are combined into a board by
the same rule used to combine gadgets into components. To sum-
marise the description of the structure of the board, given a SAT
instance: on top there’s one clause component for every clause in
the SAT instance with at least one variable. At the bottom, there’s
a variable component for every variable contained in at least one
clause, and at the bottom right k zero components for every clause
with 3 − k variables (k = 1, 2). In the middle, there’s a routing
component. As an example, consider the SAT instance (¬v2, v1).
The corresponding Kurodoko instance looks like this:

B W+ C W− B

N W W

X+ T X− W

S X S W

V V Z

Note that every gadget with one or more outputs is placed ad-
jacent to other gadgets that have these outputs as their inputs (and
vice versa). In other words, in the areas where gadgets overlap,
either both (all) gadgets contain no clues in the overlap, or they
do contain clues and the clues match up. Also, no gadget contains
clues in the outermost rows or columns of the board.

4.4 Post-processing the Board to Handle u?
In Appendix A.2 we show the gadgets. For each of the gadgets,

we can make deductions about the colour of some of the squares,
under the assumption that the instance containing the square has
a solution. In other words, some squares are necessarily the same
colour in all solutions. In this section, white (black) squares refers
to squares that are white (black) in all solutions.

For some squares containing a question mark in three direc-
tions going out from that square there are black squares within the
question mark’s gadget (whose blackness can be deduced inde-

*1 Examples include insertion sort, bubble sort and the odd-even transposi-
tion sorting network.

c© 2012 Information Processing Society of Japan 697

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

pendent of the value in the square with the question mark), while
in a fourth open direction there are no black squares within the
gadget. We call these squares end squares (e.g., there are six of
those in S). Suppose that we draw a line from each end square
in the open direction and its opposite until we hit the edge of the
board or a black square. We call these lines rays. Then, we want
to show:
Lemma 1. Every square containing a question mark lies on a

ray.

Proof. Observe that some question marks can be seen to lie on
a ray just by examining the gadget containing the question mark.
Call the rest of the question marks non-obvious. Observe (by in-
spection) that in every gadget G which contains a non-obvious
question mark, one can draw one or two lines which are 17
squares long and don’t contain any black squares such that ev-
ery non-obvious question mark lies on one of these lines. It can
be seen (again by inspection) that every such line contains two
non-obvious question marks which lie in the outermost rows or
columns of the gadget, and thus also in the gadgets adjacent to G.

If the question marks can be directly observed to lie on a ray,
then the question marks in G must lie on the same ray (observe
that the rays point in the right directions for this to follow, i.e.,
they aren’t completely contained within gadget overlap areas). If
not, continue into the next neighbour. As argued earlier, this can-
not stop by running out of neighbours or running off the board,
so this must stop in a gadget containing an end square, with its
ray fully containing these 17 square long lines, and thus the non-
obvious question marks in G (at least on one of the lines; repeat
this argument for the other line, and for all other gadgets). �

As a consequence of this two-directional inductive argument,
every ray contains at least (in fact exactly) two end squares. Ex-
tend the ray from one end square; it will eventually hit an end
square. This means that in each of the four directions out from
the end squares, we have found a square that is certainly black.
If we assume that every square on the ray is white, then for ev-
ery end square v and every value of N(v) except one, rule 4 must
be violated. Assign to N(v) the remaining value, such that every
square on a ray must be white.

Observe that every non-end square v? with a question mark is
adjacent to a black square (in a non-ray direction). As this square
is on a ray (by lemma 1), it is surrounded by two end squares and
thus also two black squares in the ray direction. There might be
a black square in the last direction inside the gadget containing
v?. If there is, let N(v?) be the value such that the other squares
in this last direction must be white. If there isn’t, let N(v?) have
the unique value such that v? must touch zero squares in this last
direction.

5. Proof of Correctness of the Reduction

We have described how to produce a Kurodoko given a SAT
instance. We want to show that the Kurodoko instance has a so-
lution if and only if the SAT instance has a solution. To do this,
we first make some observations about the set of solutions to the
Kurodoko instance and the properties of its elements.

Consider again the Wire gadget (Fig. 1). In every Kurodoko

? � 2 � ?

· x ·
· x ·

? � 2 � ?

· x ·
· x ·

? � 2 � ?

· x ·
· x ·

· � · · w · · � ·
· � 2 ? � 3 � ? 2 � ·
· � · · x · · � ·
· · x · ·

? � 2 � ?

· x ·
· x ·

? � 2 � ?

Fig. 2 The Wire gadget.

instance containing it that has a solution, the squares between 2
and ? must be black, or else rule 4 is violated. Their neighbouring
squares will have to be white, or rule 2 is violated. Similar deduc-
tions can be made around the 2s adjacent to the ?s. This means
that in any solution, the wire gadget must look like in Fig. 2. The
� represent squares that are black in all solutions, and · represent
squares that are white in all solutions. Not all possible deductions
are made—some squares are necessarily white because of the ray
property, but these are not marked as such, as this information
is not necessary to make the deductions we need. The square
marked w must be white, or else the 3 would touch either too few
or too many squares and violate rule 4. The squares marked x can
be seen to all have the same value, likewise for x, and the two
values must be different. Otherwise, either rule 4 or rule 2 would
be violated.

Also, the square north (in the board) of the northernmost 2 in
the Wire gadget ought to be marked x, as it must be consistent
with its value. Partial solutions for the remaining gadgets are to
be found in Appendix A.2, along with arguments that they work
as described previously.

5.1 Proof that Kurodoko Solvability Implies SAT Solvabil-
ity

We are now ready to prove the following:
Theorem 4. Let a SAT instance be given, and let K = (w, h,C,N)
be a Kurodoko instance produced by the reduction described pre-

viously. If K has a solution, then the SAT instance also has a

solution.

Proof. As we just stated, if K has a solution, then the gadgets
work as claimed. It is clear from the structure of the components
that if the gadgets work as claimed, the components do as well.

Let a solution be given. The reductions specifies an obvious
bijection between SAT variables and variable components in K:
assign to each SAT variable the value of x in its component (i.e.,
v1 is true iff x is black in the leftmost variable component).

Exactly one input to each clause gadget must be black (i.e.,
true), which by the structure of clause components implies that
there is exactly one “good” input to the gadget’s containing com-
ponent, one that is either true (black) and non-negated or false
(white) and negated.

c© 2012 Information Processing Society of Japan 698

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

The routing component matches the clause components with
variable components in the same way clauses are matched with
variables in the SAT instance. Since clause components each
have one good input, the variable assignment ensures that each
SAT clause have exactly one literal that is satisfied. That is, the
assignment is a solution of the SAT instance. �

5.2 Proof that SAT Solvability Implies Kurodoko Solvabil-
ity

Next, we want to establish that if the SAT instance that pro-
duces a given Kurodoko instance K has a solution, then K has a
solution as well. We will do this by suggesting a solution candi-
date and then showing that none of the four rules are violated.
Theorem 5. Let a SAT instance be given, and let K be the

Kurodoko instance produced by the reduction when run on the

given SAT instance. If the SAT instance has a solution, then K

has as solution as well.

Proof. Let v ∈ {0, 1}n be a variable assignment which satisfies
the SAT constraints. For every live variable i in the SAT, there is
one corresponding variable gadget in K; in each such gadget, let
x be black if vi is 1 and white if vi is 0.

Also, let every square be black if it contains a � in its partial
solution in Appendix A.2. Let a square be black if the consis-
tency of x and x requires it, and let squares be black according to
the description of the gadgets (i.e., if two inputs x and y to an Xor
are black, let the squares corresponding to xy and z be black). For
purposes of (opposite) consistency, consider the black square in
the next-to-top row in the Zero gadget to be a named square (x,
x, y, etc.), and cross the gadget boundary: if an outermost x of a
gadget is white, the square on the other side of the 2 is black and
vice versa. Finally, some squares v? marked ? are not end squares
and aren’t flanked by two intra-gadget black squares in the partial
solutions in Appendix A.2. One of the two squares adjacent to v?
in the non-ray direction is marked � in the partial solutions; let
the other be black. Let the remaining squares be white.

First, rule 1 is clearly satisfied: one can see by inspection that
no square in a gadget marked � nor any named square also con-
tains a clue.

Secondly rule 2: no squares marked � are adjacent and no
square marked � is adjacent to a named square. The set of squares
adjacent to named (black) squares that could potentially be black
are the negations of said named squares, which obviously don’t
pose a problem, and one square in Xor marked xy: it contains the
value x ∧ y and is adjacent to z = x ⊕ y. Note that if x ⊕ y = x ∧ y
then x = y = 0, so this doesn’t violate rule 2 either. So there is no
pair of adjacent black squares.

Connectedness is required by rule 3. If we can establish that
every square is connected to the top left square(s) of the gadget(s)
containing it, we can conclude the rule can’t be violated, as due
to symmetry and transitivity of the connectedness relation each
square in a gadget is connected to every other square in that gad-
get. In particular, each square is connected to the edge squares,
which are connected to every square in the neighbouring gadget.
But then we can reach any target square, starting at any other
square: go through neighbouring gadgets to the gadget contain-

ing the target square, and then (staying inside that gadget, going
via the top left corner) go to the target square.

It can be seen by inspection *2 that every square in a gadget has
such a path to the top left corner of the gadget, except for one
class of square: a 2 in an outermost row or column, with three ad-
jacent black squares—either three squares marked as black, in the
case of Zero, or two such squares and one named square. In both
cases, assuming this “trapped” square is on the north edge, the
next square north of 2 is white by the oppositional consistency of
(x, x), having considered the “trapping” black square from Zero
as a named square. If there was no such trapping black square,
not only would the 2 have an intra-gadget path to the top left
square, it would also have a five square path to its closest two ?s.
When there is such a trapping black square, the 2 therefore has
a five square path to its nearby ?s through the adjacent gadget.
From there, it then has a path to the top left square of both its
containing gadgets.

Lastly, rule 4 requires each clue to touch a number of (white)
squares denominated by that clue. The clue squares can be di-
vided into three sets, namely those marked ?, those which are
flanked by a named square and its negation (possibly with some
squares marked w adjacent on one side), and finally the rest,
which (loosely speaking) serve to necessitate the flanking of the
squares in the middle group by two black squares.

The last group can be seen to all obey rule 4 by inspecting
the partial solutions in Appendix A.2, with one exception: the
topmost 2 in Zero, but this clue is fulfilled since we treat the
black square on the south as named with respect to oppositional
consistency—in other words, as every Z has a gadget to the north
of it, the square to the north of this 2 is white, and the square to
the north of that is black.

It should be obvious from how the values of N(v?) are chosen
in the reduction that the first group, the squares marked ?, also
obey rule 4: the values are chosen such that if every square on a
ray is white (which it is), the squares orthogonal to the ray going
out from the end squares are white (which they are), and each
v? that isn’t “framed” by four necessarily black squares are given
black neighbours to frame them (which they are), the clues are
satisfied.

Lastly, the clues extended by w and flanked by named squares.
These can all fairly straightforwardly be seen to be satisfied by the
oppositional consistency of the named squares (and their black
flanks). Two notable exceptions are the center squares of ev-
ery Choice and Xor gadget, respectively. A simple case analysis
shows that every choice of x, y and their implied values of xy and
z will satisfy the central 3.

Lastly, since v is a solution to the SAT instance, each clause
has one true literal. This implies by the structure and combina-
tion of the gadgets and components that every choice gadget has
one black input. But then it is clear that exactly one of the central
x, y, z are white, satisfying the central clue.

Thus, under the assumption that the given SAT instance has a
solution, so does the Kurodoko instance K produced by the re-

*2 The inspection may in some cases be easier if one cuts the gadgets into
quadrants and see each quadrant to be connected, then realises that the
dividing lines can be crossed by paths that only contain white squares.

c© 2012 Information Processing Society of Japan 699

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

duction. �

6. Discussion of the Reduction, the Result and
Future Work

We have seen (with proof) a mapping from SAT instances to
Kurodoko instance which preserves solvability. In fact, we have
given a map from SAT solutions to Kurodoko solutions. Note,
however, that for every SAT solution there are multiple Kurodoko
solutions: every clause component contains gadget-free board po-
sitions. In such a “null gadget,” one can freely choose the colour
of the center square (and one in fact has many more degrees of
freedom).

This means that the map from SAT solutions to Kurodoko so-
lutions (given our choice of polynomial time witness checking
turing machines) isn’t injective. One might as future work try to
find a reduction from other problems to Kurodoko where there is
an injective solution map.

Also, the use of ? is somewhat unsatisfactory: this makes the
atomic parts of the reduction depend on how they’re combined. It
would make for a simpler and more easily understood reduction
if this requirement was eliminated.

However: note that each ? value, and in fact each other inte-
ger in the representation of the Kurodoko instance produced by
the reduction, is at most linear in the size of the SAT instance
(and also the Kurodoko instance). In other words, the Kurodoko
solvability problem is in fact strongly NP-complete.

One can do better than linear, though. If one adds kinks to
the wire subcomponents (connect four Bends so as to act the
same) and adds layers of wire subcomponents between each sort-
ing layer, each ? is on a ray of length O(1). The details of proving
this are left as an exercise to the reader.

References

[1] Demaine, E.D. and Hearn, R.A.: Playing Games with Algorithms: Al-
gorithmic Combinatorial Game Theory, Games of No Chance 3, Albert,
M.H. and Nowakowski, R.J. (Eds.), Mathematical Sciences Research
Institute Publications, Vol.56, pp.3–56, Cambridge University Press
(2009).

[2] Eppstein, D.: (Personal page) (online), available from
〈http://www.ics.uci.edu/˜eppstein/cgt/hard.html〉 (accessed 2011-07-
28).

[3] Nikoli: Purchase Nikoli Books (online), available from
〈https://www.nikoli.co.jp/howtoget-e.htm〉 (accessed 2011-07-28).

[4] Nikoli: Rules of Kurodoko (online), available from
〈http://www.nikoli.co.jp/en/puzzles/where is black cells/〉 (accessed
2011-07-28).

[5] Schaefer, T.J.: The complexity of satisfiability problems, Proc. 10th
Annual ACM Symposium on Theory of Computing, pp.216–226 (1978).

[6] Tatham, S.: Portable Puzzle Collection (online), available from
〈http://www.chiark.greenend.org.uk/˜sgtatham/puzzles/〉 (accessed
2011-07-28).

[7] Weiss, S.: Kuromasu (online), available from 〈http://www.lsrhs.net/
faculty/seth/Puzzles/kuromasu/kuromasu.html〉 (accessed 2011-07-28).

[8] Yato, T.: Complexity and completeness of finding another solution and
its application to puzzles, Master’s thesis, Graduate School of Science,
the University of Tokyo (2003).

Appendix

A.1 A python Implementation of the Reduc-
tion

We have attempted to give a semi-formal, unambiguous de-

scription of the reduction in sufficient detail. However, nothing
can be quite as unambigous and sufficiently detailed as an imple-
mentation, so we give one.

1 # !/ usr / bin / env python
2
3 from sys import argv, exit
4 from itertools import chain
5
6 ####################
7
8 null = None
9 gadget size = 17

10
11 def unpack(gadget str):
12 k = gadget size
13 gadget = [null for in range(k∗∗2)]
14 dim, stream = gadget str . split (’ : ’)
15 assert dim == ’17x17’
16 ptr = 0
17 for (i , c) in enumerate(stream):
18 if c in ’ ’ : pass
19 elif c. islower (): ptr += 1 + ord(c) − ord(’a’)
20 elif c. isdigit () or c in ’ ?! ’ :
21 if c. isdigit (): assert not stream[i+1]. isdigit ()
22 gadget[ptr] = c
23 ptr += 1
24 else : assert False
25 assert ptr == len(gadget)
26 return [gadget[i : i+k]
27 for i in range (0, len (gadget), k)]
28
29 def rotate (old):
30 k = gadget size
31 new = [[null for in range(k)] for in range(k)]
32 for r in range(k):
33 for c in range(k):
34 new[k − 1 − c][r] = old[r][c]
35 return new
36
37 def flip (old):
38 k = gadget size
39 new = [[null for in range(k)] for in range(k)]
40 for r in range(k):
41 for c in range(k):
42 new[r][k − 1 − c] = old[r][c]
43 return new
44
45 ####################
46
47 wire , neg, var , zero , xor , choice , \
48 tee , ltee , bend, ngadgets = range(10)
49
50 # exclamation marks indicate where ‘rays’ end.
51 gadgets = [
52 # wire
53 ”17x17:e !?!2!?! e qq e !?!2!?! e qq e !?!2!?! e qqq ”
54 ”d !2?!3!?2! d qq e !?!2!?! e qq e !?!2!?! e” ,
55 # neg
56 ”17x17:e !?!2!?! e qq e !?!2!?! e qq e !?!2!?! e qqq ”
57 ”e !?!2!?! e qq e !?!2!?! e qq e !?!2!?! e” ,
58 # var
59 ”17x17:e !?!2!?! e qq d3 !?!2!?!3 d d3a!c!a3d”
60 ”qqqqqqqqqqqq”,
61 # zero
62 ”17x17:e !?!2!?! e qq d3 !?!2!?!3 d d3a!c!a3d h7h”
63 ”qqqqqqqqqqq”,
64 # xor
65 ”17x17:qqqq c!d!d!c !b2d2d2b! ?b?d?d?b? !b!d!d!b!”
66 ”2b4d3d4b2 !b!i !b! ?b?!g!?b? !b4 4a!c!a4 4b! c! i !c”
67 ”d !2?!3!?2! d qq e !?!2!?! e” ,
68 # choice
69 ”17x17:qqqq c! i !c !b2d!d2b! ?b?d?d?b? !b!d!d!b!”
70 ”2b4d2d4b2 !b!i !b! ?b?!g!?b? !b4 4a!c!a4 4b!”
71 ”c! i !c d !2?!4!?2! d qq e !?!2!?! e” ,
72 # tee
73 ”17x17:qqqqq !b!b!c!b!b! ?b?b?c?b?b?”
74 ”!b!b!c!b!b! 2b2b2c2b2b2 !b!d4d!b! ?b?!g!?b?”
75 ”!b4 4a!c!a4 4b! c! i !c” ”d !2?!3!?2! d qq e !?!2!?! e” ,
76 # ltee
77 ”17x17:qqqq c!f ! f !b2b4c3b!b! ?b?a!2!b?b?b?”
78 ”!b!b!c!b!b! 2b2b3c2b2b2 !b!d4d!b! ?b?!g!?b?”
79 ”!b4 4a!c!a4 4b! c! i !c d !2?!2!?2! d qq e !?!2!?! e” ,

c© 2012 Information Processing Society of Japan 700

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

80 # bend
81 ”17x17:qqqq j! f j2b!b! e2!c?b?b? j !b!b! j2b2b2”
82 ”e4b4a!b!b! l !?b? d3a!c!a4 4b! m!c d !2?!3!?2! d”
83 ”qq e !?!2!?! e” ,
84]
85 gadgets = [s . replace (’ ’ , ’ ’) for s in gadgets]
86 assert len (gadgets) == ngadgets
87
88 bend dr = unpack(gadgets[bend])
89 bend dl = flip (bend dr)
90 bend lu = rotate (rotate (bend dr))
91
92 tee d = unpack(gadgets[tee])
93 tee l = rotate (flip (unpack(gadgets[ltee])))
94 tee r = flip (tee l)
95
96 xor r = rotate (unpack(gadgets[xor]))
97 xor d = rotate (xor r)
98 xor l = rotate (xor d)
99

100 wire up = unpack(gadgets[wire])
101 wire right = rotate (wire up)
102 wire left = flip (wire right)
103
104 gchoice = unpack(gadgets[choice])
105 gwnot = unpack(gadgets[neg])
106 gzero = unpack(gadgets[zero])
107 variable = unpack(gadgets[var])
108
109 xgadgets = [bend dr , bend dl , bend lu , tee d , tee l , tee r , xor r ,
110 xor d , xor l , wire up, wire right , wire left , gchoice ,
111 gwnot, gzero , variable]
112
113 def main(argv):
114 sat instance = parse (argv)
115 kurodoko instance = reduction (sat instance)
116 encoding = encode(kurodoko instance)
117 print encoding # a la ‘Range’ in Simon Tatham’s puzzle collection
118
119 def parse (argv):
120 sets = []
121 for s in argv:
122 v = map(int , s . split (’ . ’))
123 if len (v) > 3:
124 raise SystemExit(”bad arg : %s (bigger than 3)” % s)
125 sets .append(v)
126 return sets
127
128 def reduction (clauses):
129 counts = count vars (clauses)
130 vars = sorted (counts .keys ())
131 sorting network = make sorting network(vars , counts , clauses)
132 (w, h) = compute gadget count(counts , sorting network)
133 ww, hh = (gadget size − 1) ∗ w + 1, (gadget size − 1) ∗ h + 1
134 grid = [[null for c in range(ww)] for r in range(hh)]
135
136 add variables (grid , w, h, vars , counts)
137 add sorting network (grid , w, h, counts , sorting network)
138 add clauses (grid , w, h, clauses)
139 print grid (grid)
140 fix deferred work (grid)
141
142 return grid
143
144 def print grid (grid):
145 for line in grid :
146 buf = []
147 for x in line :
148 if x != None: buf .append(str (x))
149 else : buf .append(’ ’)
150 print ’ ’ . join (buf)
151
152 ####################
153
154 def add variables (grid , w, h, vars , counts):
155 k = max(counts.values ())
156
157 c = 0
158 for vidx in range(len (vars)):
159 n = counts[vars [vidx]]
160 r = h − k
161
162 for i in range(n − 1):

163 solder (grid , w, h, r+i , c , tee l)
164 solder (grid , w, h, r+i , c+1, wire right)
165 for j in range (1, i+1):
166 solder (grid , w, h, r+i , c+2∗j+0, wire right)
167 solder (grid , w, h, r+i , c+2∗j+1, wire right)
168 solder (grid , w, h, r+i , c+2∗i+2, bend lu)
169 for j in range(i+2, n):
170 solder (grid , w, h, r+i , c+2∗j, wire up)
171 solder (grid , w, h, r + (n−1), c , variable)
172
173 c += 2∗n
174 assert c == w + 1
175
176 def add sorting network (grid , w, h, counts , sorting network):
177 base = h − 1 − max(counts.values ())
178 def swap(r , c):
179 br , bc = base − 2∗r , 2∗c
180 solder (grid , w, h, br − 0, bc + 0, tee l)
181 solder (grid , w, h, br − 0, bc + 1, xor d)
182 solder (grid , w, h, br − 0, bc + 2, tee r)
183 solder (grid , w, h, br − 1, bc + 0, xor r)
184 solder (grid , w, h, br − 1, bc + 1, tee d)
185 solder (grid , w, h, br − 1, bc + 2, xor l)
186
187 def mkwire(r, c):
188 for dr in range (2):
189 solder (grid , w, h, base − (2∗r + dr), 2∗c,
190 wire up)
191
192 for i in range(len (sorting network)):
193 for j in range(len (sorting network [i])):
194 if sorting network [i][j]: swap(i , j)
195 elif j == 0 or not sorting network [i][j−1]:
196 mkwire(i, j)
197
198 def add clauses (grid , w, h, clauses):
199 for i in range(len (clauses)):
200 solder (grid , w, h, 0, 6∗i + 0, bend dr)
201 solder (grid , w, h, 0, 6∗i + 1, wire right)
202 solder (grid , w, h, 0, 6∗i + 2, gchoice)
203 solder (grid , w, h, 0, 6∗i + 3, wire left)
204 solder (grid , w, h, 0, 6∗i + 4, bend dl)
205
206 clause = clauses [i]
207 assert len (clause) <= 3
208 for j in range(len (clause)):
209 v = clause [j]
210 if v < 0: solder (grid , w, h, 1, 6∗i + 2∗j ,
211 gwnot)
212 else : solder (grid , w, h, 1, 6∗i + 2∗j ,
213 wire up)
214 for j in range(len (clause), 3):
215 solder (grid , w, h, 1, 6∗i + 2∗j , gzero)
216
217 def fix deferred work (grid):
218 for (r , row) in enumerate(grid):
219 for (c , elt) in enumerate(row):
220 if elt != ’?’ : continue
221 n = 1
222 for (dx, dy) in [(−1, 0), (1, 0),
223 (0, −1), (0, 1)]:
224 y, x = r + dy, c + dx
225 while grid [y][x] != ’ ! ’ :
226 n += 1
227 x += dx
228 y += dy
229 grid [r][c] = n
230 for (r , row) in enumerate(grid):
231 for (c , elt) in enumerate(row):
232 if elt in (None, ’ ! ’): grid [r][c] = 0
233 else : grid [r][c] = int (elt)
234
235 ####################
236
237 def solder (grid , w, h, r , c , gadget):
238 w, h = (gadget size − 1) ∗ w + 1, (gadget size − 1) ∗ h + 1
239 base y = (gadget size − 1) ∗ r
240 base x = (gadget size − 1) ∗ c
241 for y in range(gadget size):
242 for x in range(gadget size):
243 gy, gx = base y + y, base x + x
244 if gy < 0 or gx < 0 or gy >= h or gx >= w: continue
245 assert grid [gy][gx] in (null , gadget[y][x])

c© 2012 Information Processing Society of Japan 701

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

246 grid [gy][gx] = gadget[y][x]
247
248 ####################
249
250 def count vars (clauses):
251 counts = {}
252 for clause in clauses :
253 for v in clause :
254 counts[v] = 1 + counts . get (v, 0)
255 return counts
256
257 def make sorting network(vars , counts , clauses):
258 clauses = [[abs(v) for v in clause] for clause in clauses]
259 terminals , goals = sum(clauses , []), dict ()
260 for (i , v) in enumerate(terminals): goals . setdefault (v, []). append(i)
261 wires = []
262 for v in vars :
263 for j in range(counts[v]):
264 wires .append(goals[v][j])
265 n = len (wires)
266
267 net = []
268 for i in range(n):
269 if wires == sorted(wires): break
270 row = []
271 if i % 2: row.append(0)
272 for j in range(i % 2, n − 1, 2):
273 if wires[j] > wires[j+1]:
274 row.extend ([1, 0])
275 wires[j], wires[j+1] = wires[j+1], wires[j]
276 else : row.extend ([0, 0])
277 if i % 2 != n % 2: row.append(0)
278 net .append(row)
279 return net
280
281 def compute gadget count(counts , sorting network):
282 vals = counts . values ()
283 n, k = sum(vals), max(vals)
284 sorting network = 2 ∗ len (sorting network)
285 variable branching = k
286 clauses = 2
287 return (2∗n − 1, variable branching + sorting network + clauses)
288
289 def encode(instance):
290 stream = sum(instance , [])
291 buf = []
292 runlength = 0
293 for elt in stream:
294 if runlength == 26 or elt != 0 and runlength > 0:
295 buf .append(chr(ord(’a’) − 1 + runlength))
296 runlength = 0
297 if elt != 0: buf .append(str (elt))
298 elif elt == 0: runlength += 1
299 else : buf .append(’ %d’ % elt)
300 return ’ ’ . join (buf)
301
302 if name == ’ main ’ : main(argv [1:])

A.2 The Gadgets

Here we display all the gadgets (except Wire, which is shown
in Fig. 1 and Fig. 2), along with color deductions that are true in
every solution. As earlier, �, ·, w are black, white, white; all xs
are equal, and all xs are unequal to the xs (easily seen by rule 4).

A.2.1 The Variable Gadget
The deductions about black and white squares might be easi-

est to see if one looks at squares horizontally adjacent to a ? and
considers rule 4—it is typically violated if such a square is white.

? 2 ?

3 ? 2 ? 3

3 3

? � 2 � ?

· · x · ·
· · � · · · x · · · � · ·

· � · 3 � ? � 2 � ? � 3 · � ·
· � 3 · � · x · � · 3 � ·
· � · · x · · � ·
· ·

c© 2012 Information Processing Society of Japan 702

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

A.2.2 The Zero Gadget
Note the similarity with Variable. We simply force x to be

white by putting a clue in its square. As a learning exercise, the
reader is encouraged to attempt designing a One gadget.

? 2 ?

3 ? 2 ? 3

3 3

7

? � 2 � ?

· · � · ·
· · � · · · · · · · � · ·

· � · 3 � ? � 2 � ? � 3 · � ·
· � 3 · � · � · � · 3 � ·
· � · · · 7 · · · � ·
· · � · ·

·

A.2.3 The Xor Gadget
We present the Xor gadget rotated 180◦ (X2). Making deduc-

tions around the 2s from rule 4 often enables deductions around
the 4s.

2 2 2

? ? ? ? ?

2 4 3 4 2

? ? ? ?

4 4 4 4

2 ? 3 ? 2

? 2 ?

· · ·
· � · · � · · � ·

· � 2 � · · � 2 � · · � 2 � ·
? · ? · · ? · · ? · ?

� · · � · · � · · � · · �
2 x x 4 w w x x 3 y y w w 4 y y 2

� · · � · xy · � · · �
? · ? � · · z · · � ? · ?

· � 4 4 · � · z · � · 4 4 � ·
· � · � · · w · · � · � ·
· � 2 ? � 3 � ? 2 � ·
· � · · z · · � ·
· · z · ·

? � 2 � ?

Like x, x, squares marked y, y and z, z form consistent oppo-
site pairs. The square marked xy is black if and only if x and y
are both black. By rule 4 and by considering the four cases of
blackness of x and y adjacent to the central 3, one can see that
z = x ⊕ y.

c© 2012 Information Processing Society of Japan 703

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

A.2.4 The Choice Gadget
Note the similarity with the Xor gadget.

2 2

? ? ? ? ?

2 4 2 4 2

? ? ? ?

4 4 4 4

2 ? 4 ? 2

? 2 ?

· ·
· � · · � ·

· � 2 � · · � 2 � ·
? · ? · ? · ? · ?

� · · � · · � · · � · · �
2 x x 4 w w x x 2 y y w w 4 y y 2

� · · � · z · � · · �
? · ? � · · z · · � ? · ?

· � 4 4 · � · w · � · 4 4 � ·
· � · � · · w · · � · � ·
· � 2 ? � 4 � ? 2 � ·
· � · · z · · � ·
· · z · ·

? � 2 � ?

Consider the center clue 2. If (say) x is black then x is white.
By rule 4 y and z must be black, and so y and z must be white.
This is symmetric, so at most one is black. They can’t all be
white, or rule 3 is violated as the center clue is trapped.

A.2.5 The Split Gadget
Note the similarity with N+ in the upper half, and with Xor and

Choice in the lower half.

? ? ? ? ? ?

2 2 2 2 2 2

4

? ? ? ?

4 4 4 4

2 ? 3 ? 2

? 2 ?

? ? ? ? ? ?

� · · � · · � · x · � · · � · · �
2 x x 2 x x 2 x x x 2 x x 2 x x 2

� · · � · · � · 4 · � · · � · · �
? · ? � · · x · · � ? · ?

· � 4 4 · � · x · � · 4 4 � ·
· � · � · · w · · � · � ·
· � 2 ? � 3 � ? 2 � ·
· � · · x · · � ·
· · x · ·

? � 2 � ?

Note that the 3 is flanked by two black squares. If the 2s
weren’t adjacent to the ?s, connecting the 3 to a ? would not vio-
late rule 4, so the 2s can’t immediately be dispensed with.

c© 2012 Information Processing Society of Japan 704

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

A.2.6 The Sidesplit Gadget
We present the Sidesplit gadget rotated 90◦ clockwise (S +), to

make comparison with the Split gadget easier. Note in particular
how the 3 has moved.

2 4 3

? ? 2 ? ? ?

2 2 3 2 2 2

4

? ? ? ?

4 4 4 4

2 ? 2 ? 2

? 2 ?

· · ·
· � · · � · · · � ·

· � 2 � · 4 · � · 3 � ·
? · ? · � 2 � · ? · ? ?

� · · � · · � · x · � · · � · · �
2 x x 2 x x 3 w x x 2 x x 2 x x 2

� · · � · · B · 4 · � · · � · · �
? · ? � · · x · · � ? · ?

· � 4 4 · � · x · � · 4 4 � ·
· � · � · · x · · � · � ·
· � 2 ? � 2 � ? 2 � ·
· � · · x · · � ·
· · x · ·

? � 2 � ?

Note that the whiteness of the square below B can be de-
rived independent of B’s color. If B is white, then its adjacent
3 has black horizontal neighbours and B’s horizontal neighbours
are white. This connects the central 4 to more than four white
squares, violating rule 4. Thus, B is black.

A.2.7 The Bend Gadget
Note the similarity to the Split gadget in the lower and right

hand parts.

2

2 ? ? ?

2 2 2

4 4

? ?

3 4 4

2 ? 3 ? 2

? 2 ?

·
· · � ·

· � · · � 2 � ·
· � 2 � · · ? · ? ?

· · x · � · · � · · �
· · � · x x 2 x x 2 x x 2

· � · 4 � · 4 · � · · � · · �
· · � · · x · · � ? · ?

· � 3 · � · x · � · 4 4 � ·
· · � · · w · · � · � ·
· � 2 ? � 3 � ? 2 � ·
· � · · x · · � ·
· · x · ·

? � 2 � ?

c© 2012 Information Processing Society of Japan 705

Journal of Information Processing Vol.20 No.3 694–706 (July 2012)

A.2.8 The Negation Gadget

? 2 ?

? 2 ?

? 2 ?

? 2 ?

? 2 ?

? 2 ?

? � 2 � ?

· x ·
· x ·

? � 2 � ?

· x ·
· x ·

? � 2 � ?

· x ·
x

· x ·
? � 2 � ?

· x ·
· x ·

? � 2 � ?

· x ·
· x ·

? � 2 � ?

Jonas Kölker is a Ph.D. student at
Aarhus University and a spare time free
software developer.

c© 2012 Information Processing Society of Japan 706

