
Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

[DOI: 10.2197/ipsjjip.20.622]

Regular Paper

Automatic Generation of XML Files and Their Database
Registration from Tabular Form Specifications

Yasunori Shiono1,a) Tomokazu Arita2 YouzouMiyadera3 Kimio Sugita4

Takeo Yaku5 Kensei Tsuchida1

Received: September 14, 2011, Accepted: February 3, 2012

Abstract: Various forms of tables have been used as tools for visualizing and arranging information in many fields.
In addition, XML is widely used as a language for exchanging data. We have studied how documents are formally
processed with software development tools. In this paper, we propose a system to create and manage tabular specifi-
cations based on an attribute graph grammar. A tabular form specification is represented by a marked graph, and its
syntax is defined by an attribute NCE graph grammar. We add a new attribute that contains XML source codes of the
tabular form specifications. The XML source codes are generated by evaluating the attribute and are automatically
registered to the database. The specifications are then retrieved from the database. Our system can perform a charac-
teristic retrieval for software specifications. The results may lead to a considerable improvement in the efficiency of
human labor due to the use of a unified formal methodology based on graph theory and advanced retrieval.

Keywords: hiform specifications, XML database, attribute graph grammar, parser, software information

1. Introduction

In recent years, the importance of user interfaces has been
steadily increasing with the development of fundamental tech-
nology, widespread use of IT devices, and user needs. Under
these circumstances, tables for displaying information in a user
interface and in documents play an important role. Various tables
have been used as tools for visualizing and arranging informa-
tion in many fields. Such tabular form documents are created,
referred to, and managed for their intended use. Many table pro-
cessing systems have been developed, and tables are often used
in computer interfaces and documents [1], [2], [3]. Tabular form
specifications are also used for various developments. Conven-
tionally, input, creation, and checking of tabular form specifica-
tions are processed manually. Document processing is dependent
on human labor, though, and the percentage of processing auto-
matically is comparatively low; therefore, machine-based docu-
ment processing, such as automatic drawing and editing of tabular
form specifications, is considered an important issue in a software
development tool. The graph syntax theory aiming for global dia-
grammatic structures has recently been developed, and therefore,

1 Toyo University, Kawagoe, Saitama 350–8585, Japan
2 J.F. Oberlin University, Machida, Tokyo 194–0294, Japan
3 Tokyo Gakugei University, Koganei, Tokyo 184–8501, Japan
4 Tokai University, Hiratsuka, Kanagawa 259–1292, Japan
5 Nihon University, Setagaya, Tokyo 156–8550, Japan
a) shiono@toyo.jp

The results of this paper partly appeared in “Syntactic Processing of Di-
agrams by Graph Grammars,” by Arita, T., Tomiyama, K., Yaku, T.,
Miyadera, Y., Sugita, K. and Tsuchida, K. which appeared in Proc. IFIP
WCC ICS 2000, pp.145–151 (2000), and “An XML Viewer for Tabular
Forms for use with Mechanical Documentation,” by Inoue, O., Tsuchida,
K., Nakaghawa, S., Arita, T. and Yaku, T. which appeared in Proc.
IASTED AI 2003, pp.1284–1289 (2003).

the possibility of automatic diagrammatic processing has arisen.
Software documentation often involves tabular forms, such

as tabular form specifications, and diagrams, such as program
flowcharts. Furthermore, the tabular forms may be classified into
two groups, as follows.

(1) nested-structured forms in which items are linked hierarchi-
cally to one another.

(2) tessellation-structured forms such as symbol tables and
spreadsheets.

This paper deals with (1) (that is, the nested-structured tabular
forms) together with their mechanical manipulating problems.

In table processing systems, it is necessary to explicitly define
both the syntax and drawing conditions. Attribute graph gram-
mars formulate syntactic structures [4] and universally formulate
visual structures among items in form using syntax with attribute
rewriting rules.

Several models and properties of graph grammars have been
investigated by Franck, Della Vigna, and Rozenberg [5], [6], [7],
[8], [9]. Franck [5] introduced precedence graph grammars and
applied them to nested program tabular forms called PLAN2D. In
addition, graph grammars with Neighbourhood Controlled Em-
bedding (NCE graph grammars) [7] have been considered as rea-
sonable models of design and analysis. Adachi et al. have for-
mulated hierarchical program diagrams by applying an attribute
graph grammar [10], [11]. In accordance with the development of
the graph grammar theory, syntactic graph manipulating systems
have also been developed such as DIAGEN [8]. Another system
introduced by Nagl et al. in the IPSEN project [8].

On the other hand, XML is widely recognized as one of the
most influential standards concerning data exchange on the Web.

c© 2012 Information Processing Society of Japan 622

Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

Scalable systems can be constructed by using XML, and it is pos-
sible to offer diversified services. XML provides a basic syntax
that can be used to share information between different kinds of
computers, different applications, and different organizations on a
global scale. Dejean et al. presented a system for converting PDF
documents into a structured XML format [12]. Wang et al. pro-
posed a new machine learning based approach for table detection
from generic Web documents [13]. Anslow et al. demonstrated
that an XML Data Storage Environment (XDSE) can be used to
store program traces [14].

In our project, we have investigated the use of HIerarchical
flow CHART description language (Hichart) [15], [16] for algo-
rithms and data structure descriptions, and Hiform [17] for spec-
ifications. Hichart is a program flowchart description language
that makes it easy to comprehend the program structure and
makes it possible to describe a data structure. Hiform is a pro-
gram specification language based on ISO6592 [18]. A Hiform
document is a collection of tabular style templates and is repre-
sented by an attribute marked graph. In this paper, we consider
Hiform as a tabular form document. Its syntactic structure is for-
mulated by an attribute graph grammar with neighbourhood con-
trolled embedding and dynamic edge relabeling (edNCE graph
grammar, where d stands for “directed graphs”) [19], [20], [21],
and we developed a global creation and management system for
Hiform based on this grammar. XML source codes of Hiform
are automatically generated by parsing with the grammar. The
XML source codes are automatically registered to a database.
That is, we automate XML generation and registration process.
Moreover, the specifications are retrieved from the database with
a common Web browser. Our system can perform a characteris-
tic retrieval for software development, for example, retrieval by a
program name and a date of change. Hiform XML representation
makes it easy to display on the Web, change the display style,
exchange data and register to a database. A copious amount of
data can be displayed in many forms by using XML. We perform
parse and attribute evaluation in table processing using a unified
formal methodology based on a graph model and graph grammar
for tabular forms.

Tables are very popular diagrams in documents and have been
used for descriptions of data lists, software interfaces of database
systems (e.g., Ref. [22]), document layout, and so on. Watanabe
et al. proposed a document recognition system for tables in
1995 [23]. This system distills letters and the table structure from
scanned graphics. Amano et al. proposed a table form document
analysis and synthesis system [24], [25]. This proposed system
analyzes the table structure based on the string grammar, which is
called the document structure grammar, and generates the synthe-
sized documents. This system used a table form represented by a
collection of boxes. In Ref. [26], [27], they presented a structure
analysis based on a graph grammar. In addition, they proposed
TFML [25], [27] based on XML, which contains structure and
layout information. The basic structure of TFML reflects the in-
dication pattern of the document. These approaches analyze im-
ages of tables and are not sufficiently applicable for the correct ar-
rangement of item cells. Our approach is to formalize tables, and
our grammar not only formalizes the graphical images of tables,

but also determines the class in program documents. We construct
our grammar in consideration of generating program documents
and verifying structures of these documents. That is, this study
recognizes the right arrangements of item cells in program docu-
ments. There have also been a variety of other studies concerning
XML and databases. Ohata et al. proposed Java Alias Analysis
Tool (JAAT) [28] including an XML database for storing analysis
information and a useful GUI for the program maintainers. JAAT
can analyze large programs or libraries such as the JDK class li-
brary and save internal syntactic and semantic information as an
external XML database. The user interface subsystem has two
main functions: editing programs and visualizing the results. Our
study targeted a class of tabular forms: Hiform, that is, program
documents. We formulate the syntactic structure of Hiform by
means of an attribute edNCE graph grammar and automatically
generate XML source codes with the correct Hiform structures
via attribute evaluation with semantic rules for XML generation.
Moreover, our system can register the XML documents with the
XML and Hiform structures on the database and perform a char-
acteristic retrieval for software specifications.

Our approaches can be applied to general tabular forms. For
example, a great deal of data input and checking will be accom-
plished automatically. The efficiency of human labor is expected
to be considerably improved by using a unified formal method-
ology. The method has enormous significance in terms of the
cost of information processing. For example, it has a great po-
tential to achieve complete automatic processing of paper doc-
uments such as ledger sheets and financial statements, and this
is one possible application of this study being considered. Re-
cently, with financial globalization, there has been a real need to
find a faster technique for disclosing and circulating important in-
formation. Different formats are used in a variety of enterprises
for processes such as financial information disclosure, auditing,
tax preparation, reporting to relevant authorities, and analyzing
information. Consequently, the flow of data between companies
is becoming extremely difficult. Therefore, the development of
an efficient data input system is prohibitively difficult. As a re-
sult, Since input from paper documents is done manually, a large
amount of labor is required, and mistakes occur in the process.
An electronic document law [29] came into force on April 1, 2005
in Japan. Although the number of companies publishing financial
data as electronic data is increasing, automatic data processing is
still not in full swing due to the different data formats used by
different companies. eXtensible Business Reporting Language
(XBRL) [30] is attracting attention as a possible solution to this
problem, and applications corresponding to XBRL are expected
to be developed and used at various companies. However, many
companies have existing data in the form of paper documents or
PDF format and; therefore, gearing them for XBRL has become
an important problem. This study can be applied to the problem
of creating a reasonable solution by defining a graph model and
graph grammar for tabular forms, and the forms and contents of
tables can be checked. Since the intended data can be extracted
using an image recognition technique, it is possible to convert pa-
per documents to XBRL formats, that is, a series of processes of
converting can be formally systematized using our methodology

c© 2012 Information Processing Society of Japan 623

Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

Fig. 1 General document in Hiform.

and image recognition technique.
The rest of this paper is organized as follows. Section 2 ex-

plains Hiform documents and reviews graph grammar and pars-
ing for Hiform. Section 3 describes automatic generation of
XML files by attribute evaluation using the graph grammar. Sec-
tion 4 presents a Hiform creation management system based on
the graph grammar. Section 5 discusses our system, and Section 6
concludes the paper.

2. Definitions for Hiform

In this section, we initially explain Hiform documents [17],
[18]. Next, we define its graph grammar [19], [20], [21] and pars-
ing for Hiform [5], [19], [20], [21].

2.1 Hiform Documents [17], [18]
Hiform is a collection of tabular form specifications and in-

cludes all items defined in the ISO6592 guideline. Hiform is de-
fined by 17 types of forms. Hiform documents include various
items for software development. Figure 1 shows a general docu-
ment in Hiform.

2.2 Graph Grammar for Hiform [19], [20], [21]
Hiform is characterized by a graph grammar for graph syntax

and attribute rules for drawing conditions. In the graph grammar
of Hiform, a specification form is represented by a marked graph
with a location. We illustrate an example in Fig. 2. This graph is
constructed as follows.

(1) A node label of the graph shows an item in a tabular form.

Fig. 2 Tabular form specification and corresponding marked graph.

(2) An edge label shows relations between items. “in” denotes
“within,” “ov” denotes “over,” and “lf” denotes “left of.”

The graph grammar for Hiform is called Hiform Nested Graph

Grammar (HNGG). This grammar formalizes an arrangement of
items by productions and layout information for drawing tabular

c© 2012 Information Processing Society of Japan 624

Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

Fig. 3 Two productions with layout semantic rules.

Fig. 4 Part of precedence relation of HNGG.

forms by attributes. HNGG is an attribute edNCE graph grammar
and is defined as follows.

HNGG = <GN , AN , FN> generates marked graphs in Hiform.
The underlying graph grammar GN = (ΣN ,ΔN , ΓN ,ΩN , PN , S N)
is an edNCE context-free graph grammar, where ΣN is the alpha-
bet of node labels, ΔN ⊆ ΣN is the alphabet of terminal node
labels, ΓN is the alphabet of edge labels, ΩN ⊆ ΓN is the alpha-
bet of final edge labels, PN is the finite set of productions, and
S N ∈ ΣN − ΔN is the initial nonterminal. A production is of the
form X → (D,C) with X ∈ ΣN −ΔN , D is a graph over ΣN and ΓN ,
and C ⊆ ΣN × ΓN × ΓN × VD × {in, out} is the connection relation,
where VD is a set of nodes on D. AN is the finite set of attributes,
and FN is the finite set of semantic rules.

For example, Fig. 3 illustrates two productions of HNGG.
Each production has semantic rules for layout information.
HNGG includes 280 productions and 1,248 semantic rules for
the definition of marked graphs in Hiform.

2.3 Parsing for Hiform [5], [19], [20], [21]
HNGG has precedence relation for efficient parsing. We gave

HNGG precedence relation based on Franck’s precedence rela-
tion [5]. Figure 4 shows a part of the precedence relation of
HNGG. Precedence relations are determined by a connection re-
lation of each production. Thus, every edge of a marked graph
has exactly one of the precedence relations: <·, �, ·>, and <·>.
We constructed 5,376 relations in HNGG, as shown in Fig. 4. The
relations are shown to be pairwise disjoint. Thus, all precedence
relations of HNGG are without conflict. Furthermore, all rules
are uniquely invertible, and there is no reflexive nonterminal la-
bel in HNGG. Therefore, HNGG is a precedence attribute ed-
NCE graph grammar. We use Frank’s parsing algorithm because
HNGG is a precedence graph grammar. This algorithm runs in
linear time with respect to the number of nodes and edges in an
input graph. Consequently the parsing algorithm of Hiform by
HNGG is given by Franck’s linear time parsing algorithm.

The parsing algorithm of Hiform by HNGG repeats Procedure
Reduce until an input graph becomes the start graph, which is ac-

Algorithm 1 Parse (G)
Input: G : A marked graph.

Output: T : A derivation tree.

1: T is initialized; /* T is empty */

2: while G is not the start graph of HNGG do

3: Reduce(G, T);

4: end while

5: return T

Procedure Reduce (G, T)

Step 1. A handle in G is searched based on the precedence relations of

HNGG. If a handle is not found, this parsing algorithm is stopped.

Step 2. A production p: X → (D,C) of HNGG is searched, where D is iso-

morphic for the handle obtained in Step 1.

Step 3. The handle obtained in Step 1 is replaced by reverse application of

p. By applying Step 3, G becomes a new graph.

Step 4. New nodes that are obtained from Step 3 are added into the deriva-

tion tree T .

complished by Algorithm 1; otherwise, a production or a handle
are not found. Algorithm Reduce searches for a handle in an input
graph and repositions this handle to a new node that has a label
on the left hand side of the production. The reducing algorithm is
composed of four steps.

3. Automatic Generation of XML Files by
Attribute Evaluation [31]

Layout problems of tabular forms can be solved by attribute
evaluation [5], [11], [19], [20], [21]. In HNGG, we use attributes
x, y, width and height for layout. These attribute values are cal-
culated using a derivation tree, which is output by the parsing
algorithm of Hiform. In this section, we describe the XML repre-
sentation of tabular forms and explain a new attribute SXML, which
contains XML source codes. This attribute SXML is calculated us-
ing a derivation tree with layout attributes.

3.1 XML Representation of Tabular Forms
We explain the XML representation of tabular forms with an

example of part of Hiform shown in Fig. 5. Figure 6 shows the
marked graph corresponding to the tabular form in Fig. 5. Fig-
ure 7 is the XML element structure with node labels for the
marked graph in Fig. 6. The root element is a 〈graph〉 element.
Nodes of marked graphs are represented by 〈node〉 elements. A
〈node〉 element has attributes for a label and layout. A 〈graph〉
element has a 〈node〉 with label [FORM] as a child element. De-
scendant elements of the element 〈node〉 with label [FORM] is
constructed as follows.

(1) If there is an “in”-labeled edge from the node v1 to node v2,
the element 〈node〉 for v1 is the child of element 〈node〉 for
v2.

(2) If there is a “lf”-labeled edge from node v1 to node v2, the
element 〈node〉 for v2 is the child of the element 〈node〉 for
v1.

(3) If there is an “ov”-labeled edge from node v1 to node v2, the
element 〈node〉 for v1 and the element 〈node〉 for v2 are sib-
lings.

Therefore, as shown in Fig. 7, the 〈node〉 with label [FORM] has

c© 2012 Information Processing Society of Japan 625

Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

Fig. 5 Part of tabular form specification.

Fig. 6 Marked graph corresponding to tabular form of Fig. 5.

Fig. 7 XML element structure with node labels for marked graph of Fig. 6.

an element 〈node〉 with label [ProgramName] as a child element.
The elements 〈node〉 with labels [ProgramName], [Subtitle], [Li-
brary Code], [Author], and [Approver] are siblings, and the el-
ements 〈node〉 with labels [Library Code], [Author], and [Ap-
prover] have 〈node〉with labels [Version], [Original Release], and
[Current Release], respectively. Figure 8 is the XML source code
corresponding to the marked graph of Fig. 6.

3.2 Attribute Definition and Evaluation for XML
The attribute SXML for XML is computed by referring to other

attributes and using a concatenation operator. The XML source
codes are generated by evaluating SXML. Figure 9 shows a pro-
cess flow of the XML generation.

First, a derivation tree is generated from a marked graph by
parsing using HNGG. Next, layout attributes x, y, width and
height are computed by layout attribute evaluation using layout
semantic rules, and a derivation tree with the layout information

Fig. 8 XML source code corresponding to marked graph of Fig. 6.

Fig. 9 Process flow of XML generation.

Fig. 10 Two productions with layout semantic rules.

is obtained. The attribute SXML is computed on the derivation tree
with layout attributes by XML attribute evaluation using XML
semantic rules. There are 280 semantic rules for XML. For ex-
ample, Fig. 10 illustrates two productions with XML semantic

c© 2012 Information Processing Society of Japan 626

Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

Fig. 11 Simple tabular form T1 and it’s marked graph.

rules.
Attribute evaluation is performed in a bottom-up manner. An

algorithm for XML attribute evaluation SXML-Evaluate is as fol-
lows.

Algorithm 2 SXML-Evaluate (Tlayout)
Input: Tlayout : A derivation tree with layout information

Output: Txml : A derivation tree with XML source

/* v : a node of Txml. */

1: Txml ← Tlayout;

2: v← the root node of Txml;

3: Node-SXML-Evaluate (v);

4: return Txml

Procedure Node-SXML-Evaluate (v)

/* vc : a child node of v. */

1: if v has nonterminal label then

2: for each child node vc do

3: Node-SXML-Evaluate (vc)

4: end for

5: Evaluate SXML(v)

6: end if

Theorem 1 The time complexity of the algorithm SXML-Evaluate

is O(n), where n is the number of nodes in a derivation tree.

Proof. All nodes in a derivation tree are handled by the procedure
Node-SXML-Evaluate. The time complexity of the algorithm Eval-
uate SXML is O(n). Hence, the time complexity of the algorithm is
O(n). �

Finally, SXML of the root node in a derivation tree with layout
attributes is the XML source code.

We explain the process of generating from the tabular form T1
in Fig. 11 to the XML source as an example. Figure 11 is the
tabular form T1 and it’s marked graph. The tabular form T1 is a
simple explanatory tabular form.

First, a derivation tree is generated from the marked graph of
T1 by parsing using HNGG, and layout attributes x, y, width, and
height are computed by layout attribute evaluation using layout
semantic rules. Figure 12 is the obtained derivation tree with
layout attributes. In Fig. 12, closed circles are terminal nodes,
boxes are nonterminal nodes, and strings in square brackets or
a square near nodes are node labels. Numbers adjacent to node
labels are node IDs. x, y, w, and h are attributes x, y, width,

Fig. 12 Derivation tree with layout attributes of T1.

and height, respectively. Next, the attribute SXML is computed
from the derivation tree with layout attributes by using the algo-
rithm SXML-Evaluate. The evaluation of attributes is performed in
a bottom-up manner. The handling procedure is as follows. In
this procedure, the numbers are node IDs, for example, v0 is the
node of ID 0.

1: Since v0 has an unhandled child node, handle v1
2: Since v1 has a terminal label, v1 is not evaluated
3: Since v0 has an unhandled child node, handle v2
4: Since v2 has an unhandled child node, handle v3
5: Since v3 has an unhandled child node, handle v4
6: Since v4 has a terminal label, v4 is not evaluated.
7: Since v3 has an unhandled child node, handle v5
8: Since v5 has an unhandled child node, handle v6
9: Since v6 has an unhandled child node, handle v8

10: Since v8 has an unhandled child node, handle v9
11: Since v9 has an unhandled child node, handle v10

12: Since v10 has terminal label, v10 is not evaluated
13: Since v9 has no unhandled child node, evaluate SXML(v9)
14: Since v8 has no unhandled child node, evaluate SXML(v8)
15: Since v6 has no unhandled child node, evaluate SXML(v6)
16: Since v5 has an unhandled child node, handle v7
17: Since v7 has an unhandled child node, handle v11

18: Since v11 has an unhandled child node, handle v12

19: Since v12 has an unhandled child node, handle v13

20: Since v13 has an unhandled child node, handle v15

21: Since v15 has a terminal label, v15 is not evaluated
22: Since v13 has no unhandled child node, evaluate SXML(v13)
23: Since v12 has an unhandled child node, handle v14

24: Since v14 has an unhandled child node, handle v16

25: Since v16 has an unhandled child node, handle v17

c© 2012 Information Processing Society of Japan 627

Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

Fig. 13 Derivation tree with XML source code of T1.

Fig. 14 XML source code of tabular form T1.

26: Since v17 has a terminal label, v17 is not evaluated
27: Since v16 has no unhandled child node, evaluate SXML(v16)
28: Since v14 has no unhandled child node, evaluate SXML(v14)
29: Since v12 has no unhandled child node, evaluate SXML(v12)
30: Since v11 has no unhandled child node, evaluate SXML(v11)
31: Since v7 has no unhandled child node, evaluate SXML(v7)
32: Since v5 has no unhandled child node, evaluate SXML(v5)
33: Since v3 has no unhandled child node, evaluate SXML(v3)
34: Since v2 has no unhandled child node, evaluate SXML(v2)
35: Since v0 has no unhandled child node, evaluate SXML(v0)

Therefore, nodes of IDs 9, 8, 6, 13, 16, 14, 12, 11, 7, 5, 3,
2, and 0 are evaluated for SXML in that order. AS a result, the
derivation tree with XML source code is obtained. Figure 13 is
the obtained derivation tree with XML source code. The evalu-
ation results of SXML are shown in Fig. 13. Finally, SXML of the
root node is the XML source code for tabular form T1. Figure 14
shows the obtained XML source code of T1.

Generated XML files can be browsed by applying the eXten-
sible Stylesheet Language Transformations (XSLT) stylsheet to
them. Figure 15 shows part of the XSLT stylesheet for browsing
XML files of Hiform. After the XSLT stylesheet is applied, an
XML file of Hiform is converted into an HTML document. The
result of displaying an XML file of T1 with Internet Explorer is

Fig. 15 Part of XSLT stylesheet file.

Fig. 16 Display screen of T1 using Internet Explorer.

shown in Fig. 16.

4. Hiform Creation Management System

Since the syntactic structure of Hiform is formulated by HNGG
that is a precedence attribute edNCE graph grammar, we devel-
oped a Hiform creation management system based on HNGG.
Figure 17 illustrates the structure of the system. The system con-
sists of a Hiform editor for Hiform creation and its XML gen-
eration, a database registration system for XML database regis-
tration, and a database interrogation system for Hiform interro-
gation. The XML files can be browsed by applying the XSLT
stylesheet to them. The following are explanations of the three
systems.

4.1 Hiform Editor
The Hiform editor has a graph parsing engine, which consists

of the following parts.

(1) Productions of HNGG.

c© 2012 Information Processing Society of Japan 628

Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

Fig. 17 System structure of Hiform creation management system.

Fig. 18 Execution screen of Hiform editor.

(2) Precedence relation table for syntactic parsing.
(3) Semantic rules for layout and XML.

Figure 18 is an execution screen of the Hiform editor. Users
can create Hiform and generate its XML file. Syntactic parsing
and attribute evaluation are performed in the process flow shown
in Fig. 9, and the XML file can be generated. Although a part of
Hiform can be created and inner data can be displayed, dialogical
editing is not currently implemented.

4.2 Database Registration System
The database registration system registers XML files of Hi-

form with XML file structures on the MySGL relational database.
Since the XML files are automatically registered after parsing,
our system checks whether the XML files assort the Hiform for-
mat. The system uses a part of the free PHP library PXBASE [32]
for XML file registration. The database keeps DOM tree struc-
tures. Therefore, registered data can be dealt with using MySQL
commands.

4.3 Database Interrogation System
The database interrogation system is a system with which users

can browse and retrieve XML documents of Hiform on a database
by using a common Web browser. Additionally, users can view
history information. The system has the following main features.

(1) The page is divided into condition input and search result
parts by frames.

(2) Users can search XML files of Hiform by project name, pro-

Fig. 19 Display of search results in header form.

Fig. 20 Display of change history.

Fig. 21 Display of searched XML file of Hiform.

gram name, personal name, or date of issue.
(3) The search results are displayed by one of four display

forms: header, table, personal name, or project name.
(4) Users can view, register, and change the history.
(5) Users can directly access XML files of Hiform, which are

displayed by a form of Hiform.

Figures 19 and 20 are display screens of search results in the

c© 2012 Information Processing Society of Japan 629

Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

header form and change history, respectively. Figure 21 shows a
display screen of a searched XML file of Hiform. These results
are browsed by Internet Explorer.

5. Discussion

Our system parses a given Hiform specification by using
HNGG for Hiform and generates a derivation tree. Software in-
formation is extracted from the structure and contents of each
node of the derivation tree. The system can evaluate various at-
tribute values such as important item of software information,
developer, release date, development language, and layout. Fi-
nally, the results are automatically output as XML files. There-
fore, since the XML files can be displayed with a common Web
browser by defining the stylesheet, anyone can easily view the
results.

The XML files are automatically registered with the XML file
structure on the relational database, and the specifications are re-
trieved from the database. Our system can perform a characteris-
tic retrieval for software specifications, for example, retrieval by
a program name and a date of change. A specification may be
changed several times in software development. At that time, a
user can interrogate specifications by specifying a particular pe-
riod on the search form shown in Fig. 19. Change history can also
be displayed, as shown in Fig. 20. Moreover, change history list
of a project can be displayed, as shown in Fig. 22.

We developed the system based on a formal methodology and
the XML files are registered with the XML file structures. There-
fore, although we do not implement on the system, there are feasi-
ble effective functions, for example, retrieval of Unified Modeling
Language (UML).

The diagram of the specification in Fig. 21 is drawn using Scal-
able Vector Graphics (SVG). Since the XML files are registered
with the XML file structure on the database, it is possible to re-
trieve the specifications that have figures: the node has number
symbols and the UML class diagram is connected to particu-
lar classes. In this way, users can retrieve and exchange soft-
ware specifications including text and figures on the Web, and
the specifications can be displayed and printed by common Web
browsers.

In another instance, since the process from input to registration
on the database using graph grammar is automatically performed,
tabular forms can be standardized. For example, although the
items of the date and project name may be written anywhere,

Fig. 22 Display of change history list in project.

documents can be checked by syntactic parsing for global dia-
grammatic structures, whether the date and project name are cor-
rectly written at the beginning of documents in that order. In this
way, the layout can be standardized using a formal methodology.
Although it is difficult to check by XML and Document Type
Definition (DTD), formulation using graph grammar can achieve
form standardization.

Our approaches can be applied to formal tabular form process-
ing system for tabular form documents. The efficiency of human
labor is expected to be considerably improved by using a uni-
fied formal methodology based on graph theory and advanced re-
trieval. The methodology has enormous significance in terms of
the cost of information processing.

6. Conclusion

We defined an attribute for XML representation in Hiform
graph grammar HNGG and developed a Hiform creation man-
agement system based on HNGG. The XML files of Hiform are
automatically generated by attribute evaluation using the XML
semantic rules and are registered with the XML file structures on
the relational database. We automated the process from creation
to registration. Moreover, our system can perform a characteristic
retrieval for software specifications.

Future work is to achieve the characteristic retrieval and stan-
dardization we have described in Section 5 and to enable auto-
matic processing of paper documents by using scanners.

References

[1] Lopresti, D. and Nagy, G.: A Tabular Survey of Automated Table Pro-
cessing, Lecture Notes in Computer Science 1941, pp.93–120 (2000).

[2] Zanibbi, R., Blostein, D. and Cordy, J.: A Survey of Table Recogni-
tion: Models, Observations, Transformations and Inferences, Interna-
tional Journal on Document Analysis and Recognition, Vol.7, No.1,
pp.1–16 (2004).

[3] Embley, D., Hurst, D., Lopresti, D. and Nagy, G.: Table-processing
Paradigms: A research survey, International Journal on Document
Analysis and Recognition, Vol.8, No.2-3, pp.66–86 (2006).

[4] Teitelbaum, T. and Reps, T.: The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment, Comm. ACM, Vol.24,
No.9, pp.563–573 (1981).

[5] Franck, R.: A Class of Linearly Parsable Graph Grammars, Acta Info-
matica, Vol.10, pp.175–201 (1978).

[6] Vigna, P.D. and Ghezzi, C.: Context-free graph grammars, Inf. Con-
trol, Vol.37, No.2, pp.207–233 (1978).

[7] Rozenberg, G. (Ed.): Handbook of Graph Grammar and Computing
by Graph Transformation, Volume 1 Foundations, World Scientific
(1997).

[8] Ehrig, H., Engels, G., Kreowski, H.-J. and Rozenberg, G. (Eds.):
Handbook of Graph Grammar and Computing by Graph Transfor-
mation, Volume 2 Aplications, Lnguags and Tools, World Scientific
(1997).

[9] Nishino, T.: Attribute Graph Grammars with Applications to Hichart
Program Chart Editors, Advances in Software Science and Technology,
Vol.1, pp.426–433 (1989).

[10] Adachi, Y., Anzai, K., Tsuchida, K. and Yaku, T.: Hierarchical Pro-
gram Diagram Editor Based on Attribute Graph Grammar, Proc. 20th
Conference on Computer Software and Applications Conf., pp.205–
213 (1996).

[11] Adachi, A., Tsuchida, T. and Yaku, T.: Program visualization using
attribute graph grammars, Proc. 15th IFIP World Computer Congress
98 (1998).

[12] Dejean, H. and Meunier, J.L.: A System for Converting PDF Docu-
ments into Structured XML Format, Lecture Notes in Computer Sci-
ence, Vol.3872, pp.129–140 (2006).

[13] Wang, Y. and Hu, J.: Detecting Tables in HTML Documents, Lecture
Notes in Computer Science, Vol.2423, pp.249–260 (2002).

[14] Anslow, C., Marshall, S., Biddle, R., Noble, J. and Jackson, K.: XML
Database Support for Program Trace Visualisation, Proc. 2004 Aus-

c© 2012 Information Processing Society of Japan 630

Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

tralasian Symposium on Information Visualisation, Vol.35, pp.25–34
(2004).

[15] Sugita, K., Adachi, A., Miyadera, Y., Tsuchida, K. and Yaku, T.: A
visual programming environment based on graph grammars and tidy
graph drawing, Proc. ICSE ’98, Vol.II, pp.74–79 (1998).

[16] Goto, T., Kirishima, T., Motousu, N., Tsuchida, K. and Yaku, T.: A
visual software development environment basedon graph grammars,
Proc. IASTED Software Engineering 2004, pp.620–624 (2004).

[17] Sugita, K. and Yaku, T.: Hiform Reference Page (1999), available
from 〈http://www.sm.u-tokai.ac.jp/˜sugita/Hiform〉.

[18] ISO6592-1985, Guidelines for the documentation of computer-based
application systems (1985).

[19] Arita, T., Tomiyama, K., Yaku, T., Miyadera, Y., Sugita, K. and
Tsuchida, K.: Syntactic Processing of Diagrams by Graph Grammars,
Proc. IFIP WCC ICS 2000, pp.145–151 (2000).

[20] Arita, T., Sugita, K., Tsuchida, K. and Yaku, T.: Syntactic Tabu-
lar Form Processing By Precedence Attribute Graph Grammar, Proc.
IASTED AI 2001, pp.637–642 (2001).

[21] Arita, T., Tomiyama, K., Tsuchida, K. and Yaku, T.: Application
of Attribute NCE Graph Grammars to Syntactic Editing of Tabular
Forms, Electric Notes in Theoretical Computer Science, Vol.50, Is-
sue 3 (2001).

[22] Santucci, G. and Tarantino, L.: A Hypertabular Visualizer of Query
Results, Proc. 1997 IEEE Symposium on Visual Languages, pp.193–
200 (1997).

[23] Watanabe, T., Luo, Q. and Sugie, N.: Layout recognition of multi-
kinds of table-form documents, IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, Vol.17, No.4, pp.432–445 (1995).

[24] Amano, A., Asada, N., Motoyama, T., Sumiyoshi, T. and Suzuki, K.:
Table Form Document Synthesis by Grammar-Based Structure Anal-
ysis, Proc. 6th International Conference on Document Analysis and
Recognition, pp.533–537 (2001).

[25] Amano, A., Asada, N., Mukunoki, M. and Aoyama, M.: Table form
document analysis based on the document structure grammar, Interna-
tional Journal on Document Analysis and Recognition, Vol.8, No.2-3,
pp.201–213 (2006).

[26] Amano, A. and Asada, N.: Complex Table Form Analsis Using Graph
Grammar, Lecture Notes in Computer Science, Vol.2423, pp.283–286
(2002).

[27] Amano, A. and Asada, N.: Graph Grammar Based Analysis System of
Complex Table Form Document, Proc. 7th International Conference
on Document Analysis and Recognition, pp.916–920 (2003).

[28] Ohata, F. and Inoue, K.: JAAT: Java Alias Analysis Tool for Pro-
gram Maintenance Activities, Proc. 9th IEEE International Sympo-
sium on Object and Component-oriented Real-time Distributed Com-
puting (ISORC2006), pp.232–242 (2006).

[29] Law Governing the Use of Information and Communications Technol-
ogy in the Preservation of Documents that Private Businesses Perform,
available from 〈http://www.kantei.go.jp/foreign/policy/it/051031/
law.pdf〉.

[30] XBRL INTERNATIONAL, available from
〈http://www.xbrl.org/Home/〉.

[31] Inoue, O., Tsuchida, K., Nakagawa, S., Arita, T. and Yaku, T.: An
XML Viewer for Tabular Forms for use with Mechanical Documenta-
tion, Proc. IASTED AI 2003, pp.1284–1289 (2003).

[32] Tanaka, H.: XML First Step PXBASE (MySQL), available from
〈http://www.geocities.jp/xmlfirststep/mxbase/mxbase menu.html〉 (in
Japanese).

Yasunori Shiono received his M.E. and
Dr.Eng. degrees from Toyo University in
2006 and 2010 respectively. He is cur-
rently an Assistant Professor of Faculty
of Information Sciences and Arts at Toyo
University. His research interests include
graph algorithms, graph grammars, fuzzy
theory and software development environ-

ments. He is a member of IEICE Japan, JSSST, JSIAM and IEEE.

Tomokazu Arita received his M.S. and
D.S. degrees from Nihon University in
2000 and 2009, respectively. He has been
an Assistant Professor at J.F. Oberlin Uni-
versity since 2004. His research inter-
ests include graph languages, graph algo-
rithms, and their applications.

Youzou Miyadera received his B.Sc.,
M.Sc. and D.Sc. degrees in engineering
science from Tokyo Denki University in
1984, 1986 and 1998, respectively. He
was on the Department of Information
Sciences at Tokyo Denki University as an
Instructor from April 1986 to March 1997.
He has been on the department of Mathe-

matics and Information Science at Tokyo Gakugei University as
an Associate Professor until 2008. He is a professor of the divi-
sion of Natural Science at Tokyo Gakugei University now. His
current research interests include information visualization, pro-
gramming language education environments and program anal-
ysis. He is a member of IEEE Computer Society, ACM, IPSJ,
IEICE, Japan Society for Information and Systems in Education,
and the Japan Society for Software Science and Technology.

Kimio Sugita received his M.Sc. from
the University of Tokyo in 1968. His re-
search interests include automaton, graph
languages, and information processing
education. He is a member of IEICE
Japan, Mathematical Society of Japan,
and American Mathematical Society.

Takeo Yaku received his M.Sc. and
D.Sc. from Waseda University in 1972
and 1977, respectively. He has been a
Professor at the Department of Computer
Science and System Analysis of Nihon
University since 1992. His research
interests include software visualization,
human interface, graph languages, and

graph algorithms. He is a member of IEICE Japan, IEEE
Computer Society and ACM.

c© 2012 Information Processing Society of Japan 631

Journal of Information Processing Vol.20 No.3 622–632 (July 2012)

Kensei Tsuchida received his M.S. and
D.S. degrees in mathematics from Waseda
University in 1984 and 1994 respectively.
He was a member of the Software En-
gineering Development Laboratory, NEC
Corporation in 1984–1990. From 1990 to
1992, he was a Research Associate of the
Department of Industrial Engineering and

Management at Kanagawa University. In 1992 he joined Toyo
University, where he was an Instructor until 1995 and an Asso-
ciate Professor from 1995 to 2002 and a Professor from 2002 to
2009 at the Department of Information and Computer Sciences,
and since 2009 he has been a Professor of Faculty of Informa-
tion Sciences and Arts. He was a Visiting Associate Professor
of the Department of Computer Science at Oregon State Univer-
sity from 1997 to 1998. His research interests include software
visualization, human interface, graph languages, and graph algo-
rithms. He is a member of IPSJ, IEICE Japan and IEEE Computer
Society.

c© 2012 Information Processing Society of Japan 632

