
Journal of Information Processing Vol.20 No.3 525–530 (July 2012)

[DOI: 10.2197/ipsjjip.20.525]

Regular Paper

General Middleware Bridge to Support Device
Interoperability on Different Middlewares

Hark-Jin Lee1,a) Young-Sung Son1 Jun-Hee Park1

Kyeong-DeokMoon1 Jae-Cheol Ryou2

Received: August 31, 2011, Accepted: February 3, 2012

Abstract: In this paper, we investigate an integrated architecture to support interoperability among heterogeneous
middlewares on home networks. We propose and implement a general middleware bridge to support device inter-
operability on different middlewares for efficient home networks. The IWFEngine (interworking function engine)
architecture provides an interface for identifying and utilizing services among devices using simple rules in other
to support interoperability among heterogeneous middlewares. Through the registered rules, local middleware mes-
sages are translated into standard messages, and vice versa. Unlike existing integrated middleware architectures, the
IWFEngine architecture improves the efficiency, and a convenient adaptor development is possible through simple
rules and by using local middleware messages. By this configuration, a conversion rule for exchanging messages
between devices on various middlewares is described which does not require the modification of the corresponding
middleware, and operations can be performed in accordance with the existing corresponding middleware mechanism.
Finally, the overhead incurred by a centralized and integrated middleware architecture can be reduced by distributing
adaptors into multiple devices.

Keywords: interoperability, middleware, home network

1. Introduction

Various methods of supporting different middleware devices
have been developed, and the interoperability between devices
on different middlewares is becoming available. Because such
a method places the emphasis on enabling the interoperability
between devices connected to different middlewares, whenever
a new middleware appears, a new adaptor corresponding to the
new middleware needs to be developed, and this is difficult to
achieve. The need for a rapid and convenient method of adaptor
development is growing.

Many home network middlewares are widely used, including
the universal plug and play (UPnP) [1], Jini [2], KONNEX [3],
ECHONET [4], home audio video interoperability (HAVI) [5],
Lonworks [6], RS485 [7] and so on. There are one-to-one bridge
methods for home network middlewares such that each one con-
nects are middleware to another.

The existing middleware bridge methods create and support
the required adaptors, and a method for converting a message for
interoperability between devices should be differently developed
for each adaptor. A middleware adaptor developer must possess
knowledge of a general middleware when a new middleware ap-
pears, and a great deal of knowledge and effort is also required for
message converting method to the middleware adaptor developer.
For example, the middleware adaptor developer should know all

1 Electronics and Telecommunications Research Institute, Daejeon, South
Korea

2 Chung-Nam National University, Daejeon, South Korea
a) gausslee@etri.re.kr

essential functions of the adaptor under implementation, such as
an adaptor ID system, a definition method of a protocol for a
multicast, and so on. As another example, the middleware adap-
tor developer should know the definition method of a standard
protocol and should perform the detailed analysis and substitu-
tion processes to convert the standard protocol. It is difficult for
the middleware adaptor developer to determine the development
time and the standard protocol. This paper presents the design
and the implementation of a general middleware bridge for het-
erogeneous home network middlewares to support a convenient
and efficient home network environment.

This paper is organized as follows. In Section 2, we introduce
the research in progress for the development of integrated mid-
dlewares which support interoperability among devices in home
networks, analyze problems caused by them, and present our mo-
tivation for this study. In Section 3, we describe the design of the
proposed architecture for a general middleware bridge to support
interoperability. In Section 4, we describe and explain the results
of the implemented framework. Finally, in Section 5, we give our
conclusions and discuss future work.

2. Related Work

This paper discusses the effects of heterogeneity on the interop-
eration of home network middlewares. In general, heterogeneity
means that the interfaces and architectures of diverse components
that exist in a specific domain are different [8]. Heterogeneity can
exist in many parts of a system (information encoding methods,
network protocols, data formats, and so on). If standardization is
established among these parts, problems caused by heterogeneity

c© 2012 Information Processing Society of Japan 525



Journal of Information Processing Vol.20 No.3 525–530 (July 2012)

are eliminated, and various home network usage scenarios can be
designed with seamless interoperation. However, it is not easy to
standardize middlewares related to home networks unlike exist-
ing middlewares such as TCP/IP because the existing devices and
services are too diverse in the home network environment. Also,
it is much more difficult to predict the future because the existing
services and devices may continue to be developed. Even though
it is predictable, there is a limit to solving the fundamental prob-
lems of heterogeneity.

2.1 Interoperation Mechanisms among Heterogeneous
Home Network Middlewares

Interoperation mechanisms among the heterogeneous home
network middewares currently under investigation can be clas-
sified into two types, namely, an individual bridge and an inte-
grated framework. An individual bridge provides compatibility
using a one-to-one bridge protocol between middlewares to sup-
port the interoperability among heterogeneous middlewares. The
UPnP-to-Havi bridge [9] was developed by Thomson Multimedia
and Philips, and the interoperation of Jini and UPnP [10] was re-
searched at New Orleans University. It is useful for interoperation
between two specific middlewares; therefore, it has a scalability
problem because it fails to provide a consistent means of inter-
operation between various types of middleware as the number
of bridges increases and connections can also be complicated by
the introduction of new middlewares. An integrated framework
provides an abstracted common layer above various middlewares
and has an architecture that bridges each middleware based on
the common layer. This type of architecture has an advantage
that, even if a new middleware is developed, it can be easily in-
tegrated with other middlewares if an appropriate agent is im-
plemented. At Waseda University, middleware integration has
been attempted through a simple object access protocol (SOAP)
gateway configuration [11], and studies on interoperation services
among heterogeneous middlewares have been under way at OSGi
Alliance [12] and ETRI [13], [14].

2.2 Analysis of Integrated Framework-based Mechanism
The model presented in this paper is based on an integrated

middleware framework, and the following four issues should be
considered.
(1) How can devices adopting different middlewares find each
other transparently?

Each middleware utilizes different service discovery mecha-
nisms. Due to the differences between the mechanisms, even de-
vices providing compatible services cannot recognize each other
if the middlewares they adopt are heterogeneous.
(2) How can services adopting different middlewares invoke each
other?

A service invocation mechanism of RS485 uses byte code.
UPnP uses SOAP to invoke a service transferring XML text
stream. Problems caused by the differences in service invocation
mechanisms must be solved to provide interoperability between
heterogeneous middlewares. To solve this problem, the syntax
elements of middlewares (e.g., method name, the order of argu-
ments, the type size of return value and arguments) should be ad-

justed. It is also necessary to convert calling methods according
to the service invoke mechanisms of each middleware.

3. IWFEngine

The IWFEngine is a general middleware bridge framework de-
signed in consideration of the adaptor development method. To
solve problems caused by the differences in heterogeneous mid-
dleware interfaces during the interoperation process as pointed
out in Section 2, we propose a library architecture such as that
shown in Fig. 1.

The IWFEngine consists of four main modules:
• Rule Converter
• Message Converter
• Adaptor Manager
• IWFEngine Manager

The IWFEngine can distribute each adaptor to various servers in
other to solve the bottleneck problems encountered in a central-
ized architecture. Also, all protocols have an open architecture
using XML and provide utility classes and APIs based on C++
and C to assist in developing adaptors for newly defined middle-
wares.

3.1 Rule Converter
The Rule schema helps the middleware adaptor developer cre-

ate conversion rules of the XML type through a validity checking
function. Figure 2 shows rule schema. The Rule Converter reg-
isters the message conversion rule for each message type. For
example, the Rule Converter uses and generates an XSLT doc-
ument to convert the conversion rules for a registered standard
message and for the local message into a conversion XSLT docu-
ment. Figure 3 shows the procedure of rule conversion.
• ‘Type’ attribute is rule type.
• ‘For’ element is used to process the XML node in the case

of a duplicate.

Fig. 1 IWFEngine architecture.

c© 2012 Information Processing Society of Japan 526



Journal of Information Processing Vol.20 No.3 525–530 (July 2012)

Fig. 2 Rule schema.

Fig. 3 Procedure of rule conversion.

• ‘If’ element is used to process the XML node according to a
condition of the XML node.

• ‘Src’ element is used to process the XML node mapping
from a source XML to the destination XML.

• ‘StaticDes’ element is used to put an explicit value of the
destination XML if the node does not exist in the source
XML.

• ‘Des’ element is the name of the node description to the des-
tination XML.

• ‘DesAttribute’ element is the attribute to describe the desti-
nation XML.

Fig. 4 Message conversion.

• ‘MappingFunction’ element transforms the source XML and
reflects the destination XML.

• ‘ChildNode’ element carries out a recursive call to configure
the hierarchy.

3.2 Message Converter
The Message Converter includes the standard–local Mes-

sage Converter and the local–standard Message Converter. The
standard–local Message Converter converts the standard message
into the local message by using the registered conversion rule.
The local–standard Message Converter converts the local mes-
sage into the standard message by using the registered conversion
rule. Figure 4 shows message conversion.

The Restoration Information Collector collects restoration in-
formation for restoring the message in order to prevent data from
being lost when the Message Converter converts the message.
During the conversion of the original message into the converted
message, the messages have different schemas and data expres-
sion types. Since data for the converted message in the Message
Converter cannot include all data of the original message, a loss
cannot be completely avoided.

The loss occurs only when a local message is converted into a
standard message. When a local message is converted into a stan-
dard message, the Restoration Information Collector stores the
corresponding restoration information. Restoration is performed
by requesting the information when the standard message is con-
verted into the local message. The Restoration Information Col-
lector manages the restoration information for restoration without
loss.

3.3 Adaptor Manager
As previously mentioned, home network middlewares for the

operation of home appliances cannot be interoperable due to their
different protocols and execution mechanisms. A layer is required

c© 2012 Information Processing Society of Japan 527



Journal of Information Processing Vol.20 No.3 525–530 (July 2012)

Fig. 5 Distributed adaptor architecture of IWFEgine.

to abstract different middlewares into one for integration.
In this study, we define an abstract layer called IWML (Inter-

Working Markup Language). This layer consists of the minimum
number of components required for home appliances to contain
all the common parts of diverse middlewares. In order for appli-
ances to be capable of operating in a home network environment,
they must have at least five components of the following: Device
Description, Device Control, Device Sensor, Device List, Device
Delete. Device Description is a device specification which can
be understood by human beings and Device Control is a function
performed by the device. Each adaptor must have its own De-
vice Sensor and provide mechanisms that notify the status to the
outside or assist the outside to recognize the status. Device List
which is managed by the adaptor is a device list. Device Delete
is use to report if a device managed by the adaptor is removed. It
is possible for an appliance to interoperate with other appliances
as long as this kind of mechanism is provided either from outside
or inside of the appliance.

Adaptors and the Adaptor Manager are reliable and stable be-
cause they communicate through TCP/IP. Moreover, by separat-
ing the adaptor from Adaptor Manager as shown in Fig. 5, the
IWFEngine architecture which supports the intercommunication
through TCP/IP can solve the overhead problem which may occur
in the centralized integrated architecture.

3.4 IWFEngine Manager
More than one IWFEngine can exist in a home network. If

there is only one IWFEngine, All adaptors should be connected to
an IWFEngine. This causes too much overload to an IWFEngine.
Thus, we propose that each IWFEngine be assigned to the limited
number of adaptors. The number of adaptors shall be decided by
the hardware processing power of the IWFEngine.

When an IWFEngine starts, the IWFEngine Manager broad-
casts its own ID which is selected randomly, to the other
IWFEngines. If one IWFEngine acknowledges that I am using
an ID, the IWFEngine Manager broadcasts the regenerated ID.
Through this mechanism, the IWFEngine can assign a unique ID.

Fig. 6 Procedure of message transmission from an adaptor to the Adaptor
Manger.

When an IWFEngine ends, the IWFEngine Manager broadcasts
a Bye-Bye message. The other IWFEngines are aware that the
IWFEngine is disabled.

The IWFEngine Manager through the standard protocol chan-
nel delivers messages among all IWFEngines. The Standard Pro-
tocol Channel delivers standard messages without any message
conversion.

3.5 Implementation of IWFEngine
The IWFEngine provides an adaptor to each middleware to

discover or remove heterogeneous middleware services. In this
paper, we implement each UPnP Agent and RS485 Agent using
C++ and C, respectively. When new middlewares are added, the
IWFEngine generates an ACT (Adaptor Communication Thread)
which is in charge of the communication with the adaptor. The
ACT sends messages over the network to a message queue in the
Adaptor Manager and disappears along with the adaptor. Mes-
sages in a message queue are sent to the Adaptor Manager, and
an appropriate routine is invoked according to the message type.
Figure 6 shows the procedure of message transmission from an
adaptor to the Adaptor Manger.

4. IWFEngine Test

The IWFEngine proposed in this paper as a general middleware
bridge architecture can easily make rules to meet the developer’s
requirements. We have constructed a Device Description, Device
Sensor, Device Control, Device List and Device Delete in order to
test the interoperability among heterogeneous services to support
home automation.

Figure 7 shows the message conversion process example. An
RS485 adaptor transfers light Device Description message to
the IWFEngine. The IWFEngine converts the transferred mes-
sage into a standard message through a conversion rule. The
IWFEngine converts a standard message into a local middleware
message for the UPnP adaptor. We confirmed that the UPnP con-
troller discovered the RS485 light when the UPnP adaptor re-

c© 2012 Information Processing Society of Japan 528



Journal of Information Processing Vol.20 No.3 525–530 (July 2012)

Fig. 7 Message conversion process.

ceived the Device Description message.
The experiment proved that heterogeneous devices could suc-

cessfully interact with each other following the making of simple
rules. Also, we verified that a developer can manage each device
efficiently and conveniently using an adaptor.

We confirmed that the message gets through within 3 seconds
from the UPnP Device to the RS485 Device.

In order to evaluate the efficiency of the proposed techniques,
we have implemented them on Linux 3.1.2 kernel. Our hardware
system is based on Intel Core i7 processor (running at 3.4 GHz)
with a 2 GB RAM.

Figure 8 shows how much time it takes to convert a local mes-
sage to a standard message with various message sizes. It only
takes about 200 ms to convert a message of 1 Mbytes.

5. Conclusions and Future Works

For the efficient utilization of home networks, problems raised
by the heterogeneity of middlewares must be solved. Also, it
is very important to support developers to develop diverse home
automation services through the interoperation of heterogeneous
middlewares.

In this paper, we proposed a general middleware bridge to sup-

Fig. 8 Message conversion time in the IWFEngine.

port device interoperability on different middlewares. It enables
the interoperation among heterogeneous devices and can meet the
demand of home network developers for various home automa-
tion services. Unlike the existing integrated middleware architec-
tures, IWFEngine enables the interoperability of heterogeneous
devices by defining simple rules for home network services and
does not require local middleware messages to be changed. Fi-
nally, we solved the overhead problem incurred by centralized
integrated middlewares architectures by using distributed adap-
tors.

We need to extend messages for the execution of home au-
tomation services under diverse environments and IWML to sup-
port extended messages as well. Also, to integrate heterogeneous
home network middlewares, fault tolerance of the IWFEngine us-
ing a centralized mechanism is a major issue. A fault tolerance
system which can operate when the IWFEngine does not oper-
ate, and which recognizes high-performance appliances in home
networks and distributes important services to high-performance
appliances should be investigated in the future. Finally, a rule
builder to support developers in conveniently constructing rules
and new APIs to help developers to quickly develop new middle-
wares adaptor are also needed.

Acknowledgments This work was supported by the IT R&D
program of MKE/KEIT. [2009-F027-01, Development of Inter-
operable Home Network Middleware for settling Home Network
Heterogeneity]

References

[1] UPnP Forum, available from 〈http://www.upnp.org〉.
[2] Sun Microsystems: Jini Architecture Specification, available from

〈http://www.sun.com/jini/〉.
[3] Konnex Association, available from 〈http://knx.org〉.
[4] ECHONET Consortium, available from 〈http://www.echonet.gr.jp〉.
[5] The Havi Organization: Havi Version 1.1 Specification, available from

〈http://www.havi.org〉.
[6] Echelon Co.: LonTalk Protocol Specification, Ver 3.0 (1994).
[7] Test Specification of RS-485 Protocol for Homenetwork Wallpad/

Home Gateway, available from 〈http://www.kashi.or.kr〉.
[8] Singh, M.P. and Huhns, M.N.: Service-Oriented Computing, Wiley

(2005).
[9] Guillaume, B., Kumar, R., Helmut, B. and Thomas, S.: Methods for

Bridging a HAVi Sub-network and a UPnP Subnetwork and Device for
Implementing said Methods, Thomson Multimedia (2002).

c© 2012 Information Processing Society of Japan 529



Journal of Information Processing Vol.20 No.3 525–530 (July 2012)

[10] Allard, J., Chinta, V., Gundala, S. and Richard III, G.: Jini Meets
UPnP: An Architecture for Jini/UPnP Interoperability, Symposium on
Applications and the Internet, pp.268–275 (Jan. 2003).

[11] Box, D.: Simple Object Access Protocol 1.1, available from
〈http://www.w3.org/TR/SOAP/〉.

[12] OSGI Alliance, available from 〈http://www.osgi.org/〉.
[13] Moon, K., Lee, Y., Son, Y. and Kim, C.: Universal Home Network

Middleware Guaranteeing Seamless Interoperability among the Het-
erogeneous Home Network Middleware, IEEE Trans. Consumer Elec-
tronics, Vol.49, No.3, pp.546–553 (Aug. 2003).

[14] Kim, D., Lee, C.-E., Park, J.H., Moon, K.D. and Lim, K.: Device
Conversion and Message Translation for the Home Network Mid-
dleware Interoperability, IEEE Trans. Consumer Electronics, Vol.53,
No.1, pp.108–113 (Feb. 2007).

Hark-Jin Lee received his B.S. and M.S.
degrees in computer science from Chung-
Ang University, Korea in 2005 and 2007
respectively. He has been a researcher
of Green Computing Research Depart-
ment at Electronics and Telecommunica-
tions Research Institute, where he devel-
ops the home network middleware. His

research interests include home network middleware, Linux sys-
tem, and embedded computing.

Young-Sung Son received his B.S.,
M.S., and Ph.D. degrees in computer
science from Pusan National University,
Korea in 1995, 1997, and 2006 respec-
tively. From 1997 to 1999, he worked for
developing file system and VOD server
of Linux clustering software at Electron-
ics and Telecommunications Research

Institute. Since 1999, he joined embedded software center for
developing the home network middleware and Java embedded
architecture.

Jun-Hee Park received his B.S., M.S.,
and Ph.D. degrees in computer science
from Chung-Nam University, Korea in
1995, 1997, and 2005 respectively. He
was a researcher at System Engineer-
ing Research Institute from 1997 to 1998
where he had worked on network comput-
ing and clustering system. From 1998 to

2009, he was a senior researcher at Electronics and Telecommu-
nications Research Institute, where he had worked on home net-
work middleware especially interoperability framework. Since
2010, he has been the team leader of Emotion-IT convergence
Middleware Research Team. He has researched on Ship and ICT
convergence area, and developed ship area network technology.
His recent research interests are smart home and smart ship.

Kyeong-Deok Moon received his B.S.
and M.S. degrees in computer science
from Hanyang University, Korea in 1990
and 1992 respectively. He received his
Ph.D. degree in information engineering
from KAIST ICC, Korea in 2005. From
1992 to 1996, he was researcher at Sys-
tem Engineering Research Institute where

he worked on high performance computing and clustering com-
puting. Since 1997, he has been a principal researcher of Green
Computing Research Department at Electronics and Telecommu-
nications Research Institute, where he develops the home network
middleware and Java embedded architecture. His research inter-
ests include home network middleware, Java, active network, and
pervasive computing.

Jae-Cheol Ryou is a professor in the Di-
vision of Electrical and Computer Engi-
neering at Chungnam National University
in Korea. He is also the director of the In-
ternet Intrusion Response Technology Re-
search Center (IIRTRC), Chungnam Na-
tional University, Korea. He received
his B.S. degree in Industrial Engineering

from Hanyang University in 1985, M.S. degree in Computer Sci-
ence from Iowa State University in 1988, and Ph.D. degree in
Electrical Engineering and Computer Science from Northwest-
ern University in 1990. His research interests are Internet Secu-
rity and Electronic Payment Systems including Wireless Internet
Security.

c© 2012 Information Processing Society of Japan 530


