
Regular Paper

MVA-based Probabilistic Model of Shared Memory with

Fixed Priority Arbiter for Predicting Performance

With Heterogeneous Workload

Ryo Kawahara,† Kouichi Ono† and Takeo Nakada†

Memory access contention can be a cause of performance problems and should be assessed
at early stages of development. We devised a probabilistic model of shared memory for
performance estimation. A fixed-priority arbiter with preemptive-repeat policy is modeled
using Mean Value Analysis (MVA) based approximations. The calculation time is linear in
the number of processors. The model is applicable for heterogeneous bandwidth utilization.
Our model agrees well with a cycle-level Monte-Carlo simulation. Estimated execution time
by our model is compared with the measured execution time of benchmark programs. We
find a maximum error of 3.7% at a moderate bandwidth utilization, while a maximum error
of 18.6% is found at a higher bandwidth utilization. This discrepancy can be explained by
the periodicity of the access pattern.
並列処理による性能向上の阻害要因の 1つに共有メモリーへのアクセスの競合があり，開発初期段

階で評価できることが望ましい．本論文では preemptive-repeat型の固定優先度調停の共有メモリー
での競合の確率モデルを提案する．本モデルはプロセッサー数に対し線形時間で計算でき、ヘテロジ
ニアスな負荷でも評価可能である。サイクルレベルのモンテカルロシミュレーションとの比較は良好
であり、ベンチマークを使った実験との精度の比較の結果，中程度の帯域利用率では最大で 3.7%、さ
らに高い領域では 18.6% の誤差となった。この誤差の原因はアクセスパターンの想定の違いで説明
できる。

1. Introduction

Since embedded systems are increasingly
large and complex, it is difficult to choose ap-
propriate system architectures that satisfy the
performance requirements. An embedded sys-
tem usually has a heterogeneous architecture,
which has many implementation choices, span-
ning hardware and software. To compete in to-
day’s markets, rapid development calls for as-
sessing the system performance at early stages
in the development process. A lightweight eval-
uation method is needed to prune large design
spaces. Multi-processors or application-specific
integrated circuits (ASICs) can be used to ex-
ploit parallelism to improve performance, but
a shared memory can limit its effectiveness be-
cause of memory access contention. Thus the
effects of memory access contention must be
considered when estimating the performance in
the system architecture design phase. Shared
memory with a prioritized arbiter is especially
of interest if we consider real-time applications.
There are various approaches to performance

evaluation with various trade-offs between the
evaluation speed, the accuracy, and the ab-
straction level of each model1). For example,

† IBM Research - Tokyo

the Queuing Network (QN) model is a widely
used abstract model to evaluate resource con-
tentions. However, this model cannot handle
some behaviors intrinsic to software, such as
synchronization. An ESL (Electronic System
Level) simulation such as SystemC2) can also be
used to evaluate the memory access contention
by describing all of the access timing, but the
development of such fine-grained models is ex-
pensive.
One promising approach is a hierarchical

modeling3). The behavior at the software or ap-
plication level is described by appropriate mod-
els, such as task graphs, to calculate workloads
for resources, while the resource contention at
the lower level is calculated using other mod-
els (such as QN model). A similar approach4)

can be used with a Unified Modeling Language
(UML) model, which is easier for software de-
signers. In addition, the parameters necessary
for calculating the workloads are obtained from
abstracted execution traces5) measured on an
existing reference system. This means that the
parameters can be obtained at low cost, since
it is often the case that the system to be devel-
oped is based on the reference system.
In the hierarchical modeling approach, the

designer needs to provide a model for estimat-
ing the degree of resource contention for each

ⓒ 2013 Information Processing Society of Japan

組込みシステムシンポジウム2013
Embedded Systems Symposium 2013

95

ESS2013
2013/10/18

shared resource. This paper proposes a model
of shared memory with fixed-priority arbiter for
the same purpose. In Section 2, various meth-
ods are reviewed from this perspective. The
method is described in detail in Section 3. We
give experimental results in Section 4 and dis-
cuss those results in Section 5. Section 6 con-
cludes the study.

2. Related work

Here we review some studies of the memory
access contention from the viewpoints discussed
in the previous section.
Hoogendoorn6) and Mudge7) studied the

memory access contention using probabilistic
models for an equal-priority arbiter. They in-
corporated the effects of re-submission of re-
jected accesses in their analysis to increase the
accuracy. An application to hierarchical mod-
eling was demonstrated by Kawahara et al.8).
In their method, the model counts all the ac-
cess patterns generated by N processors, which
requires O(2N) calculations for a system with a
heterogeneous workload distribution.
Smilauer9) proposed a method based on

Mean Value Analysis (MVA) for which the com-
plexity of the calculations is polynomial in N .
Sorin et al., also applied MVA to a queuing
model of shared memory system with cache
memories and bursty accesses10) to show a good
accuracy. However, their model requires at
least 18 parameters for a processor. In those
cases, the methods are still limited to the equal-
priority arbitration.
Extensions to prioritized arbiters have been

proposed by Yang et al.11) and John et al.12)

for the discrete time case. In the latter study,
the effect of re-submission is taken into account.
However, these methods also have similar limi-
tations on the complexity of calculation. For
continuous time case, a prioritized queueing
model can be used. Jaiswal obtained analytic
results for various kinds of the priority queues.
Unfortunately, he did not evaluate the delay of
access by the queueing13). Application of MVA
to preemptive-resume policy was proposed by
Bryant et al.14) but this queuing policy is not
applicable for memory arbiters.
Another approach was proposed by Bobrek15)

et al. They proposed a method that exploits a
non-linear regression model of the resource con-
tentions. This kind of method can be applied
to various kinds of shared memories16) and also
has an advantage in its simulation speed. How-

Software
Model

Resource
Model

1.Workload 1.Workload

2.Execution
 time

2.Execution
 time

Fig. 1 A schematic description of a hierarchical
modeling.

Fig. 2 Example of UML model (State chart) for per-
formance simulation. A state with ⟨⟨Step⟩⟩ con-
tains workload parameters.

ever, such methods have high learning costs at
modeling time.
We propose a probabilistic model of a shared

memory with a fixed priority arbiter. The con-
tributions of our work are as follows: (i) only
two workload parameters are required for a pro-
cessor, (ii) the contention of shared memory ac-
cess can be calculated in a linear order of N ,
(iii) the method is applicable to both the short
access time limit (L = 1 cycles) and the long ac-
cess time limit (L >> 1). (iv) the method has
better or at least competitive accuracy than the
former theoretical results.

3. Proposed method

In this section, we describe our probabilistic
model of a shared memory with fixed-priority
arbiter. Before going into the detail, we first
explain the overall simulation method for per-
formance estimation of embedded systems and
its connection to the probabilistic model. Sym-
bols frequently appear throughout this paper is
summarized in Table 1.
3.1 Hierarchical modeling
A hierarchical model consists of resource

models and software models (Fig. 1). Our
probabilistic model is a kind of the resource
model for shared memory. For the software
models, we use UML to describe it. An example
of a UML model is shown in Fig. 2. A UML
model is executed by a coarse-grained event-
driven simulation. We use the word “coarse-

ⓒ 2013 Information Processing Society of Japan

組込みシステムシンポジウム2013
Embedded Systems Symposium 2013

96

ESS2013
2013/10/18

Table 1 List of symbols.

Symbols Description
Ti Step execution time of processor i.
Ui Bandwidth utilization requested from processor i.
T ′
i Step execution time of processor i w/ contention.

U ′
i Bandwidth utilization requested from processor i w/ contention.

U+
i Sum of bandwidth utilization of processors with higher priorities than i.

N Number of processors.
M Number of memory accesses within a step.
L Memory access time (#cycles for a memory to process an access w/o contention).
ai Average ratio of memory access time with contention.
x Interval between two successive accesses normalized by L.
fi Distribution of x.

λ+
i Rate of accesses per cycle of an imaginary processor whose utilization is U+

i .
ci Completion time of an access from processor i.
γi Busy period of processor i.
E(X) Average of X.

grained” to indicate that the system behavior
is described with units that correspond to large
blocks of code such as functions or tasks. and
does not include instruction-level or code-level
descriptions8)5).
We call the basic unit a “step”. Each step i

has a workload parameter (Ti, Ui), where Ti is
the step processing time and Ui is the band-
width utilization requested when there is no
memory access contention. The bandwidth uti-
lization is defined as the ratio of the memory ac-
cess throughput to its maximum determined by
the hardware capacity. Assuming that a mem-
ory controller accepts either a read or a write
access in one time, then the utilization can be
calculated from the relation

Ui =
MR,i/Ti

WR
+

MW,i/Ti

WW
, (1)

where WR and WW are the maximum through-
put of read and write memory accesses respec-
tively, and MR,i and MW,i are the numbers
of read memory accesses and of write mem-
ory accesses respectively. The numerators cor-
respond to the actual throughput. Note that
MR,i, MW,i and Ti are usually measured from
an existing system (the reference system) with-
out contention.
The step processing time on the target sys-

tem T ′
i is determined by adding the contribu-

tion from the resource contention to Ti. The
total execution time is the sum of the T ′

i s along
the critical execution path. This paper focuses
on describing a concrete calculation procedure
for T ′

i .
3.2 Overview of probabilistic model
In this method, we evaluate the memory ac-

cess contention from the workload parameters
without the information about the memory ac-
cess timing. We use some approximations that
are similar to those often made in theoretical
analyses.7)

The first approximation is that the memory
accesses occur uniformly and randomly over
time within a step, unless contention arises.
This is not true in general because of the bursti-
ness17).
The second approximation is that, within a

simulation step, the memory access timings be-
tween different processors are independent of
each other. Again, this is a rough approxima-
tion, because there may be periodic accesses or
synchronizations.
Despite these rough approximations, this

method provides a practical way to prune the
design space before entering into the detailed
design.
The starting point of our probabilistic model

is the following formula, which is similar to Am-
dahl’s law18). For processor i,

T ′
i = Ti((1−Ui) + aiUi), (U ′

i = UiTi/T
′
i), (2)

where ai = L′/L is the average memory access
delay ratio and L′ and L are the average mem-
ory access times with and without contention,
respectively. From the definition in Eq. (1), the
bandwidth utilization corresponds to the pro-
portion of time in which a memory controller
is processing memory accesses from processor
i. The utilization with contention U ′

i in Eq. (2)
comes from the fact that the total number of
memory access transactions should be the same
with or without the contention (UiTi = U ′

iT
′
i).

We call a simultaneous memory access a “col-

ⓒ 2013 Information Processing Society of Japan

組込みシステムシンポジウム2013
Embedded Systems Symposium 2013

97

ESS2013
2013/10/18

Proc. 1

Proc. 2

L Lx(1)

Completion time c2

Initial access timing

L LLx(2)

First acceptance timing

Delayed access time L’2
Fig. 3 Definition of the delayed access time L′ and the

completion time c. The case of two processors.

lision” in this paper. In the early studies6)7),
ai was estimated by counting all of the collision
patterns. Let sj be the state of processor j and
s = (s1, · · · , sN). In the simple example of the
access time L being one cycle, then sj = 1 or
0, which correspond to the states of “accessing”
or “not accessing”, respectively. Then

ai =

{0,1}∑
s1

· · ·
{0,1}∑
sN︸ ︷︷ ︸

except for si

L′
i(s)

L
P (s|si = 1), (3)

where L′
i(s) is the delayed access time when the

collision pattern is s, and P (s|si = 1) is the
conditional probability of the collision pattern
being s when processor i is accessing memory.
The delayed access time L′

i(s) may include the
length of a queue of memory access transac-
tions, which depends on the arbitration scheme.
We explicitly calculate ai in the case of the fixed
priority arbiter with some approximations.
3.3 Reduction of complexity
The sum over s in Eq. (3) requires O(2N−1)

calculations even in the simple case, which
means it will be impossible to compute it when
the number of processors N is large. To reduce
the complexity of the calculations, we use an
approximation in which we replace quantities
such as the queue length in Li(s) with mean val-
ues of the quantities, as in the MVA approach
by Smilauer9). Then, the averaging over s can
be done analytically without doing O(2N) cal-
culations.
3.4 Fixed priority arbiter: L >> 1 case
There are several choices to implement a

fixed-priority arbiter. Here, we assume the
preemptive-repeat policy. When a higher-
priority access preempts other access, the pre-
empted access should be resubmitted.
The key ideas to derive the expression of ai

for the fixed-priority arbiter is that we intro-
duce an imaginary processor whose bandwidth
utilization is the sum of all the processors whose
priority is higher than processor i, i.e.,

U+
i−1 =

i−1∑
k=1

U ′
k, (U ′

k = UkTk/T
′
k). (4)

Then the problem is reduced to the case of two
processors. We regard the accesses from pro-
cessors of higher priorities than processor i as
accesses from the imaginary processor of which
utilization is U+

i−1. This is similar to the shadow

approximation for preemptive-resume policy14),
but we use this to adjust the service time in-
stead of the service rate to handle ”repeat” fea-
ture.
An example of arbitration between two pro-

cessors is shown in Fig. 3. We first evaluate the
completion time ci, which is the time duration
between the start of the acceptance of an ac-
cess from processor i to the completion of the
access13). The completion time can be longer
than L cycles because the process is repeated
when there is a preemption of a higher priority
access. We denote the average of ci by E(ci).
If there are two successive memory accesses

whose interval is less than L, then an access
with lower priority cannot be completed during
this interval. Let x be {the cycles of the inter-
val between two successive accesses /L}. We
consider the case of L >> 1 because of the long
DRAM (dynamic random access memory) la-
tency compared to the cycle time. Then, x can
be considered as a continuous value. Using the
assumption that the memory access is random,
then x obeys to the exponential distribution.

fi−1(x) = λ+
i−1L exp(−λ+

i−1Lx), (5)

where λ+
i−1 is the probability that the imaginary

processor randomly generates an access trans-
action at each cycle if it is in the state of “not
accessing”.
The quantity λiL is approximated as follows

when L >> 1 and Ui kept constant.

λ+
i L =

U+
i L

(1− U+
i)L+ 1

≈ U+
i

1− U+
i

. (6)

The denominator can be interpreted as the pro-
portion of cycles where new generation of mem-
ory access is allowed in a duration. The average
of x with a condition that the next access occurs
within L cycles is

ⓒ 2013 Information Processing Society of Japan

組込みシステムシンポジウム2013
Embedded Systems Symposium 2013

98

ESS2013
2013/10/18

xi−1 =

∫ 1

0

dxxfi−1(x)/QL,i−1 (7)

≈
(1− U+

i−1)

U+
i−1

− (1−QL,i−1)

QL,i−1
. (8)

QL,i−1 is the probability that an access with
higher priority occurs within L cycles after the
previous access, i.e.,

QL,i−1 =

∫ 1

0

dxfi−1(x) (9)

≈ 1− exp(−U+
i−1/(1− U+

i−1)). (10)

If there are n such successive accesses, then the
completion time is

E(ci) = L

{ ∞∑
n=0

(xi−1 + 1)np(n) + 1

}
(11)

where

p(n) = (1−QL,i−1)[QL,i−1]
n, (12)

Using the formula of the sum of a geometric
series, we obtain

E(ci)/L = (xi−1 + 1)
Qi−1

1−Qi−1
+ 1. (13)

If an access from processor i does not collide
with an access with higher priority, then E(ci)
is the delayed access time. Otherwise, the ac-
cess from processor i should wait for the higher
priority access to be done. This takes L/2 cy-
cles in average if these accesses are independent.
The probability of these two cases are 1−U+

i−1

and U+
i−1 respectively. Thus the average mem-

ory access delay ratio becomes

ai = (1− U+
i−1)

E(ci)

L
(14)

+U+
i−1

(
1

2
+

E(ci)

L

)
(15)

= (xi−1 + 1)
Qi−1

1−Qi−1
+

1

2
U+
i−1 + 1. (16)

Here, we used the assumption of indepen-
dence among processors (Section 3.2), thus pro-
cessor i’s states does not appear in these quan-
tities.
As U+

i−1 → 1, QL,i−1 also approaches one,
and thus ai diverges. This means that the

bandwidth is occupied by higher priority ac-
cesses and the processor i never gets chance to
access.
If we calculate ai, T ′

i and U ′
i from i =

1, 2, 3, · · · , then the complexity of the calcula-
tion is O(N), because eqs.(14) depends only on
the utilization of processors with higher priori-
ties than processor i.
3.5 Fixed priority arbiter: L = 1 case
Although the case of the access time L >> 1

is important in practice, we derive the model in
the case of the access time L = 1 to compare it
with the previous study.
In this case, since memory accesses collide at

discrete timings, we do not need to consider the
interval between two successive accesses, i.e.,
xi = 0 for all i. Similarly, U+

i = λi = QL,i

holds. The model is simplified to

ai = 1/(1− U+
i−1). (17)

3.6 Theoretical comparison with John
et al.: L = 1 case

In their previous study12), they calculated the
acceptance ratio, which corresponds to 1/ai.
Their result coincides with our result for the
first two processors, and the difference appears
in processors i ≥ 3. For the case of three pro-
cessors with the same utilization Ui = U , single
shared memory and L = 1, their model reads

a−1
3 = a−1

2 (1− U − U2 + U3). (18)

3.7 Theoretical comparison with Jaiswal
The analytic form of the average comple-

tion time was obtained by Jaiswal for various
queueing models13). Among those, preemptive-
repeat-identical priority queueing model with
the number of sources being one for each pri-
ority and the service time being a constant L
corresponds to our case. His result coincides
with our result for i ≤ 2. For i = 3,

E(c3) =

[
1

Λ2
+ E(γ2)

]
[exp(Λ2L)− 1] , (19)

where

E(γ2) =
λ2

Λ2
E(c2) (20)

+
Λ1

Λ2

[
L+ E(c2)(1− S̄1(λ1))

]
, (21)

is the average occupation period, which is simi-
lar to the busy period, and S̄1(s) = exp(−sL) is

ⓒ 2013 Information Processing Society of Japan

組込みシステムシンポジウム2013
Embedded Systems Symposium 2013

99

ESS2013
2013/10/18

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

U
’

U

Auth. i=2
Auth. i=3
Auth. i=4
John. i=3
John. i=4

mc. i=2
mc. i=3
mc. i=4

Fig. 4 Utilization assigned by the fixed-priority ar-
biter U ′ as a function of utilization request
U .Estimates by our model (Auth.), John’s
model (John.) and results of Monte-Carlo
(MC.) simulation are shown.

the Laplace transform of the service time dis-
tribution, and Λi =

∑i
j=1 λj is the aggregate

arrival rate.
The execution time T ′ was not evaluated in

the study. We simply substitute Eq. (19) into
Eq. (14).

4. Evaluation

4.1 Comparison with cycle-level Monte-
Carlo simulation

In this section, we compare the estimation by
our method with the one by cycle-level Monte-
Carlo (MC) simulation with the same condi-
tions assumed in Section 3.2.
This MC simulation model consists of N pro-

cessors and one shared memory with a fixed-
priority arbiter. An i-th processor model has
three states: accessing (AC), re-submission
(RS), and not accessing (NA). The processor
generates a memory access with a given prob-
ability if it is in the NA state, and changes its
state according to the arbiter. In this MC sim-
ulation, N = 4 and the length of a simulation
run for each plot is 104 cycles.
Estimates of the utilization after arbitration

U ′ by our model, John’s model and MC sim-
ulation are compared in Fig. 4 for L = 1 cy-
cle. All the processors have same utilization
requests Ui = U . Our model agrees better to
the MC simulation.
Figures 5(a) and 5(b) are for the case of the

access time L = 20 cycles. Utilization re-
quests Ui = U for all i are used in the case
of the homogeneous workloads (Fig. 5(a)) and
U1 = U/4, U2 = U/2, U3 = 3U/4, U4 = U are
used for the case of the heterogeneous work-
loads (Fig. 5(b)). Results of Jaiswal’s model in

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

U
’

U

Auth. i=2
Auth. i=3
Auth. i=4
Jais. i=3
Jais. i=4
MC. i=2
MC. i=3
MC. i=4

(a) Homogeneous workloads.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1
U

’

U

Auth. i=2
Auth. i=3
Auth. i=4
Jais. i=3
Jais. i=4
MC. i=2
MC. i=3
MC. i=4

(b) Heterogeneous workloads.

Fig. 5 Utilization assigned by the fixed-priority arbiter
U ′ as a function of utilization request U . Esti-
mates by our model (Auth.), by Jaiswal’s model
(Jais.) and results of Monte-Carlo (MC.) sim-
ulation are shown.

MPU DMAC

MPMC

DRAM

Fixed
priority
arbiter

Periodic
accesses

Benchmark
programs

Fig. 6 Block diagram of experimental system on
Xilinx ML510 FPGA board.

Section 3.7 are also shown. In the both cases,
the models agree with the MC simulation qual-
itatively, but our model overestimates in the
high utilization regions. Jaiswal’s model over-
estimates in the medium utilization region in
the case of the heterogeneous workloads.
4.2 Comparison with benchmark pro-

grams
We show our experimental results in this sec-

tion. The experimental system consists of a mi-
croprocessor (MPU), a direct memory access
(DMA) controller , multi-port memory con-
troller (MPMC) and a shared memory, imple-

ⓒ 2013 Information Processing Society of Japan

組込みシステムシンポジウム2013
Embedded Systems Symposium 2013

100

ESS2013
2013/10/18

Table 2 System constants and measured parameters.
Burst length (BL, in 32-bit words), read and
write throughput (R TP and W TP, in 106

bursts/s) are shown.

(a) System constants.

BL R TP W TP
MPU 8 19.68 16.67
DMA 16 13.33 11.77

(b) Parameters

pg T (s) MR(×106) MW(×106) U
jp 0.412 0.8226 0.3258 0.153
la 62.337 16.2544 5.0265 0.0181
ma 1.117 1.7621 0.9480 0.137
tb 1.921 5.5888 3.1883 0.260
tr 4.061 12.9010 8.5785 0.305
td 3.061 2.9707 2.1318 0.0967
tm 5.204 12.8343 6.5853 0.210
ty 4.169 12.0594 7.3973 0.267

mented on a Xilinx ML510 FPGA board19)

(Fig. 6). We used the Consumer program set
from the MiBench benchmark suite20) as the
workload for the microprocessor, and periodic
memory access patterns were generated by the
DMA controller. Our intention for this combi-
nation of workloads was to reproduce the mem-
ory accesses in a system of software and ASICs
working together. MPMC is configured to use
a fixed-priority arbiter. We use the same hard-
ware configuration throughout this experiment.
The Consumer set in MiBench is designed

to represent consumer products such as video
games and digital cameras, which are regarded
as memory-intensive. It consists of eight
programs: jpeg (jp), lame (la), mad (ma),
tiff2bw (tb), tiff2rgba (tr), tiffdither
(td), tiffmedian (tm), and typeset (ty).
First we obtained the workload parameters T

and U of the benchmark programs in a single
processor environment. Since each program has
a single function, we regard one program as a
simulation step and used averaged utilization
for each step. The system constants and the
obtained parameters are summarized in Tables
2(a) and 2(b), respectively.
When measuring the execution time, we used

the time command. A constant time t =
0.161(s) (the time to execute an empty pro-
gram) was subtracted from the measured time
to reduce the effects of the execution over-
head caused by the time command. The ex-
ecution times in the tables are averages over
10 samples. The maximum standard deviation
∆T = ±0.019 (s).
To measure the number of memory accesses

Fixed Priority

-5.0

0.0

5.0

10.0

15.0

20.0
jp la ma tb tr td tm ty

R
e
l.

e
rr

o
r

(%
)

Udma=0.18 (R)

Udma=0.36 (R)

Udma=0.54 (R)

Fig. 7 Error in estimated execution times. Result of
the proposed probabilistic model (Rand) is also
shown.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6
T

’/T
 (

M
P

U
)

U (DMA)

prob. random
exp.

Fig. 8 Execution time of benchmark typeset. Esti-
mations by our model (prob. random) is also
shown.

from the microprocessor, we used a L1 cache-
miss counter in an in-circuit cache emulator
since any memory accesses to the shared mem-
ory are cache misses. The L2 caches were not
used. The throughput constants were obtained
from the specifications of the memory controller
of the FPGA board. The utilization of the
periodic accesses by the DMA controller was
UDMA = 0.180, 0.359, and 0.539. This was ad-
justed by controlling the number of memory ac-
cesses within a period.
The results are summarized and compared

with the simulation results in Figs 7. Figure
8 shows an example of the execution time.

5. Discussion

As we see in Section 4.1, Jaiswal’s model
agree better with the MC simulation in the high
utilization region than our model. This is be-
cause our model ignores the correlations gener-
ated between the higher priority accesses as a
result of the arbitration, i.e., they tend to be
clustered since a preempted access is accepted
just after the preempting access is completed.
However, Jaiswal’s model ignores the decay of
the aggregate arrival rate Λi due to the con-
tention. Our model handles this effect by in-
corporating the aggregate utilization U+

i after

ⓒ 2013 Information Processing Society of Japan

組込みシステムシンポジウム2013
Embedded Systems Symposium 2013

101

ESS2013
2013/10/18

the arbitration. This is why our model agrees
better in the case of the heterogeneous work-
loads.
In the comparison with the benchmark exper-

iments in Section 4, we saw a relatively large
error at UDMA = 0.54. The reason of this dis-
crepancy seems to be in the periodicity of the
DMA. Since the period is kept constant in the
experiment, the period limits the length of the
completion time. Therefore our model overes-
timates the result. Thus, we need to incorpo-
rate additional parameters, such as the period
of the access pattern, to increase the accuracy
at higher utilization range.

6. Conclusion

We devised probabilistic model of shared
memory with fixed-priority arbiter applicable
to performance estimation in early stages of de-
velopment of embedded systems. The calcula-
tion time of the model is O(N) due to the mean
value approximations. The model is applica-
ble to a shared memory of which access time is
much longer than one cycle as well as one cycle
case.
Our model is first compared to a cycle-

level Monte-Carlo simulation and shows at least
competitive accuracy to the former studies.
Next, the estimated execution time with our
model is compared with the measured execution
time of benchmark programs from MiBench
suite with memory access contention. We find
a maximum error of 3.7 % at a moderate band-
width utilization (U ≲ 0.4), while a maximum
error of 18.6 % is found at a higher bandwidth
utilization (U = 0.54). This discrepancy can be
explained by the periodicity of the access pat-
tern.
Our future work will include the application

of our method to real embedded systems with
measurement and modeling methods. Cur-
rently, our method does not handle architec-
ture change of cache memories, i.e., one needs
to subtract the number of cache hits from the
workload parameters of the probabilistic model.
In future, we need to identify a performance
model of cache memory which can be used in
conjuction with our method. Integration of
Jaiswal’s model and our model would also be
interesting.
Acknowledgment
The authors would like to thank Kenta Naka-

mura and Hiroki Nishiyama for fruitful discus-
sions on the experiments.

Logos and Trademarks
IBM is a registered trademark of Inter-

national Business Machines Corporation in
United States, other countries, or both.
Other company, product, or service names

may be trademarks or service marks of others.

References

1) Gries, M.: Methods for evaluating and cover-
ing the design space during early design devel-
opment, Integration, the VLSI Journal , Vol.38,
No. 2, pp. 131–183 (2004).

2) Open SystemC Initiative (OSCI): SystemC
specification (2007).

3) Jonkers, H., van Gemund, A. and Reijns,
G.: A probabilistic approach to parallel sys-
tem performance modelling, Proceedings of the
Twenty-Eighth Hawaii International Confer-
ence on System Sciences, Vol. 2, pp. 412 –421
(1995).

4) Cortellessa, V., Pierini, P. and Rossi, D.: Inte-
grating Software Models and Platform Models
for Performance Analysis, IEEE Transactions
on Software Engineering , Vol. 33, No. 6, pp.
385–401 (2007).

5) Ono, K., Toyota, M., Kawahara, R., Sakamoto,
Y., Nakada, T. and Fukuoka, N.: A Model-
based Method for Evaluating Embedded Sys-
tem Performance by Abstraction of Execu-
tion Traces, Proc. of 6th European Confer-
ence on Modelling Foundations and Applica-
tions (ECMFA 2010), Lecture Notes in Com-
puter Science, Vol. 6138, Springer, pp. 233–244
(2010).

6) Hoogendoorn, C. H.: A General Model for
Memory Interference in Multiprocessors, IEEE
Transactions on Computers, Vol. C-26, No. 10,
pp. 998–1005 (1977).

7) Mudge, T. N., Hayes, J. P., Buzzard, G. D.
and Winsor, D. C.: Analysis of Multiple-Bus
Interconnection Networks, Journal of Parallel
and Distributed Computing , Vol. 3, pp. 328–343
(1986).

8) Kawahara, R., Nakamura, K., Ono, K.,
Nakada, T. and Sakamoto, Y.: Coarse-grained
simulation method for performance evaluation
a of shared memory system, Proceedings of the
16th Asia and South Pacific Design Automa-
tion Conference (ASP-DAC 2011), pp.413–418
(2011).

9) Smilauer, B.: General Model for Memory In-
terference in Multiprocessors and Mean Value
Analysis, IEEE Transactions on Computers,
Vol. C-34, pp. 744–751 (1985).

10) Sorin, D., Lemon, J., Eager, D. and Vernon,
M.: Analytic evaluation of shared-memory ar-
chitectures, IEEE Transactions on Parallel and

ⓒ 2013 Information Processing Society of Japan

組込みシステムシンポジウム2013
Embedded Systems Symposium 2013

102

ESS2013
2013/10/18

Distributed Systems, Vol. 14, No.2, pp. 166–180
(2003).

11) Yang, Q. and Ravi, R.: Design and anal-
ysis of multiple-bus arbiters with different
priority schemes, International Conference on
Databases, Parallel Architectures and Their
Applications (PARBASE-90), pp. 238 –247
(1990).

12) John, L. and Liu, Y.-C.: Performance model
for a prioritized multiple-bus multiprocessor
system, IEEE Transactions on Computers ,
Vol. 45, No. 5, pp. 580 –588 (1996).

13) Jaiswal, N. K.: Priority Queues, Academic
Press, chapter 3, pp. 52–82 (1968).

14) Bryant, R. M., Krzesinski, A. E., Lakshmi,
M. S. and Chandy, K. M.: The MVA prior-
ity approximation, ACM Trans. Comput. Syst.,
Vol. 2, No. 4, pp. 335–359 (1984).

15) Bobrek, A., Paul, J. M. and Thomas, D. E.:
Stochastic Contention Level Simulation for
Single-Chip Heterogeneous Multiprocessors,
IEEE Transactions on Computers, Vol. 59, pp.
1402–1418 (2010).

16) Poe, J., Cho, C.-B. and Li, T.: Using An-
alytical Models to Efficiently Explore Hard-
ware Transactional Memory and Multi-Core
Co-Design, 20th International Symposium on
Computer Architecture and High Performance
Computing (SBAC-PAD ’08), pp. 159 –166
(2008).

17) Darema-Rogers, F., Pfister, G. F. and So, K.:
Memory access patterns of parallel scientific
programs, Proceedings of the 1987 ACM SIG-
METRICS conference on Measurement and
modeling of computer systems, SIGMETRICS
’87, pp. 46–58 (1987).

18) Hennessy, J. L. and Patterson, D. A.: Com-
puter Architecture, Fourth Edition, A Quanti-
tative Approach, Elsevier, Morgan Kaufmann
Publishers, chapter 1, pp. 1–62 (2007).

19) Xilinx Inc.: Xilinx ML510 Documentation
(2011).

20) Guthaus, M. R., Ringenberg, J. S., Ernst,
D., Austin, T. M., Mudge, T. and Brown,
R. B.: MiBench: A free, commercially repre-
sentative embedded benchmark suite, Proceed-
ings of the IEEE 4th Annual Workshop on
Workload Characterization (WWC-4), pp. 3–
14 (2001).

ⓒ 2013 Information Processing Society of Japan

組込みシステムシンポジウム2013
Embedded Systems Symposium 2013

103

ESS2013
2013/10/18

