
IPSJ Transactions on Advanced Computing Systems Vol.6 No.3 108–117 (Sep. 2013)

Regular Paper

Security Enhancement of Out-of-band Remote
Management in IaaS Clouds

Tomohisa Egawa1,a) Naoki Nishimura1,b) Kenichi Kourai1,2,c)

Received: December 21, 2012, Accepted: March 3, 2013

Abstract: In Infrastructure-as-a-Service (IaaS) clouds, the users manage the systems in the provided virtual machines
(VMs) called user VMs through remote management software such as Virtual Network Computing (VNC). For de-
pendability, they often perform out-of-band remote management via the management VM. Even in the case of system
failures inside their VMs, the users could directly access their systems. However, the management VM is not always
trustworthy in IaaS. Once outside or inside attackers intrude into the management VM, they could easily eavesdrop
on all the inputs and outputs in remote management. To solve this security issue, this paper proposes FBCrypt for
preventing information leakage via the management VM in out-of-band remote management. FBCrypt encrypts the
inputs and outputs between a VNC client and a user VM using the virtual machine monitor (VMM). Sensitive infor-
mation is protected against the management VM between them. The VMM intercepts the reads of virtual devices by
a user VM and decrypts the inputs, whereas it intercepts the updates of a framebuffer by a user VM and encrypts the
pixel data. We have implemented FBCrypt for para-virtualized and fully-virtualized guest operating systems in Xen
and TightVNC. Then we confirmed that any keystrokes or pixel data did not leak.

Keywords: virtual machine, remote management, information leakage

1. Introduction

Infrastructure as a Service (IaaS) provides users with virtual
machines (VMs) hosted in data centers. Its users can set up
their systems in the provided VMs called user VMs and use them
as necessary. They usually manage their systems through re-
mote management software such as Virtual Network Computing
(VNC). To allow users to access their systems even on failures
inside their VMs, IaaS often provides out-of-band remote man-

agement via a special VM called the management VM. Unlike
traditional remote management, management servers are run in
the management VM, not in user VMs, and directly interact with
virtual devices for user VMs, such as virtual keyboard and video
devices. Even if the networks of user VMs are disconnected due
to configuration errors or if the systems crash in user VMs, the
users can continue to manage their VMs.

However, this out-of-band remote management increases se-
curity risks because the management VM is not always trustwor-
thy in IaaS [1], [2], [3], [4], [5]. The management VM may be
compromised by outside attackers if it is not well-maintained. If
some of the administrators are malicious, they may mount insider
attacks [6]. Such attackers can easily eavesdrop on the inputs
and outputs in remote management by replacing the management
servers with malicious ones. For example, they can extract pass-
words from keystrokes sent from the clients and take screenshots

1 Kyushu Institute of Technology, Iizuka, Fukuoka 820–8502, Japan
2 JST, CREST, Kawaguchi, Saitama 332–0012, Japan
a) egawan@ksl.ci.kyutech.ac.jp
b) naonishi@ksl.ci.kyutech.ac.jp
c) kourai@ci.kyutech.ac.jp

of user VMs to steal sensitive or private information. In addi-
tion, they may execute arbitrary commands inside user VMs by
sending keyboard events.

To solve this security issue, we propose FBCrypt, which pro-
tects sensitive information in out-of-band remote management
against the attackers in the management VM. FBCrypt encrypts
the inputs and outputs in remote management between a VNC
client and a user VM using the virtual machine monitor (VMM).
It can prevent information leakage via the management VM be-
tween them in a manner transparent to a user VM. The inputs to
a user VM are encrypted by a VNC client and decrypted by the
VMM when a user VM reads them from virtual devices. When a
user VM updates a framebuffer in a virtual video device, the pixel
data are encrypted by the VMM and decrypted by a VNC client.
As such, only encrypted data are passed to the management VM.
In addition to the confidentiality, the VMM checks the integrity
of the inputs. It verifies the message authentication code gener-
ated from inputs and detects tampering before passing the inputs
to a user VM.

To guarantee the integrity of the VMM itself inside IaaS,
FBCrypt performs remote attestation of the VMM with a trusted
server outside IaaS. Remote attestation certifies the authentic-
ity of the VMM by tamper-resistant hardware such as the trusted
platform module (TPM) [7]. Although the management VM of-
ten has high privileges, the code and data of the VMM are still
protected against the management VM. Thanks to the memory
protection by the VMM, the attackers in the management VM
cannot steal secret keys for encryption in the VMM or modify
the code in the VMM to invalidate the proposed security mecha-
nisms.

c© 2013 Information Processing Society of Japan 108



IPSJ Transactions on Advanced Computing Systems Vol.6 No.3 108–117 (Sep. 2013)

We have implemented FBCrypt for para-virtualized and fully-
virtualized guest operating systems in the Xen VMM [8] and
TightVNC [9]. To securely pass keyboard inputs to a para-
virtualized guest, the VMM identifies the keyboard queue in the
user VM and directly writes decrypted inputs into the queue. To
encrypt pixel data on a screen for the management VM, the VMM
replicates a framebuffer that holds pixel data for a user VM and
provides the original and encrypted ones to the user VM and the
management VM, respectively. It synchronizes these two if the
user VM updates its framebuffer. Our experimental results show
that the attackers in the management VM cannot steal keystrokes
and screenshots and that the overhead of FBCrypt is not so large.

This paper is an extended version of our previous paper [10].
In this paper, we add support for fully-virtualized guest operating
systems to FBCrypt. Then we report the overhead of out-of-band
remote management in full virtualization and compare it with that
in para-virtualization.

The organization of this paper is as follows. Section 2 de-
scribes issues in out-of-band remote management using the man-
agement VM. Section 3 proposes FBCrypt for protecting sen-
sitive information in out-of-band remote management and Sec-
tion 4 explains the implementation details in Xen. Section 5
shows our experimental results. Section 6 describes related work
and Section 7 concludes this paper.

2. Motivation

2.1 Out-of-band Remote Management
To manage a user VM in a cloud, the user usually connects a

management client to a management server running in the user
VM. This is called in-band remote management because the user
directly accesses the user VM. Let us consider remote manage-
ment through VNC. Whenever the user presses a key or pointer
button or moves a pointing device, an input event is generated and
sent from a VNC client to the server. When the user VM draws
graphic objects in a screen, a framebuffer update is sent from the
VNC server to the client in response to a request from the client.
A framebuffer is an area of memory used to hold pixel data. Since
the communication between the VNC client and server can be en-
crypted with a virtual private network or SSH tunneling, sensitive
information in the inputs and outputs is protected. However, this
in-band remote management is not dependable. If the user just
fails the configurations of the network or firewall in the user VM,
the VNC client cannot access the VM at all. If the system in the
VM crashes, the user cannot obtain any information via VNC.

To increase dependability in remote management of the user
VM, out-of-band remote management is desired. In this style of
remote management, a VNC server is run in the management VM,
as illustrated in Fig. 1. The management VM is provided in the
type-I VMM, which runs directly on hardware, such as Xen and
Hyper-V and has privileges for accessing all user VMs. It also
emulates virtual devices for each user VM. The VNC server in
the management VM can directly access the virtual devices to
interact with a user VM. This out-of-band remote management
does not rely on the network or the VNC server in the user VM.
The user can access the user VM as if he locally logged in to the
VM even on network failures of the VM. For example, if the user

Fig. 1 Out-of-band remote management of a user VM.

fails in network configuration in the user VM, he could fix the
problems by modifying the configuration through the virtual key-
board. Even when the system in the user VM crashes, the user
may check kernel messages through the virtual video device.

This out-of-band remote management relies on the manage-
ment VM, but the management VM is not always trustworthy
in clouds [1], [2], [3], [4], [5]. Since the user VMs can be mi-
grated between data centers, it is not guaranteed that they are run
in data centers where all the administrators are trusted. If the
management VM is managed by lazy administrators, it may have
vulnerabilities in software or configurations. In this case, vulner-
able management VMs may be penetrated by outside attackers.
Worse, if administrators themselves are malicious, they can act
as inside attackers [6].

If such attackers abuse the privileges of the management VM,
they can eavesdrop on or tamper with the inputs and outputs in
remote management. Even if the network is encrypted between
a client host and the management VM, the data processed by the
VNC server in the management VM is not encrypted. For the in-
puts to a user VM, the attackers can easily obtain keyboard and
pointer inputs by modifying the VNC server. The VNC server has
to receive the input events from the client and write them to the
virtual devices for the user VM. For example, the attackers can
extract passwords and credit card numbers from keystrokes. In
addition, they can send keyboard events to a user VM and make
the VM execute arbitrary commands.

For the outputs from a user VM, the attackers can take screen-
shots of the user VM through the framebuffer in a virtual video
device. The attackers may steal sensitive information displayed
on the screen. For example, when passwords have to be written in
configuration files, the attackers can obtain displayed passwords
even if they cannot eavesdrop on keyboard events to the user VM.
If the user uses a software keyboard to avoid keyloggers, the at-
tackers can steal information on pressed keys displayed on the
screen.

2.2 Threat Model and Assumptions
We assume that the management VM can be compromised by

outside attackers or abused by IaaS administrators. Such attack-
ers could take the root privilege in the management VM and even
modify the operating system kernel. In this paper, we focus on the
attempts to steal and modify sensitive information sent between a
VNC client and a user VM in out-of-band remote management.

We assume that IaaS providers themselves are trusted. This as-
sumption is widely accepted [1], [2], [3], [4], [5]. To guarantee
the trustworthiness, a small number of trusted administrators are

c© 2013 Information Processing Society of Japan 109



IPSJ Transactions on Advanced Computing Systems Vol.6 No.3 108–117 (Sep. 2013)

responsible for the maintenance of the VMM and the hardware.
If average administrators that may be lazy or malicious maintain
the VMM or the hardware, trusted administrators should verify it.
Consequently, the VMM is well-maintained and has no vulnera-
bilities. Also, we do not consider physical attacks because server
rooms should be strictly protected in data centers.

3. Secure Out-of-band Remote Management

To solve the security issue caused by using the untrusted man-
agement VM in IaaS, we propose FBCrypt for enabling secure
out-of-band remote management.

3.1 FBCrypt
FBCrypt encrypts the inputs and outputs between a VNC client

and a user VM using the VMM in a manner transparent to the user
VM. The attackers in the management VM between them cannot
steal sensitive information included in the interaction. Figure 2
shows the architecture of FBCrypt. When the user generates an
input event, the VNC client encrypts the input with a stream ci-
pher and sends it to the VNC server in the management VM. The
VNC server writes the encrypted input to the corresponding vir-
tual device such as keyboard and pointing devices. When the user
VM reads the encrypted input from the virtual device, the VMM
intercepts this read and decrypts the input. It also checks the in-
tegrity of the input, that is, whether the input is not tampered with
after being sent from the VNC client. The existing operating sys-
tem in the user VM can read the decrypted input from the virtual
device via the traditional interface.

In FBCrypt, the attackers in the management VM and in the
network cannot eavesdrop on keyboard or pointer inputs sent
from a VNC client. They cannot decrypt any inputs because only
the VNC client and the VMM share a session key for encryption.
In addition, they cannot send arbitrary keystrokes to user VMs to
execute malicious commands. The encryption and integrity check
of inputs by FBCrypt prevent the attackers from generating their
own input events. Also, the attackers cannot reuse encrypted in-
puts to perform replay attacks. Thanks to the stream cipher used
by FBCrypt, encrypted inputs captured by the attackers cannot be
decrypted correctly when they are sent to the VNC server later.
The stream cipher encrypts even the same message in a differ-
ent way. FBCrypt can detect such inputs that are not correctly
decrypted by the integrity check.

For the outputs from a user VM, on the other hand, FBCrypt

Fig. 2 The architecture of FBCrypt.

encrypts the framebuffer of a virtual video device in the manage-
ment VM. When an application such as an X server in a user VM
draws graphic objects, the user VM updates the framebuffer by
accessing the device. The VMM intercepts this update and en-
crypts the updated pixel data. In response to a request from the
client, the VNC server reads the framebuffer and sends encrypted
pixel data to the client. Then the VNC client decrypts the received
pixel data and draws it in its window. Encrypting the framebuffer
does not cause any problems because the VNC server is not aware
of the contents of the framebuffer. It simply deals with encrypted
pixel data as if they were not encrypted. Since the virtual video
device provides the same interface to the user VM, no modifica-
tion to the operating system is needed.

The attackers in the management VM and in the network can-
not eavesdrop on framebuffer updates sent to a VNC client. The
sent updates are a part of the encrypted framebuffer, which can be
decrypted only by either the VMM or the VNC client. The attack-
ers in the management VM can directly access the entire frame-
buffer but cannot decrypt it. In addition, they cannot modify the
encrypted framebuffer arbitrarily. Even if they copy some area
in the encrypted framebuffer to other areas, the copied areas can-
not be decrypted correctly because FBCrypt encrypts pixel data
with the information on their positions. Furthermore, malicious
framebuffer updates generated by the attackers can be easily de-
tected. Since such updates cannot be decrypted correctly, mean-
ingless objects are just drawn in its window. Consequently, the
user could notice such attacks soon.

Instead of the VMM, device drivers in user VMs could de-
crypt inputs and encrypt outputs, but this is not realistic in clouds.
Since the systems in user VMs are managed by end users, it is dif-
ficult for cloud providers to force the users to install special de-
vice drivers. Moreover, device drivers cannot always be modified,
particularly, for commercial operating systems such as Windows.

3.2 Protecting FBCrypt in IaaS
To guarantee the integrity of the VMM in IaaS, FBCrypt per-

forms remote attestation of the VMM with a trusted server outside
IaaS. Remote attestation certifies the authenticity of the VMM
by tamper-resistant hardware such as the trusted platform module
(TPM) [7]. It measures the VMM by calculating its hash value,
sends the signed measurement to the trusted server, and verifies
its integrity. The VNC clients can check the integrity of the VMM
when connecting to the VNC server in the management VM. Ac-
cording to our assumption in Section 2.2, only a small number of
trusted administrators are allowed to register the hash value of a
legitimate VMM to the trusted server for remote attestation.

The VMM is protected even against malicious management
VMs by using the protection mechanisms of the VMM itself. The
management VM usually has high privileges and can access most
of the hardware without limitations. However, the management
VM is still a sort of VM. Similar to the other VMs, it cannot
access the state of the CPUs or the memory used by the VMM.
Therefore, the attackers in the management VM cannot tamper
with the code in the VMM to invalidate the proposed security
mechanism. They cannot steal data in the VMM, such as secret
keys for encryption.

c© 2013 Information Processing Society of Japan 110



IPSJ Transactions on Advanced Computing Systems Vol.6 No.3 108–117 (Sep. 2013)

In addition, the memory and the CPU state of a user VM can
be protected against the management VM by using the secure
runtime environment (SRE) [2], [5] or VMCrypt [4]. The man-
agement VM can usually access all the resources of a user VM to
enable VM management such as migration. The SRE and VM-
Crypt encrypt the memory of a user VM only for the management
VM. The SRE encrypts the CPU state as well. With them, the
management VM cannot steal keyboard and pointer inputs read
by a user VM via the memory or its CPU registers. It cannot read
unencrypted pixel data to be written in the framebuffer by a user
VM. Also, it cannot tamper with the code in a user VM so that
the user VM itself sends such sensitive data to the attackers, for
example.

3.3 Key Management
A VNC client securely shares a session key with the VMM

whenever it establishes a connection to a VNC server. When it
connects to a user VM, it first generates a new session key. Then
the VNC client communicates with the trusted server for remote
attestation and checks that the VMM on which the user VM runs
is legitimate. If so, the VNC client can obtain the public key of
the VMM from the server. We assume that the public key is se-
curely registered to the server in advance. Next, the VNC client
encrypts the session key with the public key and transfers it to
the VNC server in the management VM. The VNC server passes
it to the VMM and the VMM decrypts it with its private key.
The attackers in the management VM cannot decrypt the session
key because they cannot obtain the private key of the VMM. The
private key is sealed by TPM and can be unsealed only when a
legitimate VMM is booted.

4. Implementation

We have implemented FBCrypt in Xen 4.1.1 [8] and TightVNC
Java Viewer 2.0.95 [9]. We added only 5,497 lines of code to the
VMM. In Xen, the management VM and a user VM are called
domain 0 and domain U, respectively. A VNC server and vir-
tual devices are a part of QEMU running in domain 0. As guest
operating systems, FBCrypt supports para-virtualized Linux and
fully-virtualized operating systems. The former is called a PV
guest and is modified for running in VMs. The latter is called
an HVM guest and can be run in VMs without any modification.
We have confirmed that Linux 2.6.32 and 3.2.0, Windows 7 and
FreeBSD 9.1 run with FBCrypt.

4.1 Keyboard Inputs
FBCrypt securely delivers user’s inputs from a VNC client to

a keyboard driver in domain U.
4.1.1 Delivery to PV Guests

For PV guests, user’s inputs are delivered to the para-
virtualized keyboard driver named kbdfront in domain U, as il-
lustrated in Fig. 3. Currently, FBCrypt supports only keyboard
inputs, but it can support pointer inputs in the same way. When
the user presses a key, the VNC client sends an encrypted key-
board input to the VNC server and the VNC server writes it to a
virtual keyboard device. Then the device passes it to the VMM
using a new hypercall. In the hypercall, the VMM decrypts the

Fig. 3 The secure delivery of keyboard inputs to a PV guest.

Fig. 4 The secure delivery of keyboard inputs to an HVM guest.

encrypted input and stores the decrypted one into the I/O ring for
kbdfront. The I/O ring is a queue used for passing data between
domains. From the I/O ring, kbdfront obtains the decrypted input.
To prevent domain 0 from reading the contents of the I/O ring,
the memory for the I/O ring can be encrypted by SRE [2], [5] or
VMCrypt [4]. In the original Xen, virtual devices directly write
unencrypted inputs to the I/O ring.

The VMM identifies this I/O ring when domain U is booted.
Originally, the VMM does not recognize the I/O ring because
only domain U and domain 0 share it. On initialization, kbdfront

allocates and sets up the xenkbd page, which is a memory page
containing the I/O ring. Then it registers the frame number of
the page to XenStore in domain 0. XenStore is a filesystem-like
database containing information shared between domains. The
VMM monitors this registration from domain U to domain 0 and
obtains necessary information. Domain 0 cannot interfere with
this identification mechanism. We describe how to monitor the
interaction in Section 4.3.
4.1.2 Delivery to HVM Guests

For HVM guests, user’s inputs are delivered from a VNC client
to a native keyboard driver in domain U, as in Fig. 4. When the
VNC server receives an encrypted keyboard input, it writes the
input to a virtual keyboard device. Unlike that for a PV guest, the
device contains a keyboard queue in it and stores the input into
the queue without decryption, so that domain 0 cannot eavesdrop
on the contents of the input. Then the device generates a keyboard
interrupt to domain U. When the keyboard driver attempts to read
the I/O port for the device, the IN instruction is intercepted by
the VMM. To emulate that instruction, the VMM invokes the de-
vice and obtains the encrypted input stored in the keyboard queue.
Then it decrypts the input and stores the value into a virtual regis-
ter of domain U as a result of the emulation of the IN instruction.
The register can be encrypted by SRE [2], [5] and read only by

c© 2013 Information Processing Society of Japan 111



IPSJ Transactions on Advanced Computing Systems Vol.6 No.3 108–117 (Sep. 2013)

domain U and the VMM.
4.1.3 Conversion of Encoding

For keyboard inputs, the VMM converts the encoding of keys
when it stores decrypted inputs into the I/O ring in PV guests or
the virtual register in HVM guests. The I/O ring and the IN in-
struction for reading a keyboard device are designed so that they
receive keycodes as keyboard inputs. A keycode (scancode) is
data generated when a key is pressed and released. However, de-
crypted inputs are keysyms, which are used in VNC. A keysym is
defined by the X Window System and the same as the correspond-
ing ASCII value for ordinary keys. To fill this gap, the VMM
converts keysyms to keycodes using the mapping table. This con-
version was originally done by the VNC server. In FBCrypt, the
VNC server cannot perform this conversion because keyboard in-
puts received from the VNC client are encrypted.
4.1.4 Encryption

For encryption and decryption of inputs, FBCrypt uses AES
in CTR mode (AES-CTR) as a stream cipher. We used a modi-
fied version of the CyaSSL library [11] in the VMM and the Java
standard API in TightVNC Java Viewer. AES-CTR generates a
key stream by encrypting counter block values with AES and en-
crypts data by combining them and the next key in the key stream
via XOR. When AES-CTR uses up all keys in the key stream,
it increments the counter values and generates a new key stream
from them. When the VNC client terminates, the internal state
such as a key stream is lost. However, the VMM cannot rec-
ognize that termination and it continues to preserve the internal
state. To synchronize the internal state when the VNC client re-
connects to the server, the VNC server issues a new hypercall for
resetting the internal state in the VMM.
4.1.5 Integrity Checking

To check the integrity of inputs, FBCrypt uses a message au-
thentication code (MAC). When the VNC client sends an en-
crypted input to the server, it calculates a SHA-1 hash value from
the input before encryption, a sequence number, and the session
key for encryption. The sequence number is incremented when-
ever one input is handled. Thanks to a secret session key and a
sequence number, the attackers cannot calculate the hash value
correctly or reuse a pair of captured encrypted input and MAC
value.

To send the MAC value with an encrypted input, we have ex-
tended the RFB protocol [12] used in VNC. For PV guests, the
MAC value is passed from the virtual keyboard device to the
VMM with the corresponding encrypted input. For HVM guests,
it is stored in the VMM until the corresponding encrypted input is
read to emulate the IN instruction for reading a keyboard device.
Before the VMM decrypts the encrypted input, it compares the
MAC value with the hash value calculated from the input. If the
two values are different, the VMM discards the input.

4.2 Video Outputs
FBCrypt securely delivers updated pixel data from a video

driver in domain U to a VNC client.
4.2.1 Delivery from PV Guests

For PV guests, updated pixel data are delivered from the para-
virtualized video driver named fbfront in domain U, as illustrated

Fig. 5 The secure delivery of pixel data from PV guests.

in Fig. 5. In the original Xen, fbfront allocates a virtual frame-
buffer (VFB) in domain U and shares it with the virtual video de-
vice in domain 0. In FBCrypt, the VMM replicates the VFB for
the device and encrypts the replicated one. When an application
in domain U draws graphic objects, fbfront updates its own VFB
and sends an update event to the device. At this time, the VMM
synchronizes the original VFB with the replicated one. The VNC
server periodically monitors updates in the replicated VFB and
sends framebuffer updates to the client if pixel data are changed.
The client decrypts the received data and re-draws its window.
Since the original VFB in domain U can be encrypted only for
domain 0 by SRE [2], [5] or VMCrypt [4], domain 0 cannot read
unencrypted pixel data in the VFB.

To replicate the VFB for the virtual video device, the VMM
first identifies the VFB in domain U. When domain U is booted,
fbfront sets up the xenfb page, which contains the pointer to the
VFB. When fbfront registers this page to XenStore in domain 0,
the VMM intercepts it and allocates a new VFB as an encrypted
replica. At the same time, it rewrites the xenfb page so that the
page points to the replicated VFB. Since the xenfb page stores a
VFB in a structure like page tables, the VMM constructs a repli-
cated VFB with the same structure. Then it sends the rewritten
xenfb page to XenStore in domain 0 and the virtual video device
uses the replicated VFB. As such, the device is given an illusion
as if it shared the same VFB with domain U.

The VMM synchronizes the original VFB with the replicated
one when fbfront sends update events for the VFB to the virtual
video device. An update event consists of an updated area in the
VFB and is passed via the I/O ring shared between fbfront and the
device. Since the xenfb page also contains the I/O ring, the VMM
can easily identify it. When an update event is sent using the I/O
ring, the VMM intercepts it, encrypts the pixel data in the speci-
fied area of the original VFB, and writes it to the replicated VFB.
After this synchronization, the VMM sends the update event to
the virtual video device.
4.2.2 Delivery from HVM Guests

For HVM guests, updated pixel data are delivered from the na-
tive video driver in domain U to a VNC client, as in Fig. 6. Orig-
inally, a virtual video device in domain 0 allocates video RAM
(VRAM) in domain U and shares it with the video driver. This
emulates memory-mapped VRAM for domain U. VRAM is the
same as a framebuffer, but we use this term for HVM guests. In
FBCrypt, the VMM replicates the VRAM for the virtual video
device and encrypts the replicated one. This is similar to the repli-
cation of VFBs for PV guests. When an application in domain U

c© 2013 Information Processing Society of Japan 112



IPSJ Transactions on Advanced Computing Systems Vol.6 No.3 108–117 (Sep. 2013)

Fig. 6 The secure delivery of pixel data from HVM guests.

draws graphic objects, the video driver updates its own VRAM.
Unlike VFBs, the VMM synchronizes the original VRAM with
the replicated one when the device checks updated pixel data.
This is because the native video driver does not send any update
events to the device explicitly.

When the virtual video device attempts to map the VRAM of
domain U for sharing it, the VMM replicates the pages used for
the original VRAM and maps the replicated pages. To distinguish
the mapping of VRAM and other memory regions in domain U,
the device notifies the VMM of the physical address and the size
of VRAM by using a new hypercall. Unlike VFBs, it is diffi-
cult that the VMM identifies the VRAM without such involve-
ment of the device because the device determines the physical
address of the VRAM. If a malicious device notifies the VMM
of an address different from the VRAM, it could directly map the
original VRAM without replication. However, memory regions
that have not been registered as VRAM can be encrypted by the
VMM [2], [4], [5].

The VMM synchronizes the original VRAM with the repli-
cated one when the virtual video device obtains a dirty bitmap
from the VMM. A dirty bitmap is used for tracking updates
to VRAM in the VMM. Each bit of the bitmap corresponds to
each page in VRAM. It is set when the corresponding page is
updated. This mechanism is also used for tracking dirty pages
and sending only modified pages to the destination in live migra-
tion [13]. When the device issues the hypercall for obtaining the
dirty bitmap, the VMM copies the contents of only dirty pages in
the original VRAM to the replicated one with encryption.
4.2.3 Encryption

For encryption and decryption of pixel data, FBCrypt uses a
modified version of RC5 [14], which uses the non-standard block
size of 48 bits to accommodate two pixels. It is desirable to en-
crypt a VFB or VRAM by one pixel because arbitrary pixels can
be updated. However, the block size of 24 bits is less than the
standard minimum size of 32 bits and therefore we chose 48 bits
as the block size. In addition, FBCrypt considers the position of
each pixel to be encrypted. If all the pixels were encrypted by
the same key without considering their positions, the attackers in
domain 0 could obtain approximate screen images.

Since FBCrypt encrypts two pixels together, the VMM ex-
pands synchronized regions so that the regions are aligned by the
boundary of two pixels. For example, when the X-position or the
width of an updated area is odd, the VMM has to decrease the
X-position by one or increase the width by one. Also, the VNC

Fig. 7 Intercepting the registration to XenStore.

server aligns updated areas in a similar way because it calculates
the areas by itself. If the VNC server transferred only one of two
pixels, the VNC clients could not decrypt the received pixel data
correctly.

4.3 Monitoring a XenStore Ring
To intercept the registration to XenStore in domain 0 from a PV

guest in domain U, the VMM monitors a XenStore ring, which
is shared between domain U and domain 0, as shown in Fig. 7.
When domain U registers data to XenStore, it writes a pair of
path and value to the XenStore ring. For example, the path for
a virtual keyboard device is device/vkbd/0/page-ref and the
value is the frame number of the xenkbd page. The VMM in-
spects the XenStore ring when domain U sends an inter-domain
event to domain 0 using a hypercall after it writes data to the ring.
If the written path is the registered one, the VMM obtains the
information on a shared page.

Since the original VMM in Xen is not aware of a XenStore
ring, our VMM identifies the ring from the start info page, which
points to the page containing the XenStore ring. This page is
passed from domain 0 to domain U when domain U is booted.
The VMM first obtains the virtual address of the start info page
from the RSI register of a virtual CPU for domain U. The ad-
dress is set by domain 0 at the build time of domain U. Then the
VMM translates the virtual address into the frame number of the
start info page.

5. Experiments

We conducted experiments for confirming the prevention of in-
formation leakage by FBCrypt and for examining its overhead.
For server and client machines, we used two PCs with one Intel
Core 2 Quad processor Q9550 2.83 GHz and a Gigabit Ethernet
NIC. In the server machine, we ran a modified version of Xen
4.1.1 for the x86-64 architecture. For comparison, we also used
the original Xen. We assigned one CPU core and 1 GB of mem-
ory to domain U and four cores and 3 GB of memory to domain 0.
In domain U, we ran Linux 2.6.32.21 as PV and HVM guests and
configured the screen resolution to 800 × 600. In domain 0, we
ran Linux 3.1.1. In the client machine, we ran a modified version
of TightVNC Java Viewer 2.0.95 on Linux 2.6.38.8. The client
machine had 8 GB of memory.

We used AES-CTR with a 128-bit key for encrypting inputs
and SHA-1 for calculating MAC. For RC5 used for encrypting
pixel data, we used a 48-bit block, a 192-bit key, and 16 rounds.

c© 2013 Information Processing Society of Japan 113



IPSJ Transactions on Advanced Computing Systems Vol.6 No.3 108–117 (Sep. 2013)

Fig. 8 The screen whose only lower half is encrypted.

5.1 Attempts at Eavesdropping
To confirm that FBCrypt prevents domain 0 from eavesdrop-

ping on keystrokes, we embedded a custom keylogger into the
VNC server in domain 0. This keylogger simply recorded
keystrokes sent from the VNC client. Using the VNC client, we
logged in to domain U by typing a user name and a password.
Without FBCrypt, the plain-text password was recorded. When
FBCrypt was enabled, the password was encrypted by the VNC
client and the keylogger recorded encrypted one. Nevertheless,
the user could log in to domain U as usual.

Next, we embedded a program for screen capture into the VNC
server to confirm that FBCrypt prevents domain 0 from steal-
ing the pixel data of domain U. This screen capture periodically
saved the pixel data in the VFB to a file. Figure 8 shows the
screen whose lower half is encrypted for demonstration. With
FBCrypt disabled, the pixel data was recorded as in the upper
half and the attackers could read displayed texts. FBCrypt could
randomize the pixel data as in the lower half, so that the attackers
cannot recognize the contents.

5.2 Keyboard Inputs
5.2.1 Overhead

First, we examined the overhead on the client and server sides
when we pressed one key in the VNC client. On the client side,
we measured the time from when the VNC client received a key-
board input until it sent the input event to the VNC server. On the
server side, for the PV guest, we measured the time from when
the VNC server received the event until the input was stored into
the I/O ring. For the HVM guest, we measured the time until the
input was stored into a virtual register by the emulation of the IN

instruction. We measured these 10 times and obtained the aver-
age. The overhead on the client side was 794 µs. Most of the
overhead comes from sending extra data for the MAC. On the
server side, the overheads were 32 µs and 16 µs for the PV and
HVM guests, respectively.

Next, we measured the CPU utilization on the client and server
sides when the VNC client generated keyboard inputs at various
rates. To change the rate of keyboard inputs, we used the key-
board auto-repeat function. Even when we increased the auto-
repeat rate to 12 characters per second, the CPU utilization did
not increase.
5.2.2 Response Time

To examine the response time of a keyboard input, we mea-

Fig. 9 The response time of a keyboard input.

sured the time from when the VNC client received a keyboard
input from the user until it drew an input character in its window.
In this experiment, domain U read the keyboard input, displayed
the character corresponding to it on the terminal, and updated
the framebuffer. We measured the response time 10 times and
obtained the average and standard deviation. We performed this
measurement with and without the encryption of video outputs to
reveal the breakdown of the overhead. For comparison, we also
measured the response time using in-band remote management,
which ran a VNC server in domain U, not in domain 0.

Figure 9 shows the response times in two types of guests. For
the PV guest, the response time in FBCrypt was 5.6 ms longer
than that in the original Xen. The overhead of encrypting video
outputs was 2.0 ms. For the HVM guest, the response time in-
creased only by 2.2 ms in FBCrypt. The overhead of the encryp-
tion of pixel data was 1.3 ms. These results means that the in-
crease of the response time by FBCrypt is not large. For in-band
remote management, on the other hand, the response time was
27 ms and the fastest. One cause of the difference is the overhead
of out-of-band remote management itself.

However, the cause of the difference between the response
times in the PV guest and the others is the timer interval used by
the VNC server implemented in Xen. The VNC server checks up-
dates in the framebuffer at some interval and sends the updates to
the client if any. The interval is first set to 30 ms when the VNC
server receives a keyboard event. Since the framebuffer update
caused by the keyboard input does not occur in 30 ms for the PV
guest, the next interval is set to 80 ms. This means that the VNC
server can recognize a framebuffer update in 110 ms after a key-
board event is received. This is the reason why the response times
in the PV guest are approximately 110 ms. When we changed the
timer interval to 10 ms, the response time was improved to 86 ms
in the PV guest with FBCrypt.

5.3 Screen Updates
5.3.1 Overhead

First, we examined the overhead on the server and client sides
when we updated screen areas of various sizes in a user VM. On
the server side, for the PV guest, we measured the time from when
the VMM intercepted the update event for the VFB until it com-
pleted to synchronize VFBs. This time included the encryption
time of pixel data. For the HVM guest, we measured the time for
synchronizing VRAM in the hypercall that a virtual video device
issued to obtain a dirty bitmap. On the client side, we measured
the time from when the VNC client received encrypted pixel data

c© 2013 Information Processing Society of Japan 114



IPSJ Transactions on Advanced Computing Systems Vol.6 No.3 108–117 (Sep. 2013)

Fig. 10 The overhead in screen updates (client).

Fig. 11 The overhead in screen updates (server).

until it completed to draw the data in its window. We measured
these 10 times and obtained the average.

Figures 10 and 11 show the overhead in screen updates of var-
ious sizes. On the client side, the overhead was proportional to
the number of updated pixels. On the server side, on the other
hand, the overhead was proportional to half of the number of up-
dated pixels in both PV and HVM guests. For the PV guest, the
fbfront driver sends an event with an updated area to the virtual
video device after it updates the framebuffer, as described in Sec-
tion 4.2.1. At this time, it expands the width of the updated area
to the screen width (800 pixels in this experiment) due to its im-
plementation issue. Since FBCrypt synchronizes that expanded
area in VFBs, the overhead is proportional only to the height of
an updated area.

For the HVM guest, on the other hand, FBCrypt synchronizes
VRAM at the page level on the basis of a dirty bitmap, as de-
scribed in Section 4.2.2. Each page includes many pixel data
(1365.3 pixels in this experiment) in the direction of the X axis.
As a result, an updated area is expanded to fit the page size and its
width is usually the same as the screen width, as in the case of the
PV guest. Therefore, the overhead is approximately proportional
to the height of an updated area. In any cases, the VNC server
calculates a truly-updated area by comparing with the old pixel
data and sends it to the client.

Next, we measured the CPU utilization when we updated
screen areas of various sizes in domain U. For this experiment,
we have developed a benchmark program that repeated to re-draw
the specified area with random colors at 30 frames per second.
Figure 12 shows the results on the client side and Figs. 13 and 14
show those on the server side for PV and HVM guests, respec-
tively. The CPU utilization increased as the updated area became
large. On the client side, the CPU utilization increased by 6.6%

Fig. 12 The CPU utilization in screen updates (client).

Fig. 13 The CPU utilization in screen updates (server for the PV guest).

Fig. 14 The CPU utilization in screen updates (server for the HVM guest).

at maximum.
On the server side, for the PV guest, the CPU utilization largely

increased in domain U because the synchronization of VFBs is
done when the fbfront driver in domain U issues a hypercall to
send update events. For the HVM guest, on the other hand, the
CPU utilization largely increased in both domain 0 and domain
U when we used FBCrypt. The synchronization of VRAM is
done when the virtual video device in domain 0 checks a dirty
bitmap using a hypercall. In a full-screen update (800 × 600) us-
ing FBCrypt, the CPU utilization increased by 32% and 72% in
PV and HVM guests, respectively.
5.3.2 Response Time

To examine the response time of screen updates of various
sizes, we measured the time from when the VNC client sent a
request until it received updated pixel data and re-drew it in the
window. We ran the above benchmark program in domain U so
that the framebuffer was always being updated. We measured the
response time 10 times and obtained the average and standard de-
viation. For comparison, we also measured that in in-band remote
management.

Figures 15 and 16 show the response times. For the HVM
guest, the increase of the response time by FBCrypt was approx-

c© 2013 Information Processing Society of Japan 115



IPSJ Transactions on Advanced Computing Systems Vol.6 No.3 108–117 (Sep. 2013)

Fig. 15 The response time of a screen update (HVM guest).

Fig. 16 The response time of a screen update (PV guest).

Fig. 17 The response time of a screen update (for the PV guest with a short
timer).

imately the sum of the overhead on the server and client sides.
For the PV guest, on the other hand, the increase was only the
overhead on the client side. This is because the synchronization
of VFBs is not done while the VNC server handles requests from
the client. That is done when the fbfront driver updates the VFB.
Therefore, the increase of the response time is smaller for the PV
guest.

Compared with the results for the updates of three different
areas, for the HVM guest, the response times increased as the
updated area became larger. For the PV guest, on the other hand,
they increased when the updated area was small but decreased for
large updated areas. The cause is also the timer interval used by
the VNC server in Xen, as in Section 5.2.2. The fbfront driver
is designed to send an update event to the virtual video device in
50 ms after the VFB is updated. Due to this delay, the device may
receive no update events when the VNC server receives a request
from the client. In this case, the VNC server has to wait for 80 ms
at least. The probability in which this situation happens becomes
higher as an updated area gets smaller. Since the VNC client can
process a smaller amount of pixel data in a shorter time, it sends
requests to the server more frequently.

Figure 17 shows the response times for the PV guest when we
changed the timer interval in the VNC server to 10 ms. The re-

sponse time was improved for the updates of smaller areas and
proportional to the size of an updated area.

6. Related Work

Xoar [15] runs QEMU including a VNC server in a separated
VM called QemuVM. In Xen, QEMU can be run in a special
VM called a stub domain. Since a small operating system named
mini-os is run in these special VMs, it is more difficult for the
outside attackers to compromise them. However, the VNC server
can be compromised because it is open to the Internet. If it is
compromised, the attackers can eavesdrop on sensitive informa-
tion in remote management. In addition, this architecture does
not improve the security against insider attacks by IaaS adminis-
trators.

VMware vSphere Hypervisor [16] runs a VNC server in the
VMM and enables out-of-band remote management without the
management VM. The VNC server in the VMM can directly ac-
cess virtual devices for user VMs. In vSphere, information leak-
age via the management VM does not occur. However, the attack-
ers can steal sensitive information in remote management if they
compromise the VNC server in the VMM. They can take over
even the control of the VMM itself. FBCrypt preserves the con-
fidentiality in remote management by the VMM even in the case
that the VNC server in the management VM is compromised.

The secure runtime environment (SRE) [2], [5] and VM-
Crypt [4] prevent information leakage from the memory of the
user VMs to the management VM. When the management VM
maps memory pages of a user VM, the VMM encrypts their con-
tents. This architecture is complementary to FBCrypt in that it
prevents the management VM from stealing information inside
the user VMs. Note that the management VM cannot use the
VFB encrypted by these systems, instead of the one replicated
and encrypted by FBCrypt. These systems synchronize the unen-
crypted and encrypted VFBs only on memory mapping.

CloudVisor [3] runs the security monitor underneath the VMM
and encrypts the memory and storage of the user VMs in the se-
curity monitor. Since it distrusts not only the management VM
but also the VMM, it can prevent information leakage even from
the VMM. However, the security monitor does not encrypt the
inputs and outputs in remote management.

BitVisor [17] can prevent information leakage from storage and
network of the user VM. It is similar to FBCrypt in that the VMM
transparently encrypts I/O of the user VM without the help of the
management VM. However, BitVisor does not provide a means
of remote management.

7. Conclusion

In this paper, we proposed FBCrypt for enabling secure out-
of-band remote management in IaaS clouds. To prevent infor-
mation leakage via the management VM in out-of-band remote
management, FBCrypt encrypts the inputs and outputs between
a VNC client and a user VM using the VMM. The VMM de-
crypts the inputs encrypted by a VNC client when a user VM
reads them. When a user VM updates a framebuffer, the VMM
encrypts the updated pixel data, which are decrypted by a VNC
client. As such, sensitive information is protected against the

c© 2013 Information Processing Society of Japan 116



IPSJ Transactions on Advanced Computing Systems Vol.6 No.3 108–117 (Sep. 2013)

management VM, which is located in the middle. We have imple-
mented FBCrypt for para-virtualized and fully-virtualized guest
operating systems in Xen and TightVNC Java Viewer. We con-
firmed that the security in out-of-band remote management was
enhanced and that the overhead of FBCrypt was not so large. Our
future work is to apply FBCrypt to other remote management
software such as SSH.

Acknowledgments This research was supported in part by
JST, CREST.

References

[1] Santos, N., Gummadi, K.P. and Rodrigues, R.: Towards Trusted Cloud
Computing, Proc. Workshop Hot Topics in Cloud Computing (2009).

[2] Li, C., Raghunathan, A. and Jha, N.K.: Secure Virtual Machine Ex-
ecution under an Untrusted Management OS, Proc. Intl. Conf. Cloud
Computing, pp.172–179 (2010).

[3] Zhang, F., Chen, J., Chen, H. and Zang, B.: CloudVisor: Retrofitting
Protection of Virtual Machines in Multi-tenant Cloud with Nested Vir-
tualization, Proc. Symp. Operating Systems Principles, pp.203–216
(2011).

[4] Tadokoro, H., Kourai, K. and Chiba, S.: Preventing Information Leak-
age from Virtual Machines’ Memory in IaaS Clouds, IPSJ Online
Transactions, Vol.5, pp.156–166 (2012).

[5] Li, C., Raghunathan, A. and Jha, N.K.: A Trusted Virtual Machine in
an Untrusted Management Environment, IEEE Trans. Services Com-
puting, Vol.5, No.4, pp.472–483 (2012).

[6] TechSpot News: Google Fired Employees for Breaching User Privacy
(2010), available from 〈http://www.techspot.com/news/
40280-google-fired-employees-for-breaching-user-privacy.html〉.

[7] Trusted Computing Group: TPM Main Specification (2011), available
from 〈http://www.trustedcomputinggroup.org/〉.

[8] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I. and Warfield, A.: Xen and the Art of Vir-
tualization, Proc. Symp. Operating Systems Principles, pp.164–177
(2003).

[9] TightVNC Group: TightVNC, available from
〈http://www.tightvnc.com/〉.

[10] Egawa, T., Nishimura, N. and Kourai, K.: Dependable and Secure Re-
mote Management in IaaS Clouds, Proc. Intl. Conf. Cloud Computing
Technology and Science, pp.411–418 (2012).

[11] yaSSL: CyaSSL Embedded SSL Library, available from
〈http://www.yassl.com/〉.

[12] Richardson, T.: The RFB Protocol Version 3.8, available from
〈http://www.realvnc.com〉.

[13] Clark, C., Franser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C.,
Pratt, I. and Warfield, A.: Live Migration of Virtual Machines, Proc.
Symp. Networked Systems Design and Implementation, pp.273–286
(2005).

[14] Rivest, R.L.: The RC5 Encryption Algorithm, Proc. Workshop Fast
Software Encryption (1994).

[15] Colp, P., Nanavati, M., Zhu, J., Aiello, W., Coker, G., Deegan, T.,
Loscocco, P. and Warfield, A.: Breaking Up is Hard to Do: Security
and Functionality in a Commodity Hypervisor, Proc. Symp. Operating
Systems Principles, pp.189–202 (2011).

[16] VMware Inc.: VMware vSphere Hypervisor, available from
〈http://www.vmware.com/〉.

[17] Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K., Hasegawa, S.,
Horie, T., Hirano, M., Kourai, K., Oyama, Y., Kawai, E., Kono, K.,
Chiba, S., Shinjo, Y. and Kato, K.: BitVisor: A Thin Hypervisor for
Enforcing I/O Device Security, Proc. Intl. Conf. Virtual Execution En-
vironments, pp.121–130 (2009).

Tomohisa Egawa received his B.Sc. and
M.Sc. degrees from Kyushu Institute of
Technology in 2011 and 2013, respec-
tively. His current research interest is in
cloud computing and virtual machines.

Naoki Nishimura received his B.Sc. de-
gree from Kyushu Institute of Technology
in 2012. His current research interest is in
cloud computing and virtual machines.

Kenichi Kourai is an associate professor
in Department of Creative Informatics at
Kyushu Institute of Technology. He re-
ceived his Ph.D. degree from the Univer-
sity of Tokyo in 2002. Before 2008, he
was an assistant professor at Tokyo Insti-
tute of Technology. He has been work-
ing on operating systems. His current re-

search interest is in dependable and secure systems using virtual
machines.

c© 2013 Information Processing Society of Japan 117


