
IPSJ SIG Technical Report

Burst SSD Buffer: Checkpoint Strategy at Extreme Scale

Kento Sato1,2 SatoshiMatsuoka1 AdamMoody3 KathrynMohror3 Todd Gamblin3

Bronis R. de Supinski3 NaoyaMaruyama4

Abstract: Checkpointing is an indispensable fault tolerance technique, commonly used by HPC applications that run
continuously for hours or days at a time. However, when checkpointing extreme scale systems, the bursty nature of
the I/O pattern of checkpointing overburdens file systems and also causes huge overhead to be added to an applica-
tion’s runtime. In order to alleviate the overhead and achieve fast checkpoint/restart, we propose a highly-resilient
mini-SSD-based burst buffer system, and explore a checkpoint strategy on the system based on our checkpointing
model.

1. Introduction
The growing computational power of high performance com-

puting (HPC) systems enables increasingly larger scientific simu-
lations. However, as the number of system components increase,
the overall failure rate of systems increases. Further, the mean
time between failures (MTBF) of future systems is projected to
be on the order of tens of minutes or hours [7], [10], [31]. In fact,
an earlier failure analysis on Hera, Atlas and Coastal clusters at
Lawrence Livermore National Laboratory (LLNL) [29] showed
that a production application, the pF3D laser-plasma interaction
code [4], experienced 191 failures out of 5-million node-hours.
If we simply scale out the system while keeping the failure rate
constant, the estimated MTBF is about 1.2 days for a 1,000-node
cluster, 2.9 hours for a 10,000-node cluster, and 17 minutes for a
100,000-node cluster. Without fault tolerant techniques and more
reliable hardware, applications will be unable to run continuously
for even one day on such a large system. Therefore, as we look
towards extreme scale systems, fault tolerance is becoming more
important [8].

One indispensable fault tolerance technique is check-
point/restart. The application writes a snapshot of its state to a
reliable parallel file system (PFS) so that if a failure occurs, the
application can restore the state from the snapshot. Although
storing checkpoints in the PFS is highly reliable, this straight-
forward method can impose huge overheads on application run
times at large scales. Multilevel checkpoint/restart is an approach
to this problem [3], [23]. Multilevel checkpointing libraries
generally cache checkpoints in in-system storage such as RAM
or other node-local storage, and copy a select few to the more
reliable PFS. This reduces the overhead of writing checkpoints

1 Tokyo Institute of Technology, 2-12-1-W8-33, Ohokayama, Meguro-ku,
Tokyo 152-8552 Japan

2 Research Fellow of Japan Society for the Promotion of Science
3 Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
4 RIKEN, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo,

650-0047 Japan

in the common case, which can greatly increase application effi-
ciency. In addition, combining multilevel checkpoint/restart with
asynchronous I/O [1], [25], [30] or uncoordinated checkpointing
[5], [11], [28] can result in more efficient execution in the
presence of failures. However, even with these state-of-the-art
checkpoint/restart techniques, high failure rates at extreme scale
may limit the ability of the techniques to improve application
efficiency. Using only distributed node-local storage for caching
checkpoints is scalable. However, the approach is not viable
at extreme scale due to node-local storage being generally
unreliable in the event of failures.

The LLNL failure analysis study showed that most failures af-
fect a single compute node. To tolerate node failures, multilevel
checkpointing libraries generally apply redundancy schemes to
the cached checkpoints. For example, each checkpoint may be
copied to a partner node, or the library may utilize a RAID algo-
rithm and spread redundancy data across multiple compute nodes.
This allows the application to recover from node failures assum-
ing the number of nodes lost is less than what is tolerated by
the redundancy scheme used. However, with higher failure rates,
the likelihood of multiple simultaneous node failures increases.
If the simultaneous failures affect nodes in a shared redundancy
set, the cached checkpoints will be lost and the application will
need to restart from the PFS. This could mean the application
would spend the majority of its time in checkpoint/restart activi-
ties [30]. Thus, even with such state-of-the-art checkpoint/restart
techniques, application efficiency may suffer at extreme scales.

Burst buffers have been proposed as in-system storage to alle-
viate the problems of writing to a shared PFS [19], [20]. Burst
buffers are a new tier in the storage hierarchy to fill the perfor-
mance gap between node-local storage and the PFS. They can ab-
sorb the bursty I/O requests from applications and thus can reduce
the effective load on the PFS. System software can manage mov-
ing data between the burst buffers and the PFS asynchronously to
applications and can coordinate data movement across jobs. In
this paper, we consider using burst buffers to improve system re-

This article has been authored by Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344 (LLNL-CONF-643020) with the U.S. Department of
Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes.

This paper is an IPSJ SIG Technical Report, neither refereed nor peer-reviewed

ⓒ 2013 Information Processing Society of Japan 1

Vol.2013-HPC-141 No.19
2013/10/1

IPSJ SIG Technical Report

siliency. With burst buffers, an application can store checkpoints
both on node-local storage and burst buffers for increased effi-
ciency and reliability. In this paper, we explore how burst buffers
can improve efficiency compared to using only node-local stor-
age. Our key contributions include:
• A model to evaluate system resiliency given a check-

point/restart and storage configuration
• Simulation results showing how burst buffers can improve

system resiliency compared to using only node-local storage
• A quantitative examination of the trade-offs between coordi-

nated and uncoordinated multilevel checkpoint/restart
• An analysis of which tiers in the storage hierarchy impact

system reliability and efficiency
• An exploration of burst buffer configurations to discover the

best for extreme scale.
In the next section, we categorize checkpoint/restart strategies

and describe our targets for our study. In Section 3, we intro-
duce an mSATA-based SSD burst buffer machine, and show pre-
liminary results. In Section 4, we model multi-tiered hierarchi-
cal storage and checkpoint/restart strategies. In Section 5, we
describe our experimental setup and in Section 6 we simulate
system efficiency given checkpoint/restart strategies and storage
configurations, and describe a solution for bulding reliable sys-
tem/arichitecture towards extreme scale.

2. Checkpoint/Restart Strategies
Over the years, many checkpoint/restart strategies have been

studied. These techniques can be roughly categorized into sin-
gle or multi-level, synchronous or asynchronous, and coordinated
or uncoordinated checkpoint/restart. We explain each check-
point/restart strategy and their advantages and disadvantages.

2.1 Single vs. Multi-Level Checkpointing
The simplest approach for checkpoint/restart is to write all

checkpoints to a single location, such as the PFS [33], [35].
However, when a large number of compute nodes write their
checkpoints to a PFS, contention for shared PFS resources leads
to low I/O throughput. Multilevel checkpointing is an approach
for alleviating this bottleneck [3], [23]. Earlier failure analy-
sis [23] showed most failures on current supercomputers affect
a single compute node, which does not necessarily require writ-
ing checkpoints to the reliable, but slow PFS. For example, only
15% of failures on the Hera, Atlas and Coastal systems at LLNL
required checkpoints on the PFS for restarts. The study also
showed multilevel checkpoint/restart can benefit application ef-
ficiency in the face of higher failure rates and increased relative
overhead of checkpointing to the PFS that may occur on future
systems. Therefore, in this study we only target multilevel check-
point/restart.

2.2 Synchronous vs. Asynchronous Checkpointing
Checkpointing libraries can write checkpoints either syn-

chronously or an asynchronously. Synchronous checkpointing li-
braries [23], [35] write checkpoints such that all processes write
their own checkpoints concurrently, and are blocked until the
checkpoint operation completes. In asynchronous checkpointing

Checkpoin*ng	

Checkpoin*ng	
Wai*ng	 *me	

Process (a1)

Process (a2)

Process (b1)

Process (b2)

C
lu

st
er

 A

C
lu

st
er

 B

Fig. 1 Indirect global synchronization

[29], [33], the library writes checkpoints to the PFS in the back-
ground of application computation, which can reduce checkpoint-
ing overhead experienced by applications. With asynchronous
checkpointing, after each process writes its checkpoint data to
RAM or node-local storage, it can continue its computation. An-
other process or thread reads the checkpoint from the storage lo-
cation, and writes it to the PFS. Although asynchronous check-
pointing can increase an application’s runtime due to resource
contention from the background checkpoint transfer process, it
resolves the blocking problem of synchronous checkpointing.

Intuitively, one would expect asynchronous checkpointing to
be more efficient than synchronous checkpointing. However, our
earlier study showed that simple asynchronous checkpointing,
which inflates an application runtime to a certain extent, can be
worse than synchronous checkpointing [29]. But with our asyn-
chronous checkpointing system using RDMA, we minimized the
inflated overhead, and showed that the asynchronous checkpoint-
ing is more efficient given current and future failure rates, and ex-
pected checkpointing overhead. Thus, in this paper, we explore
only asynchronous checkpointing.

2.3 Coordinated vs. Uncoordinated Checkpointing
Last, we consider whether checkpoint/restart is coordinated

or uncoordinated. With coordinated checkpoint/restart, all pro-
cesses globally synchronize before taking checkpoints to ensure
the checkpoints are consistent and that no messages are in flight.
Coordinated checkpoint/restart is applicable to a wide range of
applications. However, at large scales the global synchronization
can cause overhead due to propagation of system noise [14]. In
addition, when checkpointing to or restarting from a PFS, tens
of thousands of compute nodes concurrently write or read check-
points, which can cause large overhead due to contention. Mean-
while, uncoordinated checkpointing [5] does not require global
synchronization, and allows processes to write/read checkpoints
at different times, which lowers checkpoint overhead. How-
ever, with uncoordinated checkpointing there may be messages
in flight from one process to another when a checkpoint is taken.
To handle this, uncoordinated checkpointing libraries log mes-
sages, which has its own overhead problem. This protocol can
cause the so-called domino effect preventing an application from
rolling-back to the last checkpoint at restart [9] without message
logging.

Earlier uncoordinated checkpoint techniques [11], [28] re-
duce the message logging overhead by partitioning processes into
clusters, and only logging the inter-cluster communications. Al-
though the clustering approach can reduce message logging over-
head while minimizing the number of processes that need to
restart on failure, application runtime is still inflated by the log-

c© 2013 Information Processing Society of Japan 2

Vol.2013-HPC-141 No.19
2013/10/1

IPSJ SIG Technical Report

SSD	 2	 SSD	 3	 SSD	 4	 SSD	 1	 SSD	 1	 SSD	 2	 SSD	 3	 SSD	 4	

Compute	
node	 1	

Compute	
node	 2	

Compute	
node	 3	

Compute	
node	 4	

Compute	
node	 1	 	

Compute	
node	 2	

Compute	
node	 3	

Compute	
node	 4	

PFS	 (Parallel	 file	 system)	 PFS	 (Parallel	 file	 system)	

A single node

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c© 2013 Information Processing Society of Japan 3

Vol.2013-HPC-141 No.19
2013/10/1

IPSJ SIG Technical Report

Hi
Compute	
node	

Si

i = 0 i > 0

1 2 mi

Hi-1 Hi-1 Hi-1

Fig. 3 Recursive structured storage model

For efficiency exploration, we use the read and write throughput
of our test system.

4. Modeling
As described in Sections 2 and 3, each checkpoint strategy and

storage architecture have advantages and disadvantages. To dis-
cover which checkpoint strategy is best for given a storage archi-
tecture, we developed a model of the checkpoint strategies and
storage architectures.

4.1 Recursive Structured Storage Model
We introduce a recursive structured storage model to gener-

alize storage architectures to describe both flat and burst buffer
systems with a single model. Figure 3 shows the recursive struc-
tured storage model based on a context-free grammar. A tier i
hierarchical entity, Hi, has a storage S i shared by mi upper hierar-
chical entities, Hi−1. We denote Hi=0 as a compute node. If each
tier of hierarchical storage is shared as {m1,m2, . . . ,mN} in an N-
tired hierarchical storage, we denote the storage architecture as
HN {m1,m2, . . . ,mN}. For example, the flat buffer system in Fig-
ure 2 (a) can be represented as H2 {1, 4}. It has 2 levels of storage:
the node-local storage is not shared, so m1 = 1; however, the PFS
is shared across all compute nodes, so m2 = 4. In the same man-
ner, the burst buffer system in Figure 2 (b) can be represented as
H2 {2, 2}. The total number of compute nodes can be calculated
as
∏2

i=1 mi = 4 nodes.

Table 2 Tier i storage (S i) performance parameters
ri Sequential read throughput from compute nodes (Hi=0)
wi Sequential write throughput from compute nodes (Hi=0)
mi The number of a upper hierarchical entities (Hi−1) sharing S i

In this model, we isolate storage from compute nodes, which
means the model does not distinguish between node-local storage
and network-attached storage. Instead, we differentiate the stor-
age levels using performance parameters. Table 2 shows a list of
the performance parameters. We consider only sequential I/O be-
cause typically the I/O pattern of checkpoint/restart is sequential.
Note that ri and wi are not the throughput of the storage but the
throughput between compute nodes and the storage location. For
example, if tier i storage has r, w MB/sec of throughput, but is
connected via slow network, l < r, w, then the parameters be-
come ri = wi = l MB/sec. Using these performance parameters,
we estimate checkpoint/restart time.

4.2 Modeling of Checkpoint/Restart Strategies
Given the storage performance parameters of each tier, we

model level i checkpoint overhead (Oi), checkpoint latency (Li)

and restart overhead (Ri) in a multilevel checkpointing library
[29]. For simplicity, if multiple compute nodes concurrently ac-
cess a single storage location, we assume the read/write through-
put per node scales down according to the number of concur-
rently accesses. The model relies on an existing multilevel asyn-
chronous checkpoint/restart model [29], so we also include that
model’s assumptions.

Checkpoint overhead (Oi) and restart overhead (Ri) are the in-
creased execution time of an application because of checkpoint-
ing and restarting, respectively. Checkpoint latency (Li) is the
time to complete a checkpoint. If a checkpoint strategy conducts
erasure encoding, such as XOR, the checkpoint overhead and la-
tency also include the encoding time. Checkpoint overhead and
latency are to clarify the differences between synchronous and
asynchronous checkpointing. During synchronous checkpoint-
ing, so checkpoint overhead and latency is equal, i.e., Oi = Li,
because each process is blocked until the checkpointing is com-
pleted. With asynchronous checkpointing, checkpoint overhead
can be generally reduced because asynchronous checkpointing
incurs only initialization overhead, so checkpoint overhead is
equal or smaller than checkpoint latency, i.e., Oi < Li.

First, we model level i checkpoint overhead and latency as

Oi =

 Ci + Ei (synchronous checkpointing)
Ii (asynchronous checkpointing)

Li = Ci + Ei

where Ci denotes actual checkpointing time, Ei denotes encoding
time, and Ii denotes initialization time for asynchronous check-
pointing. If the level i checkpointing does not encode check-
points, Ei becomes 0; otherwise we model the encoding time as
Ei = D · ei where D is the checkpoint size per compute node, and
ei is encoding throughput. The actual checkpointing time (Ci),
i.e., sequencial write time, can be simply calculated as

Ci =

D × M/wi (i = N)

D ×
⌈

M∏N
k=i+1 mk

⌉
/wi (otherwise)

where M denotes the total number of checkpointing compute
nodes, i.e.,

∏N
i=1 mi. With uncoordinated checkpointing, we as-

sume the checkpointing time is identical to coordinated check-
pointing time because of indirect global synchronization as de-
scribed in Section 2.3. Because

∏N
k=i+1 mk is the number of stor-

age locations S i,
⌈

M∏N
k=i+1 mk

⌉
represents the max number of com-

pute nodes per storage location S i.
When restarting with uncoordinated checkpointing, the restart

overhead is different than that of coordinated checkpointing. We
model the restart overhead (Ri), i.e., sequencial read time, as:

Ri =

D × K/ri (i = N)

D ×
⌈

K∏N
k=i+1 mk

⌉
/ri (otherwise)

where K is the number of restarting compute nodes. With coor-
dinated restart, all compute nodes concurrently read their check-
points, so K is identical to the total number of compute nodes

c© 2013 Information Processing Society of Japan 4

Vol.2013-HPC-141 No.19
2013/10/1

IPSJ SIG Technical Report

Table 3 Simulation configuration

Flat buffer system Burst buffer system
H2 {m1,m2} H2 {1, 1088} H2 {32, 34}
{r1, r2} {500 MB/sec, 10 GB/sec} {16 GB/sec, 10 GB/sec}
{w1, w2} {260 MB/sec, 10 GB/sec} {8.32 GB/sec, 10 GB/sec}
{e1, e2} {400 MB/sec, N/A}

D 5 GB
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 1.33 × 10−8}

M. With uncoordinated restart, only the number compute nodes
that failed will perform restart. Here, the size of the cluster of
failed nodes is K, and we assume each compute node in a cluster
is distributed across S i>N storage locations with a topology-aware
process mapping technique.

4.3 Multilevel Asynchronous Checkpoint/Restart Model
Our multilevel asynchronous checkpoint/restart model [29]

computes the expected runtime (T̂) given the checkpoint over-
heads at each storage level (O = {O1,O2, . . .}), the check-
point latencies (L = {L1, L2, . . .}), the restart overheads (R =
{R1,R2, . . .}), the failure rates (F = {F1, F2, . . .}), the checkpoint
frequencies (V = {v1, v2, . . .}), and the checkpoint interval (T),
i.e., f (O, L,R, F,V,T) ⇒ T̂ . Thus, we can compute the optimal
checkpoint frequency an interval by minimizing T̂ . vi is the num-
ber of level i checkpoints within each level i + 1 period. For
example, if an application writes fifteen level 1 checkpoints for
every level 2 checkpoint, and five level 2 checkpoints for every
level 3 checkpoint, V is {15, 5, 1}.

To evaluate the checkpoint strategies given a storage configu-
ration, we use efficiency defined as

efficiency =
ideal time

expected time
=

I
T̂
.

I is the minimum run time assuming the application spends no
time in checkpointing activities and encounters no failures. So I
is simply computed as:

I = T × (v1 + 1) × · · · × (vN−1 + 1)

= T ·
N−1∏
i=1

(vi + 1)

The efficiency metric indicates the fraction of time an application
spends only in computation. We use this metric to compare the
checkpoint strategies. Our earlier study [24], [29] provides more
details of the model.

5. Experimental Setup
In this section, we describe our experimental setup including

configuration details for checkpoint/restart and storage, and how
we determine the failure rates to use in our model.

5.1 Checkpoint/Restart and Storage Configuration
In this study, we evaluate multilevel checkpoint/restart on a 2-

tiered storage system. Table 3 shows the base configuration. The
system sizes (Hi) are based on the Coastal cluster at LLNL, which
is an 88.5 TFLOP theoretical peak system consisting of 1,088
batch nodes. The burst buffer system has 34 burst buffer nodes,

each of which is shared by 32 compute nodes. Our burst buffer
prototype achieved almost theoretical peak performance with two
RAID cards, but for this exploration, we assume that each burst
buffer node has four RAID cards (read BW 16 GB/sec, write BW
8.32 GB/sec), and are connected via a high speed interconnect
which does not create a bottleneck in bandwidth. For a fair com-
parison, we set the aggregate I/O throughput of each tier of stor-
age to the same values for both the flat buffer and the burst buffer
systems.

For uncoordinated checkpointing, we use 16 nodes for the clus-
ter size (K). An earlier study [12], [28] showed that the optimal
cluster size is from 32 to 128 processes, i.e., 4 to 16 nodes for
a 8-core Coastal compute node, to provide a good trade-off be-
tween the size of the clusters and the amount of messages to log
for most applications. Because the cluster size is small enough to

assign a compute node to a single burst buffer node,
⌈

K∏2
k=2 mk

⌉
is 1

compute node for uncoordinated restart.

5.2 Failure Rate Estimation
Failure rates (F) are based on a failure analysis study using the

Scalable Checkpoint/Restart (SCR) Library [23]. SCR provides
several checkpoint options: LOCAL, XOR, and PFS. With LOCAL,
SCR simply writes the checkpoint data to node-local storage. In
this case, if one of the checkpoints is lost due to a failure, an
application would not be able to restart its execution. So, SCR
provides XOR, which is a RAID-5 strategy that computes XOR
parity across subgroups of processes so that SCR can restore the
lost checkpoint data. SCR also provides PFS to keep checkpoint
data on the most reliable storage level, the PFS. The failure anal-
ysis study shows that the average failure rates of a single compute
node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9, and PFS
is 3.93 × 10−10.

In a flat buffer system, each failure rate is calculated by mul-
tiplying the failure rate by the number of compute nodes, 1088
nodes. This leads to failure rates of 2.14 × 10−7 for LOCAL,
1.92 × 10−6 for XOR, and 4.27 × 10−7 for PFS. Actually, if a
level-i failure rate is lower than a level-i + 1 one, the optimal
level i checkpoint count is zero because level i can recover a
level i + 1 checkpoint, which is written more frequently than
level i. Thus, we do not consider LOCAL checkpointing for the
simulation. We evaluate the two level checkpoint/restart case
where level 1 is XOR, and level 2 is PFS, with failure rates of
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, we use 34 burst buffer nodes, and as-
sume the failure rate of a burst buffer node is identical to a com-
pute node. In a burst buffer system, on a compute node failure,
an application does not lose checkpoint data because the check-
point data is not in compute nodes. However, if a burst buffer
node fails, checkpoint data on the failed burst buffer nodes is
lost. Thus, we also use two level checkpoint/restart where level
1 is XOR, and level 2 is PFS. Because the total number of nodes
increases, failure rate requiring level 1 checkpoint increases ac-
cording to the number of burst buffer nodes. For 34 burst buffer
nodes, the level 1 failure rate is calculated as 6.67 × 10−8. Mean-
while, checkpoint data is stored on fewer nodes, which decreases

c© 2013 Information Processing Society of Japan 5

Vol.2013-HPC-141 No.19
2013/10/1

IPSJ SIG Technical Report

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1	 2	 10	 50	 100	

Effi
ci
en

cy
	

Scale	 factor	 (xF, xL2)	

Flat	 Buffer-‐Coordinated	 Flat	 Buffer-‐Uncoordinated	
Burst	 Buffer-‐Coordinated	 Burst	 Buffer-‐Uncoordinated	

Fig. 4 Efficiency of multilevel coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

the failure rate requiring PFS for recovery. The level 2 failure is
calculated as 1.33 × 10−8. Thus, the failure rate of each level is
{F1, F2} = {2.14× 10−7 + 1.92× 10−6 + 6.67× 10−8, 1.33× 10−8}
for the burst buffer system. F1 increases because the burst buffer
system requires additional nodes for the burst buffer.

We use asynchronous checkpointing for PFS, and synchronous
checkpointing for XOR. For the encoding rate, we only provide
an encoding rate (e1) for level 1 (XOR) because PFS does not need
encoding.

6. Resiliency Exploration
In this section, we evaluate the trade-offs of different check-

pointing and storage configurations. In particular, we evaluate
the system efficiency with increasing failure rates and checkpoint
costs; the allowable message logging overhead for uncoordinated
checkpointing; the effect of improving the performance at dif-
ferent levels of the storage hierarchy; and the optimal ratio of
compute nodes to burst buffer nodes.

6.1 Efficiency with Increasing Failure Rates and Checkpoint
Costs

We expect the failure rates and aggregate checkpoint sizes to
increase on future extreme scale systems. To explore the effects,
we increase failure rates and level 2 (PFS) checkpoint costs by
factors of 1, 2, 10, 50 and 100, and compare the efficiencies of
multilevel coordinated and uncoordinated checkpoint/restart on a
flat buffer system and on a burst buffer system. We do not change
the level 1 (XOR) checkpoint cost; because it is node-local storage,
its performance will scale with increasing system size.

Figure 4 shows application efficiency under increasing failure
rates and checkpoint costs. When we compute efficiency, we op-
timize the level-1 and 2 checkpoint frequencies (v1 and v2), and
the interval between checkpoints (T) to discover the maximal ef-
ficiency. The burst buffer system always achieves a higher effi-
ciency than the flat buffer system. The efficiency gap becomes
more apparent with higher failure rates and higher checkpoint
costs because the burst buffer system stores checkpoints on fewer
burst buffer nodes. By using uncoordinated checkpoint/restart
and leveraging burst buffers, we achieve 70% efficiency even

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1	 2	 5	 10	 20	

Effi
ci
en

cy
	

Scale	 factor	 (L1/)	

Flat	 Buffer-‐Coordinated	 Flat	 Buffer-‐Uncoordinated	
Burst	 Buffer-‐Coordinated	 Burst	 Buffer-‐Uncoordinated	

Fig. 5 Efficiency in increasing level-1 checkpoint/restart performance

on systems that are two orders of magnitude larger. This is be-
cause partial restart with uncoordinated checkpointing can exploit
the bandwidth of both burst buffers and the PFS, and accelerate
restart time.

6.2 Allowable Message Logging Overhead
The efficiencies shown in Figure 4 do not include message log-

ging overhead. We consider this factor in Table 4 which shows the
message logging overhead allowed in uncoordinated checkpoint-
ing to achieve a higher efficiency than coordinated checkpoint-
ing. As in Figure 4, we increase both the failure rates and level
2 checkpointing cost by the scale factor shown on each row. We
find that the logging overhead must be relatively small, less than a
few percent, for scale factors up to 10. However, at scale factors
of 50 and 100, very high message logging overheads are toler-
ated. This shows that uncoordinated checkpointing can be more
efficient on future systems even with high logging overheads.

6.3 Effect of Improving Storage Performance
When building a reliable data center or supercomputer, signif-

icant efforts are made to maximize system performance given a
fixed budget. It can be challenging to decide which system re-
sources will most affect overall system performance. To explore
how the performance of different tiers of the storage hierarchy
impact system efficiency, we increase performance of each tier
of storage by factors of 1, 2, 10, and 20. Figures 5 and 6 show
efficiency with increasing performance of level 1 and 2 check-
point/restart, using failures rates at 100 × current rates. We see
that improvement of level 1 checkpoint/restart does not impact
efficiency for either flat buffer or burst buffer systems. However,
as shown in Figure 6, increasing the performance of the PFS does

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

c© 2013 Information Processing Society of Japan 6

Vol.2013-HPC-141 No.19
2013/10/1

IPSJ SIG Technical Report

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1	 2	 5	 10	 20	

Effi
ci
en

cy
	

Scale	 factor	 (L2/)	

Flat	 Buffer-‐Coordinated	 Flat	 Buffer-‐Uncoordinated	
Burst	 Buffer-‐Coordinated	 Burst	 Buffer-‐Uncoordinated	

Fig. 6 Efficiency in increasing level-2 checkpoint/restart performance

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1	 2	 10	 50	

Effi
ci
en

cy
	

Scale	 factor	 (xF, xL2)	

1	 	 compute	 nodes	 2	 compute	 nodes	
4	 compute	 nodes	 8	 compute	 nodes	
16	 compute	 nodes	 32	 compute	 nodes	

Fig. 7 Coordinated: Efficiency in different ratios of compute nodes to
a single burst buffer nodes with coordinated checkpoint/restart

impact system efficiency. We can achieve over 80% efficiency
with both coordinated and uncoordinated checkpoint/restart on
the burst buffer system with improved PFS performance of 10 and
20 ×. These results tell us that level 2 checkpoint/restart overhead
is a major cause of degrading efficiency, and its performance af-
fects the system efficiency much more than that of level 1. We
also find that improvement of system reliability for failures re-
quiring level 2 checkpoint is important.

6.4 Optimal Ratio of Compute Nodes to Burst Buffer Nodes
Another thing to consider when building a burst buffer system

is the ratio of compute nodes to burst buffer nodes. A large num-
ber of burst buffer nodes can increase the total bandwidth, but
the large node counts increase the failure rate of the system and
add to system cost. To explore the effect of the ratio of com-
pute node and burst buffer node counts, we evaluate efficiency
under different failure rates and level 2 checkpoint costs while
keeping I/O throughput of a single burst buffer node constant.
Figures 7 and 8 show the results with coordinated and uncoordi-
nated checkpoint/restart. We see that the ratio is not significant
up to scale factors of 10 ×. However, at a scale factor of 50 ×, a
larger number of burst buffer nodes decreases efficiency. Adding
additional burst buffer nodes increases the failure rate which de-

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1	 2	 10	 50	

Effi
ci
en

cy
	

Scale	 factor	 (xF, xL2)	

1	 	 compute	 nodes	 2	 compute	 nodes	
4	 compute	 nodes	 8	 compute	 nodes	
16	 compute	 nodes	 32	 compute	 nodes	

Fig. 8 Uncoordinated: Efficiency in different ratios of compute nodes
to a single burst buffer nodes with uncoordinated check-
point/restart

grades system efficiency more than the efficiency gained by the
increased bandwidth. Thus, increasing the number of compute
nodes sharing a burst buffer node is optimal as long as the burst
buffer throughput can scale to the number of sharing compute
nodes.

7. Related Work
Fast checkpoint/restart is important for an application running

for days and weeks at extreme scale to achieve efficient execu-
tion in the presence of failures. Multilevel checkpoint/restart
[3], [23] is an approach for increasing application efficiency.
Multilevel checkpoint libraries utilize multiple tiers of storage,
such as node-local storage and the PFS. Uncoordinated check-
point/restart [5], [11], [28] works effectively when coupled with
multilevel checkpoint/restart. The approach can limit the number
of processes that need to be restarted, i.e., only a partial restart
instead of the whole job, which can decrease restart time from
shared file system resources, such as a PFS or burst buffer. These
techniques can be improved further when coupled with incre-
mental checkpointing [2], [6], [26], and checkpoint compression
[15], [16]. However, such combined approaches are limited in
their ability to improve application efficiency at extreme scale be-
cause checkpoint/restart time depends on underlying I/O storage
performance.

Another approach is to accelerate I/O performance itself by al-
tering the storage architecture. Adding a new tier of storage is
one solution. Rajachandrasekar et al. [27] presented a staging
server which drains checkpoints on compute nodes using RDMA
(Remote Direct Memory Access), and asynchronously transfers
them to the PFS via FUSE (Filesystem in Userspace). Hasan et
al. [1] achieved high I/O throughput by using additional nodes.
As we observed, optimizing performance requires determination
of the proper number of burst buffers for a given number of com-
pute nodes. However, a comprehensive study on the problem has
not yet been done. To deal with bursty I/O requests, Liu et al. [21]
proposed a storage system design that integrates SSD buffers on
I/O nodes. The system achieved high aggregate I/O bandwidth.
However, to the best our knowledge, our work is the first focus-

c© 2013 Information Processing Society of Japan 7

Vol.2013-HPC-141 No.19
2013/10/1

IPSJ SIG Technical Report

ing on a co-designed approach for increasing both I/O throughput
and reliability with burst buffers at extreme scale.

Wickberg et al. [34] introduced an aggregated DRAM buffer
on top of the PFS called RAMDISK Storage Accelerator (RSA).
RSA constructs a low latency and high bandwidth buffer on the
fly, and asynchronously stages in files ahead of execution cou-
pled with I/O scheduler. Kannan et al. [17] also presented a data
staging approach using active NVRAM (Non-volatile RAM) [18]
technology. These studies focused on only I/O throughput. How-
ever, as we have seen, storing application’s data as well as check-
points in a fewer number of extra nodes is a reliable solution. Our
model evaluates the system efficiency and is useful for designing
future storage architectures at extreme scale.

8. Conclusion
In this work, we explored the use of burst buffer storage for

scalable checkpoint/restart on future extreme scale systems. We
developed a model to explore both checkpointing strategies and
storage architectures. We used our model to evaluate multilevel
checkpointing on flat storage systems that are currently avail-
able on today’s machines and hierarchical storage systems us-
ing burst buffers. We also modeled the performance of differ-
ent checkpointing strategies, specifically coordinated checkpoint-
ing where all processes checkpoint simultaneously, and uncoor-
dinated checkpointing where subsets of processes coordinate a
checkpoint instead of the whole job.

From our exploration, we found that burst buffers are indeed
beneficial for checkpoint/restart on future systems, increasing re-
liability and efficiency. We also found that the performance of
the parallel file system has a good deal of impact on the effi-
ciency of a machine, while increased bandwidth to burst buffers
did not affect overall machine efficiency. However, the reliability
of burst buffers does impact efficiency, because unreliable buffers
mean more I/O traffic to the parallel file system. Overall, un-
coordinated checkpointing was more efficient than coordinated
checkpointing, even with high message logging overhead. These
findings can benefit system designers in making the trade-offs in
performance of components so that they can create efficient and
cost-effective machines.

Acknowledgments This work performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344, and
was also supported by Grant-in-Aid for Research Fellow of
the Japan Society for the Promotion of Science (JSPS Fellows)
24008253, Grant-in-Aid for Scientific Research S 23220003.

References
[1] Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K. and

Zheng, F.: DataStager: Scalable Data Staging Services for Petascale
Applications, Proceedings of the 18th ACM international symposium
on High performance distributed computing, HPDC ’09, New York,
NY, USA, ACM, pp. 39–48 (online), DOI: 10.1145/1551609.1551618
(2009).

[2] Agarwal, S., Garg, R., Gupta, M. S. and Moreira, J. E.: Adaptive
Incremental Checkpointing for Massively Parallel Systems, Proceed-
ings of the 18th annual international conference on Supercomputing,
ICS ’04, New York, NY, USA, ACM, pp. 277–286 (online), DOI:
10.1145/1006209.1006248 (2004).

[3] Bautista-Gomez, L., Komatitsch, D., Maruyama, N., Tsuboi, S., Cap-

pello, F. and Matsuoka, S.: FTI: high performance Fault Tolerance
Interface for hybrid systems, Proceedings of the 2011 ACM/IEEE In-
ternational Conference for High Performance Computing, Network-
ing, Storage and Analysis, Seattle, WS, USA (2011).

[4] Berger, R. L., Still, C. H., Williams, E. A. and Langdon, A. B.: On
the Dominant and Subdominant Behavior of Stimulated Raman and
Brillouin Scattering Driven by Nonuniform Laser Beams, Physics of
Plasmas, Vol. 5, p. 4337 (1998).

[5] Bouteiller, A., Herault, T., Bosilca, G. and Dongarra, J. J.:
Correlated Set Coordination in Fault Tolerant Message Log-
ging Protocols, Proceedings of the 17th international conference
on Parallel processing - Volume Part II, Euro-Par’11, Berlin,
Heidelberg, Springer-Verlag, pp. 51–64 (online), available from
〈http://portal.acm.org/citation.cfm?id=2033415〉 (2011).

[6] Bronevetsky, G., Marques, D., Pingali, K. and Rugina, R.: Languages
and Compilers for Parallel Computing, Springer-Verlag, Berlin, Hei-
delberg, chapter Compiler-Enhanced Incremental Checkpointing, pp.
1–15 (online), DOI: 10.1007/978-3-540-85261-2 1 (2008).

[7] Daly, J. et al.: Inter-Agency Workshop on HPC Resilience at Extreme
Scale (2012).

[8] Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.-
C., Barkai, D., Berthou, J.-Y., Boku, T., Braunschweig, B., Cappello,
F., Chapman, B., Chi, X., Choudhary, A., Dosanjh, S., Dunning, T.,
Fiore, S., Geist, A., Gropp, B., Harrison, R., Hereld, M., Heroux, M.,
Hoisie, A., Hotta, K., Jin, Z., Ishikawa, Y., Johnson, F., Kale, S., Ken-
way, R., Keyes, D., Kramer, B., Labarta, J., Lichnewsky, A., Lippert,
T., Lucas, B., Maccabe, B., Matsuoka, S., Messina, P., Michielse, P.,
Mohr, B., Mueller, M. S., Nagel, W. E., Nakashima, H., Papka, M. E.,
Reed, D., Sato, M., Seidel, E., Shalf, J., Skinner, D., Snir, M., Sterling,
T., Stevens, R., Streitz, F., Sugar, B., Sumimoto, S., Tang, W., Taylor,
J., Thakur, R., Trefethen, A., Valero, M., Van Der Steen, A., Vetter, J.,
Williams, P., Wisniewski, R. and Yelick, K.: The International Exas-
cale Software Project roadmap, Int. J. High Perform. Comput. Appl.,
Vol. 25, No. 1, pp. 3–60 (online), DOI: 10.1177/1094342010391989
(2011).

[9] Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M. and Johnson, D. B.: A
Survey of Rollback-Recovery Protocols in Message-Passing Systems,
ACM Computing Surveys, Vol. 34, No. 3, pp. 375–408 (2002).

[10] Geist, A. and Engelmann, C.: Development of Naturally Fault Toler-
ant Algorithms for Computing on 100,000 Processors (2002).

[11] Gomez, L. B., Ropars, T., Maruyama, N., Cappello, F. and Mat-
suoka, S.: Hierarchical Clustering Strategies for Fault Tolerance in
Large Scale HPC Systems, Proceedings of the 2012 IEEE Interna-
tional Conference on Cluster Computing, CLUSTER ’12, Washing-
ton, DC, USA, IEEE Computer Society, pp. 355–363 (online), DOI:
10.1109/CLUSTER.2012.71 (2012).

[12] Guermouche, A., Ropars, T., Snir, M. and Cappello, F.: HydEE:
Failure Containment without Event Logging for Large Scale Send-
Deterministic MPI Applications, Parallel& Distributed Process-
ing Symposium (IPDPS), 2012 IEEE 26th International, IEEE, pp.
1216–1227 (online), DOI: 10.1109/ipdps.2012.111 (2012).

[13] He, J., Jagatheesan, A., Gupta, S., Bennett, J. and Snavely, A.: DASH:
A Recipe for a Flash-based Data Intensive Supercomputer, ACM/IEEE
conference on Supercomputing (2010).

[14] Hoefler, T., Schneider, T. and Lumsdaine, A.: Characterizing the
Influence of System Noise on Large-Scale Applications by Simula-
tion, Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’10, Washington, DC, USA, IEEE Computer Society, pp. 1–11 (on-
line), DOI: 10.1109/SC.2010.12 (2010).

[15] Ibtesham, D., Arnold, D., Ferreira, K. B. and Bridges, P. G.: On the Vi-
ability of Checkpoint Compression for Extreme Scale Fault Tolerance,
Proceedings of the 2011 international conference on Parallel Process-
ing - Volume 2, Euro-Par’11, Berlin, Heidelberg, Springer-Verlag, pp.
302–311 (online), DOI: 10.1007/978-3-642-29740-3 34 (2012).

[16] Islam, T. Z., Mohror, K., Bagchi, S., Moody, A., de Supinski,
B. R. and Eigenmann, R.: McrEngine: A Scalable Checkpointing
System Using Data-Aware Aggregation and Compression, Proceed-
ings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, SC ’12, Los Alamitos,
CA, USA, IEEE Computer Society Press, (online), available from
〈http://dl.acm.org/citation.cfm?id=2388996.2389020〉 (2012).

[17] Kannan, S., Gavrilovska, A., Schwan, K., Milojicic, D. and Talwar, V.:
Using Active NVRAM for I/O Staging, Proceedings of the 2nd inter-
national workshop on Petascal data analytics: challenges and oppor-
tunities, PDAC ’11, New York, NY, USA, ACM, pp. 15–22 (online),
DOI: 10.1145/2110205.2110209 (2011).

[18] Kannan, S., Milojicic, D., Talwar, V., Gavrilovska, A.,
Schwan, K. and Abbasi, H.: Using Active NVRAM for Cloud
I/O, Open Cirrus Summit, Vol. 0, pp. 32–36 (online), DOI:
http://doi.ieeecomputersociety.org/10.1109/OCS.2011.12 (2011).

[19] Kimpe, D., Mohror, K., Moody, A., Van Essen, B., Gokhale, M., Ross,

c© 2013 Information Processing Society of Japan 8

Vol.2013-HPC-141 No.19
2013/10/1

IPSJ SIG Technical Report

R. and de Supinski, B. R.: Integrated In-System Storage Architecture
for High Performance Computing, Proceedings of the 2nd Interna-
tional Workshop on Runtime and Operating Systems for Supercom-
puters, ROSS ’12 (2012).

[20] Liu, N., Cope, J., Carns, P. H., Carothers, C. D., Ross, R. B., Grider,
G., Crume, A. and Maltzahn, C.: On the Role of Burst Buffers in
Leadership-Class Storage Systems, Symposium on Mass Storage Sys-
tems and Technologies, MSST 2012 (2012).

[21] Liu, N., Jason, C., Philip, C., Christopher, C., Robert, R., Gary, G.,
Adam, C. and Carlos, M.: On the Role of Burst Buffers in Leadership-
class Storage Systems, MSST/SNAPI (2012).

[22] Matsuoka, S., Aoki, T., Endo, T., Sato, H., Takizawa, S.,
Nomura, A. and Sato, K.: TSUBAME2.0: The First Petas-
cale Supercomputer in Japan and the Greatest Production in the
World, Vol. 1, chapter 20, pp. 525–556 (online), available from
〈http://www.crcnetbase.com/doi/book/10.1201/b14677〉, Chapman &
Hall/CRC Computational Science (2013).

[23] Moody, A., Bronevetsky, G., Mohror, K. and de Supinski, B. R.: De-
sign, Modeling, and Evaluation of a Scalable Multi-level Checkpoint-
ing System, Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, SC ’10, Washington, DC, USA, IEEE Computer Society,
pp. 1–11 (online), DOI: 10.1109/sc.2010.18 (2010).

[24] Moody, A., Bronevetsky, G., Mohror, K. and de Supinski, B. R.: De-
tailed Modeling, Design, and Evaluation of a Scalable Multi-level
Checkpointing System, Technical report, Lawrence Livermore Na-
tional Laboratory (2010).

[25] Patrick, C. M., Son, S. and Kandemir, M.: Comparative Eval-
uation of Overlap Strategies with Study of I/O Overlap in MPI-
IO, SIGOPS Oper. Syst. Rev., Vol. 42, pp. 43–49 (online), DOI:
10.1145/1453775.1453784 (2008).

[26] Plank, J. S., Beck, M., Kingsley, G. and Li, K.: Libckpt: Transpar-
ent Checkpointing under Unix, Technical report, Knoxville, TN, USA
(1994).

[27] Rajachandrasekar, R., Ouyang, X., Besseron, X., Meshram, V. and
Panda, D. K.: Can Checkpoint/Restart Mechanisms Benefit from Hi-
erarchical Data Staging?, Proceedings of the 2011 international con-
ference on Parallel Processing - Volume 2, Euro-Par’11, Berlin, Hei-

delberg, Springer-Verlag, pp. 312–321 (online), DOI: 10.1007/978-3-
642-29740-3 35 (2012).

[28] Ropars, T., Guermouche, A., Uçar, B., Meneses, E., Kalé, L. V. and
Cappello, F.: On the Use of Cluster-Based Partial Message Logging to
Improve Fault Tolerance for MPI HPC Applications, Proceedings of
the 17th international conference on Parallel processing - Volume Part
I, Euro-Par’11, Berlin, Heidelberg, Springer-Verlag, pp. 567–578 (on-
line), available from 〈http://portal.acm.org/citation.cfm?id=2033406〉
(2011).

[29] Sato, K., Maruyama, N., Mohror, K., Moody, A., Gamblin,
T., de Supinski, B. R. and Matsuoka, S.: Design and Mod-
eling of a Non-Blocking Checkpointing System, Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, Salt Lake City,
Utah, IEEE Computer Society Press, (online), available from
〈http://portal.acm.org/citation.cfm?id=2389022〉 (2012).

[30] Sato, K., Moody, A., Mohror, K., Gamblin, T., de Supinski, B. R.,
Maruyama, N. and Matsuoka, S.: Design and Modeling of a Non-
Blocking Checkpoint System, ATIP - A*CRC Workshop on Accelera-
tor Technologies in High Performance Computing (2012).

[31] Schroeder, B. and Gibson, G. A.: Understanding Failures in Petascale
Computers, Journal of Physics: Conference Series, Vol. 78, No. 1, pp.
012022+ (online), DOI: 10.1088/1742-6596/78/1/012022 (2007).

[32] Shirahata, K., Sato, H. and Matsuoka, S.: Preliminary I/O perfor-
mance Evaluation on GPU Accelerator and External Memory, IPSJ
SIG Technical Reports 2013-HPC-141 (2013).

[33] Vaidya, N. H.: On Checkpoint Latency, Technical report, College Sta-
tion, TX, USA (1995).

[34] Wickberg, T. and Carothers, C.: The RAMDISK storage accel-
erator: a method of accelerating I/O performance on HPC sys-
tems using RAMDISKs, Proceedings of the 2nd International Work-
shop on Runtime and Operating Systems for Supercomputers, ROSS
’12, New York, NY, USA, ACM, pp. 5:1–5:8 (online), DOI:
10.1145/2318916.2318922 (2012).

[35] Young, J. W.: A First Order Approximation to the Optimum Check-
point Interval, Commun. ACM, Vol. 17, pp. 530–531 (online), DOI:
10.1145/361147.361115 (1974).

c© 2013 Information Processing Society of Japan 9

Vol.2013-HPC-141 No.19
2013/10/1

