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Abstract: With the scale increasing, the impact of OS noise has become a key limiter of the performance of supercomputer. In 

this paper, we focus on a common supercomputing structure, which repeatedly execute computation followed by a collective 

operation implemented by using butterfly algorithm. We introduce a new proposed algorithm by increasing the number of paths 

of data exchange and evaluate the impact of noise on conventional butterfly algorithm and the proposed one by using the 

LogGOPS model. We simulate three situations: collective using butterfly algorithm without noise, collective using butterfly 

algorithm with noise and collective using proposed algorithm with noise. And the results show that the proposed algorit hm 

improved the performance by almost 40 percent. 
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1. Introduction  

1.1 Motivation  

A decade ago, Petrini et al. [1] found that the performance was  

much worse than their anticipation when they were running a 

large-scale parallel application on ASCI-Q, an 8192 processor 

supercomputer. After that, many studies have shown that 

Operating System (OS) noise is one of the main causes of 

performance missing [1][2][3]. Today, with the advent of the 

newest champion of TOP500 List, Tianhe-2 [4], which has more 

than 8M cores, the impact of OS noise would be a key limiter 

with the scale increas ing. 

Generally, when processors computing collaboratively, 

sometimes they need exchange their data to do the further 

computing [10], and the most widely used operations are the 

all-reduce operations [11]. In this case, the slowest processor 

will s low the entire system down. Fortunately, noises on 

different processors in computing phase only affect the system 

once, but in communicating phase, they may affect some 

processors more than twice [12]. Since these computing 

communicating cycles will execute many times till the end of 

the application, the performance of the entire system will be 

reduced severely. [13] 

Besides, it is evident that the main forms of OS noise are 

daemons and interrupts [3][5], so in order to mitigate the impact 

of noise, many systematic approaches have been proposed. One 

way to do that is reducing the frequency and the duration of 

noise by removing the useless system daemons or idle a 

processor to deal with noise. Another common systematic 

approach is synchronizing the noises across all processors in one 

computation system by modifying the schedulers of the 

processors [6][7][8]. However, the proposed algorithm 

approaches are less [9], so in this paper, we will propose one 

and introduce a way evaluate it.  

1.2 Our Contribution 

The main contribution of this paper is to propose a new 
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algorithm of all-reduce operation. All-reduce operation is kind 

of leverage for noise influence, the impact of noise in all-reduce 

operation will be expanded several times stronger, so we 

focused on analyzing the butterfly algorithm, a widely used 

all-reduce operation, and based on the binary tree of data 

exchange in butterfly algorithm,  then proposed the redundant 

exchange butterfly algorithm.  By increasing the number of paths 

of data exchange, the impact of noise was mitigated. After that, 

we built a s imulation model of supercomputing and showed that 

even if no noise occurs, the cost of the proposed algorithm is  

relatively low, but if noise occurrence is relatively heavy, the 

improvement of the proposed algorithm is s ignificant. 

1.3 Related Work  

There are a lot of methods to mitigate the impact of noise 

[6][8]. The primitive way is idle a processor on each node to 

absorb noise, but people are unwilling to waste the entire 

computing ability of those processors. So many researchers  try 

to increase the utilization of the supercomputer, and lots of  

systematic methods are proposed. One of them is reducing the 

frequency and the duration of noise by removing several system 

daemons which is unneeded by supercomputing, by which the 

impact of noise can be mitigated essentially [6][8]. Another 

common systematic approach is synchronizing the noises cross 

all processors in one computation system by modifying the 

schedulers of the processors, so that the cross- impact can be 

reduced, and the overall performance is improved [14]. Besides, 

there is a measure solely with compile and run time 

configurations in recent unmodified Linux kernel by using 

invasive approaches to remove the involuntary preemption 

induced by task scheduling [12][16][17]. 

1.4 Organization 

Section 2 presents the butterfly algorithm and introduces a new 

proposed algorithm which can reduce the effect of noise, and 

analyzes them. Then we introduce the model for simulating the 

supercomputing in Section 3. Section 4 shows the result of the 

simulation of two algorithms. Eventually, we conclude the paper 

and discuss the future work in Section 5.  
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2. Methodology 

Consider a parallel application running on a supercomputer by 

using N processors. We assume N = 2K to simplify the problem.  

2.1 Butterfly Algorithm 

There are several algorithms to implement the all -reduce 

operation. In this paper, we focus on the particularly important 

one, butterfly algorithm, which is widely used in application on 

supercomputer. In this algorithm, each two processors have the 

same data after exchanging theirs, so after the i th round, every 2i 

processors have the same data. For all 2K processors, it needs K 

rounds to finish the butterfly algorithm. Algorithm.1 shows the 

pseudo code of the butterfly algorithm on each processor. Note 

that it only shows communications without showing operations.  

 

Algorithm 1 (ith processor)  

1: round = 0 

2: datagot[0] = 1 

3: datagot[1…K-1] = 0 

4: while round < K do 

5:   while datagot[round] == 1 do 

6:     tgt ← i xor (1 << round++) // Original Data Exchange 

7:   end while 

8:   while data_arrived do 

9:     datagot[src_round] = 1 

10:   end while 

11: end while 

 

The example shown in Fig.1(a) is the ideal s ituation. In each 

round, all processors start exactly at the same time. Since 

noiseless, they also end at the same time to start next round at 

the same time too. However, if some of the processors are 

delayed by noise like P3 in 2nd round, the associated processors 

need to wait for the delayed ones,  so P1 need to wait for the end 

of noise on P3, that is the way through which the noise on P3 

affects more than one processors, which shown in Fig.1(b).  

 

 
 (a)                           (b) 

Fig.1  Example of butterfly algorithm 

 

It should be notice that, if noises occur only in the beginning of 

the butterfly algorithm, all processors can receive the final result 

nearly at the same time, the time difference is less than several 

network latencies. But if noises occur in the middle of the 

butterfly algorithm on different processors in different rounds, 

the time difference of finishing butterfly algorithm of all 

processors will be huge and the performance might be strongly 

reduced. However, it is reported that OS noise mainly occurs  

approximately periodically [7]. So in the extreme situation, if all 

processors on one of the paths to any processor of all 2 k 

processors delayed one by one, the processor will be delayed K 

times, shown in Fig.2.  

 

Fig.2  Noises affect more than once 

 

2.2 Analysis 

In the conventional butterfly algorithm, each processor obtains 

the final result from a single binary tree through K rounds of 

data exchange. In this way, if noise occurs, it will affect the 

processors which need its data round by round, finally leads to 

performance degradation, and the number of affected processors 

will be doubled after each round. However, it should be notice 

that, after the 1st round data exchange, each two processors have 

exactly the same data, and they will never communicate with 

each other anymore. Furthermore, in each round, the data on the 

two processors are always the same, so if one of them is delayed 

by noise, we can recover it by using the data in the other 

processor, but if the other processor is delayed by noise too, 

then the noises become unrecoverable.  

2.3 Proposed Method 

In order to recover the delayed processors before the noises  

become unrecoverable, we can obtain data from the other binary 

tree which have the same data but haven’t be delayed. It’s easy 

to know that the 1st round exchange target of each processor 

meets the requirements. So the proposed method is adding some 

redundant exchanges in the middle of the butterfly algorithm.  

Fig.3 is a macroscopic example of the proposed method. The 

black lines are the data streams of traditional butterfly algorithm, 

but it fails two times shown by red dotted lines in the figure, one 

is in the second round, the other is in the third round. The green 

lines represent the redundant exchange data streams of our 

method. In our method, each processor has more than one binary 

tree to get the data needed. Algorithm.2 shows pseudo code on 

each processor. RDE stands for Redundant Data Exchange, and 

ODE stands for Original Data Exchange in pseudo code. 

It should be noticed that we do not synchronize processors 

after each round, so when we try to recover some delayed 

processors, they may be delayed for more than one rounds, and 

some other processors is waiting for its former data. So it should 
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send though the traditional butterfly algorithm path to ensure no 

Algorithm2 (ith processor)  

1: round = 0 

2: datagot[0] = 1 

3: datagot[1…K-1] = 0 

4: while round < K do 

5:   while datagot[round] == 1 do 

6:     tgt ← i xor (1 << round++) // ODE 

7:     if round  ∈Redundant Exchange Round Set then 

8:       tgt ← i  xor 1 // Redundant Data  Exchange 

9:     end if 

10:   end while 

11:   while data_arrived do 

12:     if ODE then 

13:       datagot[src_round] = 1 

14:     else 

15:       while round < src_round do 

16:         tgt ← i  xor (1 << round++) // RDE 

17:       end while 

18:     end if 

19:   end while 

20: end while 

 

binary tree for the final result is deleted.  

Normally, processors need to wait for the data from the 

corresponding processor after sending, so the redundant data 

exchange can be done in the gap between the original sending 

event and receiving event normally which will not slow the 

performance down significantly. While once it works, the 

improved performance is very significant. Fig.4 shows these 

properties of redundant data exchange. The redundant data 

arrives earlier than the original data, so the performance of P2 is  

improved, but the performance of the sender P1 is not reduced.  

 

 
Fig.4  Properties of redundant data exchange 

 

3. The Model 

In this section we introduce a general model base on LogGOPS 

model to simulate the collective operation, a noise model to  

simulate the effect of noise, and a common computation model 

of supercomputer system. 

 

Fig.3  Macroscopic example of the proposed method 

3.1 LogGOPS Model 

LogGOPS model [15] is a member of LogP model family, in  

our simulation the size of data is very small, so LogGOPS 

model is more accurate. Table.1 shows all the seven parameters 

and their interpretations. In our simulation, g is set to 0 due to 

the targets of any two continuous sending are different , so g 

overlap with target changing; O is  also set to 0 because the data 

size we use is 8 bits and it is too small that o can overlap it and 

by this idea S is set to larger than 8 bits. Here are the other 

parameters that we use: L=1e-6s, G=1e-9s, o=1e-9s. Fig.5 

shows the scenario of a send receive event. Notice that in this  

paper P stands for period, so we set N to represent Quantity of 

processes. 

 

Table.1  Parameters of LogGOPS model 

L Maximum network latency between every two endpoints 

o CPU overhead, os and or for send and receive respectively 

g 
Inter-message gap between two messages (1/g = 

message-rate) 

G Gap per byte (1/G = bandwidth) 

O CPU overhead for send and receive per byte 

P Quantity of processes 

S Maximum data size of one communication 

 

Fig.5  Scenario of a send-receive event 

 

3.2 Noise Model 

There are many kinds of noise, interrupts, daemons, page faults, 

cache missing and so on. But for OS of supercomputer, most of 

daemons are unnecessary, and page faults and cache missing can 

be controlled by application. So we mainly simulate timer 

interrupt in our model, which occurs  approximately periodically 

[7], so let us assume that this kind of noise on all processors 
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occurs exactly periodically, with period (P) and duration (D). It 

should be noticed that, although all processors are homogeneous, 

which means they have same noise period and duration, time of 

occurrence of noises on different processors are not the same.  

 

Fig.6  Noise model 

 

3.3 Computing-Communicating Cycle Model 

 

Fig.7  Cycle Model 

 

We assume that the application balances the workload perfectly  

in each computing phase and controls the page faults and cache 

missing well, in which case applications can obtain the best 

performance. Let T represents the entire time consuming of the 

application, W represents the workload in one cycle, t cm 

represents the time consuming of each round in butterfly 

algorithm. In ideal noiseless case, it  is easy to know that   

          
   . While in noisy case, let Tcp represents the 

distribution of time consumption of each processor in computing 

phase. Therefore 

      
                                      

                                      
 . 

(here / represents quotient and % represents remainder.) 

It means that some of processors will affect by noise one more 

time than the others.  

Once a processor ends its computing phase, it enters the 

communicating phase, in which it executes  collective operation. 

After communication, it starts a new computing phase of the 

next computing-communicating cycle.  

4. Evaluation 

In the previous Section, we introduced the model of our 

simulation, but we still need some assumption for other 

parameters: the memory bandwidth is 10 GB/s; the network is  

full-bisection with bandwidth which is 1 GB/s and latency 

which is 1 microsecond; the size of data is small and unchanged 

after the binary operation; and the distances between any two 

processors are the same. Besides, we also assume N = 2K  to 

simplify the simulation. After that, we evaluate our model by 

changing the value of D, P and W.  

To get high accuracy, we use a time minimum heap as an event 

engine and initialize it by registering a start up event at time of 

zero for each processor, and keep popping and processing the 

event which has the smallest timestamp, if new event created 

then insert it into the time minimum heap , till the heap has no 

node. 

We evaluate three cases in our experiment, i.e. the noiseless 

case, conventional case and proposed case. Noiseless case 

means there is no noise in the communicating phase, but in the 

computing phase, noises still exist. So the noiseless case is the 

optimal case that the communicating phase can be optimized to. 

The no-optimization case is original algorithm with noise in 

communicating phase and optimization case is the proposed 

algorithm. 

Fig.8 presents the results of the simulation of 10 computing- 

communication cycles, the results shows that with the scale of 

computing system increasing, the performance decreasing 

strongly, but the recovered performance is also significant. At 

the same time, the time cost is relatively small when the effect 

of noise is insignificant.  

Fig.9 presents the overhead caused by noise of 8M processors, 

it shows that the overhead increases almost linearly when the 

number of cycles increases, and the recovery ratio is nearly 0.4. 

Because we assume all processors start at the same time so the 

time cost of 1st cycle is a little larger than the following cycles, 

but after the 1st cycle the slope of the time cost line tend to be 

constant. 

5. Conclusion and Future Work 

In this paper, we analyzed the butterfly algorithm which is  

widely used in all-reduce operations, and proposed a new 

method which is adding some redundant data exchange between 

original data exchange in butterfly algorithm to decrease the 

shortcoming of the original algorithm, and the recovery ratio is  

nearly 0.4 in our simulation.  

However, the Redundant Exchange Round Set we use is the all 

rounds except the 1st round, which means it sends redundant 

data after every round except the 1st one, so if we can send it 

dynamically it may work better. Besides, the data size in our 

algorithm is small and constant, so if it increases after each 

round then the situation will be totally different. 

In section 3, we present some models to simulate the above 

algorithms. LogGOPS model is  widely used in communication 

simulation in supercomputer system, the noise model we use is a 

periodical noise model with different start ing point, and the 
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(a) Period=0.01s Duration=0.0001s Workload=0s  

 

 

(b) Period=0.01s Duration=0.0001s Workload=0.00666667s 

 

 

(c) Period=0.1s Duration=0.0001s Workload=0.066667s  

 

Fig.8  Run time of 10 cycles 

 

entire computation model is computing-communicating cycle 

model, which is simple but representative. At last, we need to 

implement the proposed method on real machine.  
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(a) Period=0.01s Duration=0.0001s Workload=0s  

 

 

(b) Period=0.01s Duration=0.0001s Workload=0.00666667s 

 

 

(c) Period=0.1s Duration=0.0001s Workload=0.066667s  

 

Fig.9  Overhead caused by noise of 8M processors  
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