
IPSJ SIG Technical Report

 1

Evaluation of Impact of Noise on Collective Algorithms in Repeated

Computation Cycle

HONGZHI CHEN†1 REIJI SUDA†1

Abstract: With the scale increasing, the impact of OS noise has become a key limiter of the performance of supercomputer. In

this paper, we focus on a common supercomputing structure, which repeatedly execute computation followed by a collective

operation implemented by using butterfly algorithm. We introduce a new proposed algorithm by increasing the number of paths

of data exchange and evaluate the impact of noise on conventional butterfly algorithm and the proposed one by using the

LogGOPS model. We simulate three situations: collective using butterfly algorithm without noise, collective using butterfly

algorithm with noise and collective using proposed algorithm with noise. And the results show that the proposed algorit hm

improved the performance by almost 40 percent.

Keywords: Noise, All-Reduce Operation, Repeated Computation Cycle

1. Introduction

1.1 Motivation

A decade ago, Petrini et al. [1] found that the performance was

much worse than their anticipation when they were running a

large-scale parallel application on ASCI-Q, an 8192 processor

supercomputer. After that, many studies have shown that

Operating System (OS) noise is one of the main causes of

performance missing [1][2][3]. Today, with the advent of the

newest champion of TOP500 List, Tianhe-2 [4], which has more

than 8M cores, the impact of OS noise would be a key limiter

with the scale increas ing.

Generally, when processors computing collaboratively,

sometimes they need exchange their data to do the further

computing [10], and the most widely used operations are the

all-reduce operations [11]. In this case, the slowest processor

will s low the entire system down. Fortunately, noises on

different processors in computing phase only affect the system

once, but in communicating phase, they may affect some

processors more than twice [12]. Since these computing

communicating cycles will execute many times till the end of

the application, the performance of the entire system will be

reduced severely. [13]

Besides, it is evident that the main forms of OS noise are

daemons and interrupts [3][5], so in order to mitigate the impact

of noise, many systematic approaches have been proposed. One

way to do that is reducing the frequency and the duration of

noise by removing the useless system daemons or idle a

processor to deal with noise. Another common systematic

approach is synchronizing the noises across all processors in one

computation system by modifying the schedulers of the

processors [6][7][8]. However, the proposed algorithm

approaches are less [9], so in this paper, we will propose one

and introduce a way evaluate it.

1.2 Our Contribution

The main contribution of this paper is to propose a new

 †1 Depart ment o f Co mputer Science, Graduate School of In formation Science
and Technology, University of Tokyo

algorithm of all-reduce operation. All-reduce operation is kind

of leverage for noise influence, the impact of noise in all-reduce

operation will be expanded several times stronger, so we

focused on analyzing the butterfly algorithm, a widely used

all-reduce operation, and based on the binary tree of data

exchange in butterfly algorithm, then proposed the redundant

exchange butterfly algorithm. By increasing the number of paths

of data exchange, the impact of noise was mitigated. After that,

we built a s imulation model of supercomputing and showed that

even if no noise occurs, the cost of the proposed algorithm is

relatively low, but if noise occurrence is relatively heavy, the

improvement of the proposed algorithm is s ignificant.

1.3 Related Work

There are a lot of methods to mitigate the impact of noise

[6][8]. The primitive way is idle a processor on each node to

absorb noise, but people are unwilling to waste the entire

computing ability of those processors. So many researchers try

to increase the utilization of the supercomputer, and lots of

systematic methods are proposed. One of them is reducing the

frequency and the duration of noise by removing several system

daemons which is unneeded by supercomputing, by which the

impact of noise can be mitigated essentially [6][8]. Another

common systematic approach is synchronizing the noises cross

all processors in one computation system by modifying the

schedulers of the processors, so that the cross- impact can be

reduced, and the overall performance is improved [14]. Besides,

there is a measure solely with compile and run time

configurations in recent unmodified Linux kernel by using

invasive approaches to remove the involuntary preemption

induced by task scheduling [12][16][17].

1.4 Organization

Section 2 presents the butterfly algorithm and introduces a new

proposed algorithm which can reduce the effect of noise, and

analyzes them. Then we introduce the model for simulating the

supercomputing in Section 3. Section 4 shows the result of the

simulation of two algorithms. Eventually, we conclude the paper

and discuss the future work in Section 5.

ⓒ 2013 Information Processing Society of Japan

Vol.2013-HPC-141 No.16
2013/10/1

IPSJ SIG Technical Report

 2

2. Methodology

Consider a parallel application running on a supercomputer by

using N processors. We assume N = 2K to simplify the problem.

2.1 Butterfly Algorithm

There are several algorithms to implement the all -reduce

operation. In this paper, we focus on the particularly important

one, butterfly algorithm, which is widely used in application on

supercomputer. In this algorithm, each two processors have the

same data after exchanging theirs, so after the i th round, every 2i

processors have the same data. For all 2K processors, it needs K

rounds to finish the butterfly algorithm. Algorithm.1 shows the

pseudo code of the butterfly algorithm on each processor. Note

that it only shows communications without showing operations.

Algorithm 1 (ith processor)

1: round = 0

2: datagot[0] = 1

3: datagot[1…K-1] = 0

4: while round < K do

5: while datagot[round] == 1 do

6: tgt ← i xor (1 << round++) // Original Data Exchange

7: end while

8: while data_arrived do

9: datagot[src_round] = 1

10: end while

11: end while

The example shown in Fig.1(a) is the ideal s ituation. In each

round, all processors start exactly at the same time. Since

noiseless, they also end at the same time to start next round at

the same time too. However, if some of the processors are

delayed by noise like P3 in 2nd round, the associated processors

need to wait for the delayed ones, so P1 need to wait for the end

of noise on P3, that is the way through which the noise on P3

affects more than one processors, which shown in Fig.1(b).

 (a) (b)

Fig.1 Example of butterfly algorithm

It should be notice that, if noises occur only in the beginning of

the butterfly algorithm, all processors can receive the final result

nearly at the same time, the time difference is less than several

network latencies. But if noises occur in the middle of the

butterfly algorithm on different processors in different rounds,

the time difference of finishing butterfly algorithm of all

processors will be huge and the performance might be strongly

reduced. However, it is reported that OS noise mainly occurs

approximately periodically [7]. So in the extreme situation, if all

processors on one of the paths to any processor of all 2 k

processors delayed one by one, the processor will be delayed K

times, shown in Fig.2.

Fig.2 Noises affect more than once

2.2 Analysis

In the conventional butterfly algorithm, each processor obtains

the final result from a single binary tree through K rounds of

data exchange. In this way, if noise occurs, it will affect the

processors which need its data round by round, finally leads to

performance degradation, and the number of affected processors

will be doubled after each round. However, it should be notice

that, after the 1st round data exchange, each two processors have

exactly the same data, and they will never communicate with

each other anymore. Furthermore, in each round, the data on the

two processors are always the same, so if one of them is delayed

by noise, we can recover it by using the data in the other

processor, but if the other processor is delayed by noise too,

then the noises become unrecoverable.

2.3 Proposed Method

In order to recover the delayed processors before the noises

become unrecoverable, we can obtain data from the other binary

tree which have the same data but haven’t be delayed. It’s easy

to know that the 1st round exchange target of each processor

meets the requirements. So the proposed method is adding some

redundant exchanges in the middle of the butterfly algorithm.

Fig.3 is a macroscopic example of the proposed method. The

black lines are the data streams of traditional butterfly algorithm,

but it fails two times shown by red dotted lines in the figure, one

is in the second round, the other is in the third round. The green

lines represent the redundant exchange data streams of our

method. In our method, each processor has more than one binary

tree to get the data needed. Algorithm.2 shows pseudo code on

each processor. RDE stands for Redundant Data Exchange, and

ODE stands for Original Data Exchange in pseudo code.

It should be noticed that we do not synchronize processors

after each round, so when we try to recover some delayed

processors, they may be delayed for more than one rounds, and

some other processors is waiting for its former data. So it should

ⓒ 2013 Information Processing Society of Japan

Vol.2013-HPC-141 No.16
2013/10/1

IPSJ SIG Technical Report

 3

send though the traditional butterfly algorithm path to ensure no

Algorithm2 (ith processor)

1: round = 0

2: datagot[0] = 1

3: datagot[1…K-1] = 0

4: while round < K do

5: while datagot[round] == 1 do

6: tgt ← i xor (1 << round++) // ODE

7: if round ∈Redundant Exchange Round Set then

8: tgt ← i xor 1 // Redundant Data Exchange

9: end if

10: end while

11: while data_arrived do

12: if ODE then

13: datagot[src_round] = 1

14: else

15: while round < src_round do

16: tgt ← i xor (1 << round++) // RDE

17: end while

18: end if

19: end while

20: end while

binary tree for the final result is deleted.

Normally, processors need to wait for the data from the

corresponding processor after sending, so the redundant data

exchange can be done in the gap between the original sending

event and receiving event normally which will not slow the

performance down significantly. While once it works, the

improved performance is very significant. Fig.4 shows these

properties of redundant data exchange. The redundant data

arrives earlier than the original data, so the performance of P2 is

improved, but the performance of the sender P1 is not reduced.

Fig.4 Properties of redundant data exchange

3. The Model

In this section we introduce a general model base on LogGOPS

model to simulate the collective operation, a noise model to

simulate the effect of noise, and a common computation model

of supercomputer system.

Fig.3 Macroscopic example of the proposed method

3.1 LogGOPS Model

LogGOPS model [15] is a member of LogP model family, in

our simulation the size of data is very small, so LogGOPS

model is more accurate. Table.1 shows all the seven parameters

and their interpretations. In our simulation, g is set to 0 due to

the targets of any two continuous sending are different , so g

overlap with target changing; O is also set to 0 because the data

size we use is 8 bits and it is too small that o can overlap it and

by this idea S is set to larger than 8 bits. Here are the other

parameters that we use: L=1e-6s, G=1e-9s, o=1e-9s. Fig.5

shows the scenario of a send receive event. Notice that in this

paper P stands for period, so we set N to represent Quantity of

processes.

Table.1 Parameters of LogGOPS model

L Maximum network latency between every two endpoints

o CPU overhead, os and or for send and receive respectively

g
Inter-message gap between two messages (1/g =

message-rate)

G Gap per byte (1/G = bandwidth)

O CPU overhead for send and receive per byte

P Quantity of processes

S Maximum data size of one communication

Fig.5 Scenario of a send-receive event

3.2 Noise Model

There are many kinds of noise, interrupts, daemons, page faults,

cache missing and so on. But for OS of supercomputer, most of

daemons are unnecessary, and page faults and cache missing can

be controlled by application. So we mainly simulate timer

interrupt in our model, which occurs approximately periodically

[7], so let us assume that this kind of noise on all processors

ⓒ 2013 Information Processing Society of Japan

Vol.2013-HPC-141 No.16
2013/10/1

IPSJ SIG Technical Report

 4

occurs exactly periodically, with period (P) and duration (D). It

should be noticed that, although all processors are homogeneous,

which means they have same noise period and duration, time of

occurrence of noises on different processors are not the same.

Fig.6 Noise model

3.3 Computing-Communicating Cycle Model

Fig.7 Cycle Model

We assume that the application balances the workload perfectly

in each computing phase and controls the page faults and cache

missing well, in which case applications can obtain the best

performance. Let T represents the entire time consuming of the

application, W represents the workload in one cycle, t cm

represents the time consuming of each round in butterfly

algorithm. In ideal noiseless case, it is easy to know that

 . While in noisy case, let Tcp represents the

distribution of time consumption of each processor in computing

phase. Therefore

 .

(here / represents quotient and % represents remainder.)

It means that some of processors will affect by noise one more

time than the others.

Once a processor ends its computing phase, it enters the

communicating phase, in which it executes collective operation.

After communication, it starts a new computing phase of the

next computing-communicating cycle.

4. Evaluation

In the previous Section, we introduced the model of our

simulation, but we still need some assumption for other

parameters: the memory bandwidth is 10 GB/s; the network is

full-bisection with bandwidth which is 1 GB/s and latency

which is 1 microsecond; the size of data is small and unchanged

after the binary operation; and the distances between any two

processors are the same. Besides, we also assume N = 2K to

simplify the simulation. After that, we evaluate our model by

changing the value of D, P and W.

To get high accuracy, we use a time minimum heap as an event

engine and initialize it by registering a start up event at time of

zero for each processor, and keep popping and processing the

event which has the smallest timestamp, if new event created

then insert it into the time minimum heap , till the heap has no

node.

We evaluate three cases in our experiment, i.e. the noiseless

case, conventional case and proposed case. Noiseless case

means there is no noise in the communicating phase, but in the

computing phase, noises still exist. So the noiseless case is the

optimal case that the communicating phase can be optimized to.

The no-optimization case is original algorithm with noise in

communicating phase and optimization case is the proposed

algorithm.

Fig.8 presents the results of the simulation of 10 computing-

communication cycles, the results shows that with the scale of

computing system increasing, the performance decreasing

strongly, but the recovered performance is also significant. At

the same time, the time cost is relatively small when the effect

of noise is insignificant.

Fig.9 presents the overhead caused by noise of 8M processors,

it shows that the overhead increases almost linearly when the

number of cycles increases, and the recovery ratio is nearly 0.4.

Because we assume all processors start at the same time so the

time cost of 1st cycle is a little larger than the following cycles,

but after the 1st cycle the slope of the time cost line tend to be

constant.

5. Conclusion and Future Work

In this paper, we analyzed the butterfly algorithm which is

widely used in all-reduce operations, and proposed a new

method which is adding some redundant data exchange between

original data exchange in butterfly algorithm to decrease the

shortcoming of the original algorithm, and the recovery ratio is

nearly 0.4 in our simulation.

However, the Redundant Exchange Round Set we use is the all

rounds except the 1st round, which means it sends redundant

data after every round except the 1st one, so if we can send it

dynamically it may work better. Besides, the data size in our

algorithm is small and constant, so if it increases after each

round then the situation will be totally different.

In section 3, we present some models to simulate the above

algorithms. LogGOPS model is widely used in communication

simulation in supercomputer system, the noise model we use is a

periodical noise model with different start ing point, and the

ⓒ 2013 Information Processing Society of Japan

Vol.2013-HPC-141 No.16
2013/10/1

IPSJ SIG Technical Report

 5

(a) Period=0.01s Duration=0.0001s Workload=0s

(b) Period=0.01s Duration=0.0001s Workload=0.00666667s

(c) Period=0.1s Duration=0.0001s Workload=0.066667s

Fig.8 Run time of 10 cycles

entire computation model is computing-communicating cycle

model, which is simple but representative. At last, we need to

implement the proposed method on real machine.

Acknowledgments Thanks to Xiaochen Tian, Cheng Luo,

Takashi Hamada, Yoshinori Tamada, and other members in Suda

Lab. It’s hard to move this research forward without your help.

This work is partially supported by JST CREST project "An

Evolutionary Approach to Construction of a Software

Development Environment for Massively-Parallel Computing

Systems", and MEXT Grand-in-Aid Project "Materials Design

through Computics; Complex Correlation and Non-equilibrium

Dynamics".

(a) Period=0.01s Duration=0.0001s Workload=0s

(b) Period=0.01s Duration=0.0001s Workload=0.00666667s

(c) Period=0.1s Duration=0.0001s Workload=0.066667s

Fig.9 Overhead caused by noise of 8M processors

Reference

[1] Petrini, F., Kerbyson, D. J. and Pakin, S.: The Case of the Missing

Supercomputer Performance: Achieving Optimal Performance on the

8,192 Processors of ASCI Q, ACM/IEEE Conference on

Supercomputing (SC’03), Phoenix, Arizona, USA, (2003).

[2] Jones, T., Tuel, W., Breneer, L., Fier, J., Caffrey, P., Dawson, S.,

Neely, R., Blackmore, R., Maskell, B., Tomlinson, P. and Roberts, M.:

Improving the Scalability of Parallel Jobs by Adding Parallel Awareness

to the Operating System, ACM/IEEE conference on Supercomputing

(SC’03), New York, NY, USA, (2003).

[3] Gioiosa, R., Petrini, F., Davis, K. and Lebaillif-Delamare, F.:

Analysis of System Overhead on Parallel Computers, the 4th IEEE

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

2 8 32 128 512 2K 8K 32K 128K 512K 2M 8M

Noiseless

Conventional

Proposed

number of processors

ru
n

ti
m

e
(s

ec
)

0.0677

0.0678

0.0679

0.068

0.0681

0.0682

0.0683

0.0684

0.0685

0.0686

0.0687

2 8 32 128 512 2K 8K 32K 128K 512K 2M 8M

Noiseless

Conventional

Proposed

number of processors

ru
n

 t
im

e
 (s

e
c)

0.6775

0.6776

0.6777

0.6778

0.6779

0.678

0.6781

0.6782

0.6783

0.6784

0.6785

2 8 32 128 512 2K 8K 32K 128K 512K 2M 8M

Noiseless

Conventional

Proposed

number of processors

ru
n

ti
m

e
(s

ec
)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 1 2 3 4 5 6 7 8 9 10

Conventional

Proposed

number of cycles

O
ve

rh
ea

d
(m

ic
ro

-s
ec

)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 1 2 3 4 5 6 7 8 9 10

Conventional

Proposed

number of cycles

O
ve

rh
ea

d
(m

ic
ro

-s
ec

)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 1 2 3 4 5 6 7 8 9 10

Conventional

Proposed

number of cycles

O
ve

rh
ea

d
(m

ic
ro

-s
ec

)

number of cycles

O
ve

rh
ea

d
(m

ic
ro

-s
ec

)

ⓒ 2013 Information Processing Society of Japan

Vol.2013-HPC-141 No.16
2013/10/1

IPSJ SIG Technical Report

 6

International Symposium on Signal Processing and Information

Technology (ISSPIT 2004), Rome, Italy, pp. 387-390 (2004).

[4] “Top500 Supercomputer Site”, http://www.top500.org/

[5] Jone, L. Brenner, B. and Fier, J. M.: Impacts of Operat ing Systems

on the Scalability of Parallel Applications, Tech. Rep.

UCRL-MI-202629, Lawrence Livermore National Laboratory, (2003).

[6] Akkan, H., Lang, M. and Liebrock, L. M.: Stepping Towards

Noiseless Linux Envirnment, the 2nd International Workshop on

Runtime and Operating Systems for Supercomputers (ROSS’12), New

York, NY, USA, (2012).

[7] Beckman, P., Iskra, K., Yoshii, K., Coghlan, S. and Nataraj, A.:

Benchmarking the Effects of Operating System Interference on

Extreme-Scale Parallel Machines, Cluster Computing, pp. 3-16 (2008).

[8] Tsafrir, D., Etsion, Y., Feitelson, D. G. and Kirkpatrick, S.: System

Noise, OS Clock Ticks, and Fine-Grained Parallel Applications. the 19th

annual international conference on Supercomputing, pp. 303-312(2005).

[9] Kale, V. and Gropp, W.: Load Balancing for Regular Meshes on

SMPs with MPI, the 17th European MPI users' group meeting

conference, pp. 229-238 (2010).

[10] Hack, J., Rosinski, J., Williamson, D., Boville, B. and Truesdale, J.:

Computational Design of the NCAR Community Climate Model,

Parallel Computing, pp. 1545–1569 (1995).

[11] Thakur, R. and Gropp, W.: Improving the Performance of

Collective Operations in MPICH, the 10th European PVM/MPI User’s

Group Meeting, Venice, Italy, pp. 257-267 (2003).

[12] Beckman, P., Iskra, K., Yoshii, K. and Coghlan, S.: The Influence

of Operating Systems on the Performance of Collective Operations at

Extreme Scale, 2006 IEEE Internat ional Conference, Barcelona, Spain,

pp. 1-12 (2006).

[13] Frachtenberg, E., Feitelson, D. G., Petrini, F. and Fernandez, J.:

Flexible coscheduling: mitigating load imbalance and improving

utilization of heterogeneous resources, Parallel and Distributed

Processing Symposium, (2003).

[14] Agarwal, S., Yoo, A.B., Choi, G.S., Das, C.R. and Nagar, S.:

Co-ordinated coscheduling in time-sharing clusters through a generic

framework, IEEE International Conference on Cluster Computing, HK,

pp. 84-91 (2003).

[15] Hoefler, T., Schneider, T. and Lumsdaine, A.: Characterizing the

Influence of System Noise on Large-Scale Applications by Simulation,

2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis, Washington, DC, USA,

pp.1-11 (2010).

[16] 松本英樹, 須田礼仁, ジッタの影響を緩和する集団通信アル

ゴリズム, 情報処理学会研究報告, Vol. 2012-HPC-137, No.19, 第

137 回 HPC 研究会, (2012).

[17] 松本英樹, 須田礼仁, バタフライの中間に冗長なデータ交換

を行いジッタの影響を緩和する集団通信アルゴリズム, 2013 年ハ

イパフォーマンスコンピューティングと計算科学シンポジウム

(HPCS 2013), ポスター発表.(2013).

ⓒ 2013 Information Processing Society of Japan

Vol.2013-HPC-141 No.16
2013/10/1

