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Abstract: In this report, we present a dominating set (DS)-based approach to structural controllability of unidirec-
tional bipartite networks, where we assume that driver nodes (i.e., control nodes) are selected from one side of nodes
and the purpose is to control all nodes in the other side. We show that if DS is selected as a set of driver nodes,
the system can be structurally controllable under the assumption that each driver node can control its outgoing edges
independently. We also show a relationship between the size of the minimum dominating set and the exponent of the
degree distribution in scale-free networks.

1. Introduction
Control of complex networks has recently been a hot topic

in the field of network science. After a pioneering study by
Lombardi and Hörnquist [6] that applied controllability theory to
complex networks, Liu et al. established a relationship between
structural controllability of a complex network and the maximum
matching of the corresponding bipartite graph [4]. They ana-
lytically showed that the minimum number of driver nodes that
are required to control the entire system is small for homoge-
neous networks (i.e., random networks, power-law networks with
γ > 2) whereas it is large for heterogeneous networks (i.e., power-
law networks with γ < 2). Following their seminal work, many
studies have been done [1], [3], [5], [12], [16], [17].
Although most of these studies focused on nodal dynamics,

Nepusz and Vicsek analyzed the control problem from the angle
of edge dynamics [12]. Independently, we have recently intro-
duced the minimum dominating set (MDS) approach to control
complex networks [9], [10], which conceptually has similarities
with the controlling link dynamics [12]. It is to be noted that a
dominating set (DS) is a well-known concept in graph theory and
has already been applied to the design and/or control of various
kinds of discrete systems, which include mobile ad hoc networks
(MANET) [14], transportation routing and computer communi-
cation networks [2]. Our theoretical findings suggest that scale-
free networks with small scaling exponent values (γ < 2), where
high-degree nodes are present, require relatively few nodes to be
controlled.*1 Molnàr et al. studied further on the size of MDS in
other types of scale-free networks [8].
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*1 Analysis in [10] is much more accurate than in [9].

The above mentioned studies focused on unipartite networks.
However, bipartite networks often appear in the real world, which
include the Facebook-like forum, the firms-world city network,
the cond-mat scientific collaboration, and the human drug-target
protein network [11]. Therefore, we study the control problem
on bipartite networks. Since the nodal dynamics approach re-
quires O(n) driver nodes as shown in Section 3, we emply the
MDS-based approach, where n is the total number of nodes in the
network. In addition to previous analyses [9], [10], we take the
effect of the maximum degree H into account. As the main re-
sult, we analytically derive that O(1/H(2−γ)(γ−1)) driver nodes are
enough to structurally control a bipartite network if 1 < γ < 2,
under some reasonable assumptions. In this technical report, we
focus on mathematical analysis. Results on random bipartite net-
works, computer simulation, and analysis of real networks can be
seen in [11].

2. Dynamics Model
In this section, we introduce a dynamics model for bipartite

networks, following the formalization for unipartite networks [4].
Let G(V�,V⊥; E) be a bipartite network consisting of two sets of
nodes V� and V⊥ and a set of edges E. It is to be noted that the
directions of all edges are from V� to V⊥ in this definition. This
assumption is reasonable for such networks as the drug-target net-
works and the Facebook-like forum because activities of nodes in
V� are usually not affected by those in V⊥.
Let x(t) = (x1(t), x2(t), . . . , xn2 (t))T be the state of nodes in V⊥

at time t, where MT denotes the transposed matrix of M.
Suppose that U = {u1, u2, . . . , uh} is the set of driver nodes (in

our sense) selected from V� and each ui has di edges. We define
a state vector u for all edges from U by

u(t) = (u1,1(t), u1,2(t), . . . , u1,d1 (t),

u2,1(t), u2,2(t), . . . , u2,d2 (t),

. . . ,
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uh,1(t), uh,2(t), . . . , uh,dh (t))
T .

We rename ui, js by u′1, u
′
2, . . . , u

′
l and and rewrite u(t) by

u(t) = (u′1(t), u
′
2(t), . . . , u

′
l (t))

T ,

where each node u′i has only one outgoing edge that corresponds
to the original edge.
Here, we assume that the dynamics is given by

dx(t)
dt
= Ax(t) + Bu(t)

where A is the diagonal matrix (i.e., Ai, j = 0 for all i � j) and B
satisfies that Bi, j � 0 only if u′j is connected to wi. It is to be noted
that A can be the null matrix (i.e., any node in V⊥ does not have a
self-loop).
Then, it is clear that this system is structurally controllable if

each node w ∈ V⊥ has at least one incoming edge (i.e., U is a
dominating set).
Furthermore, there can be connections between nodes in V⊥

because addition of non-zero elements to A does not impair the
structural controllability. However, in this case, the number of
required driver nodes may be fewer than that derived from our
model.
In the above, we assumed that ui � V� − U does not have any

effect on v j ∈ V⊥. However, this assumption can be removed if
we can know the signals from nodes in V� − U to V⊥. Suppose
that v j has incoming edges from ui0 , ui1 , . . . , uik where ui0 ∈ U
and ui1 , . . . , uik � U (this case can be trivially extended for the
case where there exist edges from multiple nodes in U). Let the
state vector from these nodes to v j be (u j

0(t), u
j
1(t), . . . , u

j
k(t))

T and
the vector of corresponding weights be (b0, b1, . . . , bk)T . Then, in
order to remove the effects from ui1 , . . . , uik to v j, it is enough to
add the following term to u j

0(t):

−
1
b0
(b1u j

1(t) + · · · bku j
k(t)).

3. Structural Controllability of Bipartite Net-
works

In this work, we use a modified version of the dominating set,
in which a set must be selected from V� and it is enough to dom-
inate all nodes in V⊥ (i.e., for all node w ∈ V⊥, there exists a node
v ∈ V� such that (v, w) ∈ E). This corresponds to a set cover prob-
lem by associating a set S v = {w|(v, w) ∈ E} for each v ∈ V�. We
use MDS to denote the minimum dominating set (i.e., the domi-
nating set with the minimum number of nodes) in the above sense
(see also Fig. 1).
As proved in [9], a unipartite network is structurally control-

lable if a dominating set is selected as a set of control nodes un-
der the assumption that each control node can control its outgoing
edges separately.
We can also consider structural controllability under the as-

sumption in [4] that each driver node can control only its value.
In such a case, the number of driver nodes is determined by the
number of nodes in VR not appearing in a maximum matching
of the adjunct bipartite graph G′(VL,VR; E′) [4]. However, in
this case, all nodes in VR corresponding to V� remain unmatched

(a) (b) G( , ; E)V VG(V,E)

Fig. 1 Minimum dominating set (MDS) for a unipartite network (a) and our
definition of MDS for a bipartite network (b), where black circles
denote nodes in MDS. MDS in (b) corresponds to a set cover for V⊥.

because there is no edge connecting to any of these nodes (see
Fig. 2). Therefore, we have
Proposition 1 The number of driver nodes in the sense of

[4] is at least |V�| for a bipartite network G(V�,V⊥; E) such that
E ⊆ V� × V⊥.
Since |V�| is usually a very large number and the size of MDS

is expected to be much smaller than |V�|, we focus on the struc-
tural controllability in terms of MDS.
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Fig. 2 Comparison of the model by Liu et al. [4] (a) with the MDS model
(b) for bipartite networks. In this example, {b} is the dominating set
(i.e., set cover) of G(V�,V⊥; E), whereas {aR, bR, cR} cannot appear
in the maximum matching of G′(VL,VR; E′) and thus {a, b, c} must
be the set of driver nodes in the sense of [4].

Now, we formally describe a relationship between DS and the
structural controllability of a bipartite network. As a direct con-
sequence of Theorem 1 in [9] and the discussions in Section 2,
we have the following proposition.
Proposition 2 Suppose that we need to control the states of

nodes only in V⊥ and that every node in the DS (⊆ V�) can control
all of its outgoing links separately. Then, the network is struc-
turally controllable by selecting the nodes in the DS as the driver
nodes.
Recall that we assumed that all of the nodes in a dominating

set DS must be selected from V� and that it is necessary to dom-
inate all nodes in V⊥ (we need not dominate the nodes in V�),
which means that DS is a set cover for V⊥. In [9], [10], structural
controllability was studied in terms of MDS for unipartite graphs.
In this report, we present the analytically derived estimations for
the minimum number of drivers using the MDS controllability
approach for bipartite networks in which all edges are directed
from V� to V⊥.

2ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-MPS-95 No.16
2013/9/27



4. Theoretical Analysis of the MDS Size in Bi-
partite Networks

We assume that the degree distribution of V� and V⊥ follow
P�(k) ∝ k−γ1 and P⊥(k) ∝ k−γ2 , respectively. We let n1 = |V�|
and n2 = |V⊥|.

4.1 The case of γ1 > 2
We assume P�(k) follows α1k−γ1 with cut off at k = n1, where
γ1 > 2. From α1n1

∫ n1
1 k−γdk = n1, we have α1 ≈ γ1 − 1.

For S ⊆ V�, Γ(S ) denotes the set of edges between S and V⊥
(i.e., Γ(S ) = {(u, v) | u ∈ S and v ∈ V⊥}). The following property
is trivial:

if |Γ(S )| < n2, S can not dominate V⊥.

Let S be the set of nodes whose degree is greater than or equal
to K. It is to be noted that S is chosen so that the total degree (i.e.,
the number of edges incident to S ) is maximized among the sets
with the same cardinality.
We estimate the size of Γ(S ) as follows.

|Γ(S )| < αn1
∫ n1

K
k · k−γ1dk ≈ n1(γ1 − 1)

∫ n1

K
k−γ1+1dk

= n1 ·
(
γ1 − 1
γ1 − 2

)
·

⎛⎜⎜⎜⎜⎜⎝ 1
Kγ1−2

−
1

nγ1−21

⎞⎟⎟⎟⎟⎟⎠
< n1 ·

(
γ1 − 1
γ1 − 2

)
·
1

Kγ1−2
.

If S is a DS, the last term should be no less than n2. Therefore,
the following inequality should be satisfied:

n1 ·
(
γ1 − 1
γ1 − 2

)
·
1

Kγ1−2
> n2.

By solving this inequality, we have

K <
[(
γ1 − 1
γ1 − 2

)
·

(
n1
n2

)]1/(γ1−2)
.

Then, the size of S is estimated as

|S | ≈ αn1
∫ n1

K
k−γ1dk ≈ n1

(
1

Kγ1−1
−

1
n1γ1−1

)
≈ n1 ·

1
Kγ1−1

>

[(
γ1 − 1
γ1 − 2

)]− γ1−1
γ1−2

·

(
n2
n1

) γ1−1
γ1−2

· n1.

From this inequality and the fact that V� is a trivial dominating
set, we can see that the size of the minimum dominating set is
Θ(n) (for fixed γ1) and the coefficient increases as γ1 increases if
n2 ≈ n1.

4.2 Case of γ1 < 2
In this section, we focus on degree distribution for V� and thus

we let γ = γ1, n = n1, and m = n2.
We assume that the maximum degree is H. Then, we have

n = αn
∫ H

1
k−γdk =

αn
γ − 1

(1 − H1−γ) ≈
αn
γ − 1

from which α = γ − 1 follows.
LetDS be the set of nodes with degree between B andH. Then,

the number of nodes NDS in DS is given by

NDS = αn
∫ H

B
k−γdk = n

(
B1−γ − H1−γ

)
= O(nB1−γ).

On the other hand, the total number of edges EG is

EG = αn
∫ H

1
k · k−γdk =

γ − 1
2 − γ

· n · (H2−γ − 1)

≈
γ − 1
2 − γ

· nH2−γ = 〈k〉n,

from which 〈k〉 ≈ γ−12−γ · H
2−γ follows.

The number of edges ENDS not covered by DS is

ENDS = αn
∫ B

1
k · k−γdk ≈

γ − 1
2 − γ

· n · B2−γ

Therefore, the probability that an arbitrary edge is not covered by
DS is

ENDS

EG
≈

( B
H

)2−γ

Let V⊥ �DS denote the set of nodes in V⊥ that are not dominated
by DS . Since a node is dominated by DS if at least one edge
connecting to the node is covered by DS , the expected number of
nodes (denoted by NV⊥�DS ) of V⊥ � DS is bounded as

NV⊥�DS ≤ O
(
m ·
( B

H

)2−γ)
,

where m is the number of nodes in V⊥.
In order to dominate V⊥ � DS , it is enough to select at most

NV⊥�DS nodes from V�. Therefore, the size of a minimum domi-
nating set is bounded by

|DS | + NV⊥�DS ≤ O
(
nB1−γ + m

( B
H

)2−γ)
.

Then, in order to find B minimizing this order, we let

nB1−γ = m
( B

H

)2−γ
,

which results in B = n
m · H

2−γ.
Therefore, an upper bound of the size of the dominating set is

estimated as

O
(

n2−γ · mγ−1

H(2−γ)(γ−1)

)
.

It is to be noted that (2 − γ)(γ − 1) ≤ 0.25.
By using 〈k〉 ≈ γ−12−γ ·H

2−γ, this upper bound can also be written
as

O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
n2−γ · mγ−1

〈k〉(γ−1)
( 2−γ
γ−1

)γ−1
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

On the other hand, if H = n, the upper bound becomes

O
(
n(2−γ)

2
· mγ−1

)
.

If m = cn where c is a constant, this order is O(nγ2−3γ+3), which
takes the minimum order (O(n0.75)) when γ = 1.5.
Readers might wonder why γ2 is ignored in the above analysis.

We briefly discuss this point. The number of nodes with degree 1
or 2 in V⊥ is approximated by
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α2n2
∫ 2

1
k−γdk =

α2n2
γ2 − 1

(
1 −

1
2γ2−1

)
.

Since we have α2 = γ2 − 1 as in the case of V�, this number is
equal to

n2
(
1 −

1
2γ2−1

)
.

Therefore, a constant fraction of nodes in V⊥ have degree 1 or 2
if γ2 is a constant. Here we note that in the analysis of the MDS
size, we only used for V⊥ a property that every node in V⊥ has
degree at least 1. If most nodes in V� were of high degree, the
size of MDS would be much less. However, as mentioned above,
a constant fraction of nodes in V⊥ have degree 1 or 2 and thus
we can only expect a reduction of a constant factor (i.e., not an
exponent) of the MDS size even if we make extensive use of γ2.

5. Discussions
In this report, we focused on bipartite networks in which all

edges are directed from one side of nodes (V�) to the other side
of nodes (V⊥) and thus driver nodes can be selected only from
V�. However, there exist other types of bipartite graphs. One typ-
ical example is a metabolic network. In this network, there exist
two kinds of nodes [13], [15]: nodes corresponding to chemical
reactions and nodes corresponding to chemical compounds. In
this case, it is reasonable to assume also that only values (activ-
ities) of chemical reactions can be controlled because activities
of chemical reactions may be modified by controlling concentra-
tions of corresponding enzymes via knockout or overexpression
of genes whereas it seems difficult to directly control concen-
trations of chemical compounds in a cell. However, there exist
edges in both directions and thus we require a smaller number of
driver nodes. In an example shown in Fig. 3, the transformed bi-
partite network has a complete matching and thus we need only
one driver node under the model of [4]. However, if we assume
that all edges are directed from left to right, there exist three un-
matched nodes in the transformed network and thus we need three
driver nodes under the same model. Therefore, structural con-
trollability in bipartite networks strongly depends on directions
of edges. Theoretical and simulation analyses of bi-directional
bipartite networks would be more complicated than those of uni-
directional bipartite networks because we should consider four
degree distributions (indegree and outdegree of V�; indegree and
outdegree of V⊥), and thus are left as future work.
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