
Electronic Preprint for Journal of Information Processing Vol.21 No.4

Regular Paper

An Extensible Secure OS Architecture
for Embedded Systems

Ning Li1,a) Yuki Kinebuchi1,b) Hiromasa Shimada1,c) Tatsuo Nakajima1,d)

Received: November 30, 2012, Accepted: June 14, 2013

Abstract: Some recent researches have shown that using a monitoring service outside the target system above hy-
pervisors is an efficient way to protect the target system. The hypervisors isolate the monitoring service based on
MMU-methods to improve security. However, The MMU-method may cause heavy overhead when there is no hard-
ware support, which makes this method not viable for embedded processors that are rarely equipped with hardware
virtualization extensions. In addition, the vulnerabilities that exist in hypervisors may compromise the isolation. In
this paper, we propose a secure OS architecture that fits embedded systems without the dependency of a hypervisor.
It provides a robust isolation between the monitoring service and the guest OS based on local memory, a hardware
feature. In order to generalize this architecture, we adopt a secure pager to extend the local memory space (physically
small) virtually by a swap mechanism with integrity checking of the monitoring service. The secure pager can also
update the monitoring service to extend monitoring functions without disturbing the running of the guest OS. Compre-
hensive evaluations are made in our framework with one instance of embedded Linux as the guest OS and an isolated
monitoring service running with the secure pager. The results demonstrate functions of the secure pager and influence
of the secure pager on Linux in our system. On processors with a proper architecture, we can build an extensible secure
OS architecture with reasonable resource consumption, without the issue of heavy overhead to the guest OS.

Keywords: secure architecture, embedded systems, multi-core

1. Introduction

The security of operating systems (OS) is important in embed-
ded, desktop and server environments in recent years. The tradi-
tional secure solution is to add malware detection tools into the
system. However, this method might be unable to detect the mal-
ware that can crack the kernel and hide itself from the detection
tools, and the detection tools may also be compromised by attacks
from the malware [5]. Therefore, system researchers have started
to investigate other methods to solve this problem.

An efficient solution in existing researches shown in Fig. 1 is
to move the malware detection tools outside the system to avoid
attacks from the infected system. We call these tools monitor-
ing services in this paper for the reason that they run as services
that have monitoring functions. However, the isolation between
the monitoring service and the vulnerable system is important to
security.

Many approaches solve this problem based on hypervisors.
These approaches can be divided into two groups according to the
type of monitoring services: passive monitoring and active moni-
toring. References [7], [11], [12] use passive monitoring services
in their systems. Passive monitoring cannot protect the target OS
against attacks. It only checks if the target OS has already been

1 Department of Computer Science and Engineering, Waseda University,
Shinjyuku, Tokyo 169–8555, Japan

a) lining@dcl.cs.waseda.ac.jp
b) yukikine@dcl.cs.waseda.ac.jp
c) h-shimada@dcl.cs.waseda.ac.jp
d) tatsuo@dcl.cs.waseda.ac.jp

infected. This causes little overhead to the target OS. On the
other hand, there are also some other researches [8], [20] using
active monitoring. They place hooks into the target OS to ob-
tain necessary information for protecting it from attacks. How-
ever, this active style leads to visible overhead from system route
changes between the target OS and the monitoring service. The
hypervisor can isolate the monitoring service with the MMU-
method [2], [19], [23]. References [25], [26] shows that in x86
processors, MMU virtualization in hypervisors without hardware
support would cause heavy overhead to performance. Since hard-
ware support of MMU virtualization is rarely provided in embed-
ded processors, we consider that MMU virtualization by software
would cause visible overhead in embedded systems.

There are also some approaches providing hardware-assisted
isolation without the dependency of hypervisors, such as Hyper-

Sentry [3], LMEM method [13] *1 and TrustZone [1] equipped in
ARM processors. Along with more functions and higher com-
plexity have been imported into hypervisors, some vulnerabili-
ties have also been brought into them [9]. CVE (Common Vul-
nerabilities and Exposures) reports that in Xen, there are 39 vul-
nerabilities in 2012 and 4 vulnerabilities in 2011 [6], and several
researches pay attention to improve the security of hypervisors,
such as a prototype using Xen [16] and HyperSafe [29]. While
another research does not focus on enhancing the reliability of the
hypervisor, and uses hardware-assisted methods to protect guest
OSes from the possible infected hypervisor [24]. Several steps

*1 Basis of big local memory space that is unsuitable for embedded sys-
tems.

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.4

Fig. 1 Outside monitoring.

are still needed to be done to build a secure hypervisor environ-
ment. Therefore, the isolation based on the hypervisor might be
compromised, and providing isolation without the dependency of
hypervisors can solve this problem efficiently to protect the mon-
itoring service.

In this paper, we propose a secure architecture for embedded
systems that isolates the monitoring service based on a hardware
feature, local memory, without the dependency of hypervisors.
The secure pager implemented in our system can extend the size
of the local memory virtually and update the monitoring service
to extend monitoring functions without blocking the guest OS.
In our system, the monitoring service can be executed in local
memory to avoid attacks from the compromised guest OS. This
extensible architecture can improve reliability with reasonable re-
source consumption on processors with a proper architecture.

The rest of the paper is structured as follows. In Section 2, the
whole design method, an overview of the system architecture and
security of the proposed framework are presented. In Section 3,
we explain necessary details of implementation of system func-
tions and schemes. Section 4 contains evaluations of the system
and analysis about the architecture. In Section 5, our paper is
concluded and in Section 6, future directions are discussed.

2. Design Issue

In this section, we will firstly introduce the basic principle of
the isolation based on local memory. Then, an overview of our
system with the isolation is introduced. Finally, we analyze se-
curity of the proposed framework and give a comparison with
another similar research.

2.1 Isolation Based on Local Memory
Local memory is a programmable memory region for its own

core, and cannot be accessed by other cores in the same processor.
If one multi-core processor is equipped with this feature, it can be
applied to provide isolation by running the monitoring service in
one core’s local memory and executing the guest OS upon other
cores. The guest OS running on other cores cannot touch this
core’s local memory (content of the monitoring service). We also
assume that this core is isolated by hardware configuration from
other cores, so that they cannot get control of the core running the
monitoring service to make attacks. More details about the ma-
chine architecture with local memory are presented in Ref. [14].

There have already been some processors with a similar archi-
tecture that can be seen as local memory, such as the Cell Broad-
band Engine (Cell BE) [22] and the SH-4A processor in RP1 [31].

Fig. 2 Prototype system overview.

Fig. 3 System overview.

If an on-chip memory region can be restricted to be accessed by
only one core, this region can be used as local memory. Intel has
announced a type of processor called Single-Chip Cloud Com-
puter (SCC) [4] that deals with the cache with software-managed
coherency. The private cache for respective core should be able to
be treated as local memory. We can foresee that along with an in-
creasing number of cores in future processors, software-managed
coherency is preferred than hardware cache coherency, because
the latter one needs more lines to connect cores together, which
would take more processor dies. With the private cache equipped
for software-managed coherency, these processors can provide
isolation with the local-memory method.

2.2 System Overview
With the local memory, the prototype overview of our system

is shown in Fig. 2. In our system, the monitoring service runs in
one core’s local memory, and the guest OS runs on other cores.
The monitoring service can monitor the state of the guest OS, and
the guest OS are not permitted to read or modify the content of
the monitoring service.
2.2.1 Local Memory Space Extension

However, we cannot expect that the size of the local memory
(on-chip memory or private cache) would be big, and the moni-
toring service may need more memory space to be executed. In
order to generalize this architecture, we adopt a secure pager to
extend the local memory space virtually with a swap mechanism
between shared memory and the local memory in Fig. 3. The
pages can be swapped in and out to execute the monitoring if
needed.

However, both the secure pager and the guest OS can access
shared memory. If the content of the monitoring service stored in

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.4

Fig. 4 Secure pager.

shared memory is modified by the guest OS, the monitoring ser-
vice may be unable to correctly complete monitoring functions.
Therefore, when the monitoring service needs to be loaded into
the local memory, the secure pager that exists in the local mem-
ory will check the integrity of the content in Fig. 4. If the integrity
is not corrupted, the content is copied and the monitoring service
continues to run. Otherwise, it shows that our system has been in-
fected. The secure pager will reboot the whole system to ensure
the reliability of the monitoring service.
2.2.2 Extensibility

When we need to fix bugs, make optimizations or add new fea-
tures to the monitoring service, the normal running of the guest
OS is not expected to be disturbed. Automatic update is a good
method to solve this problem. The main point of the automatic
update is the security. The update procedure needs to be safe
enough to make sure that the monitoring service is updated cor-
rectly. We add an automatic update function to the secure pager,
which is trustworthy for permanently existing in the local mem-
ory. Details of this method will be discussed in the implemen-
tation part. With this function, we can extend functions of the
monitoring service freely for making optimizations or adding fea-
tures.

2.3 Security of Framework
In our framework, the vulnerable guest OS running user appli-

cations may be compromised by malware. The monitoring ser-
vice checks the guest OS whether it is running in an abnormal
state. The monitoring service stored in shared memory may be
read or modified by the vulnerable guest OS. The secure pager
based on the local memory isolates the monitoring service at run-
time and verifies the integrity of the monitoring service that is
swapped into the local memory to ensure the monitoring func-
tions.

Many monitoring technologies can be used in our approach.
Because we focus on the architecture to isolate the monitoring
service, we will not discuss the monitoring technology in details.
We use a sample monitoring service in our prototype framework.
If the secure pager detects corruption of the integrity of the mon-
itoring service, it shows that the guest OS is compromised. This
architecture cannot recover the monitoring service efficiently un-
less the monitoring service running in the local memory could
restore the guest OS to the normal state. In this case, the secure
pager will reboot the whole system to restore to the normal state.

The integrity checking can ensure that the monitoring service
runs correctly in the local memory, which can effectively improve

the reliability of the monitoring service. However, the secure
pager only detects the modification on the monitoring service
stored in shared memory. The content may be read by the com-
promised guest OS to reveal messages. In order to avoid the “read
attacks,” the encryption method can be added to the content of the
monitoring service stored in shared memory. The monitoring ser-
vice would be encrypted in shared memory and decrypted when
it is loaded into the local memory. Obviously, the encryption
method would cause overhead during the running of the monitor-
ing service. More details will be discussed in the implementation
part.

There is another research HyperSentry [3] that uses hardware-
assisted methods and provides a software component that is prop-
erly isolated from the hypervisor to enable stealthy and in-context
measurement of the runtime integrity of the hypervisor. It uses
some similar technologies with our approach, such as hardware-
based isolation and integrity checking with hash algorithms. We
will give a comparison between HyperSentry and our approach.
Firstly, HyperSentry basically faces to server processors, while
we focus on applying our approach to embedded systems. Sec-
ondly, HyperSentry blocks the whole system during the integrity
checking and uses a remote verifier to check the integrity evi-
dences. In our approach, we use a special core for monitoring
tasks, and can do the security checking and update the monitor-
ing service without disturbing the normal running of the guest
OS. Finally, HyperSentry does the integrity checking with isola-
tion provided by the cooperation of an out-of-band channel and
System Management Mode equipped on the processor. Our ap-
proach focuses on the reliability of the monitoring service with
isolation basis of the local memory, a simple hardware feature.

3. Implementation

In this section, firstly we introduce the implementation envi-
ronment of our system. Then, integrity checking, execution and
automatic update of the monitoring service are illustrated. Fi-
nally, the system architecture with two schemes is proposed.

3.1 Implementation Environment
We choose a development board RP1 [31] that owns a SH-4A

processor with 4 cores equipped with respective 128 Kbytes user
memory, which can be treated as local memory.

RP1 is a development board produced by Renesas Electric-
ity Cooperation for use in multimedia equipment, network and
other applications in embedded systems. It owns 4 cores running
at 600 MHz, and each core incorporates an FPU, a CPU and an
MMU, which is equipped with a 4-entry fully associative instruc-
tion TLB and a 64-entry fully associative unified TLB.

Because embedded Linux has already supported SH-4A archi-
tecture, we use one instance of embedded Linux with a kernel
version of 2.6.16, which uses a network file system exported by a
remote host machine, as the guest OS.

Since we focus on applying our architecture to embedded sys-
tems, maybe real-time systems, it is better to use a monitoring
service with the passive pattern to reduce the overhead of the
guest OS. We choose a passive monitoring service that can check
the entries of the Linux system call table and detect the hide task

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.4

rootkit that uses the DKOM (Direct Kernel Object Manipulation)
mechanism to infect the kernel data [21].

The host machine is running Ubuntu 12.10 with a quad-core In-
tel Core 2 processor Q9400 of 2.66 GHz, 4 GB RAM and 320 GB
hard disk. We use it for compiling the system boot image and
completing the encryption part in the automatic update.
3.1.1 Boot Mechanism

RP1 can directly load the system boot image file into an as-
signed address via network from the remote host machine. When
RP1 boots, firstly, the boot image is loaded into a fixed address.
Then the boot loader in the system image will relocate the se-
cure pager into the local memory and relocate xv6 and Linux into
shared memory. Linux does not boot until the secure pager starts
to execute the monitoring service. Finally, Linux starts to boot to
run user applications.

During this procedure, firstly we assume that the host machine,
which can be managed well to ensure the security, and the RP1
firmware are trustworthy. The communication between the host
machine and RP1 can be protected by existing technologies (not
implemented in current work), such as SSL [27]. It is considered
that the boot image can be loaded into shared memory correctly.
We also assume that the only attacker is the vulnerable Linux.
Because Linux does not start to boot until the loading and the
booting of the secure pager are completed, the loading process
of the secure pager is unable to be compromised by Linux. The
system can boot to the normal working state.

In the following sections, we will introduce functions of our
system.

3.2 Integrity Checking of Monitoring Service
In this section, we propose how the integrity of the monitoring

service is checked. As we discussed in Section 2.2.1, when the
monitoring service is loaded into the local memory, the integrity
needs to be verified whether the content is modified or not.

Hash algorithms are popular for integrity checking of digital
content. They are one-way mathematical algorithms that take an
arbitrary length input and produce a fixed length output string.
A hash value of a fixed data segment is unique, and it is almost
impossible to find two different data strings with the same value.
Besides, the hash values themselves are small and take little space
in the local memory. It is suitable for integrity checking in our
system.

We apply MD5 and SHA1 hash algorithms in the system. MD5
is not so robust in Ref. [28]. However, we use MD5 here to com-
pare with SHA1 that has a more complex algorithm and better
security.

The mechanism of the checking procedure shown in Fig. 5 is
introduced as following:
• Firstly, hash values of all the pages of the monitoring service

are calculated by the secure pager and stored into the hash
table that exists permanently in the local memory. Then, the
monitoring service is encrypted, and the secure pager starts
to execute the monitoring service.

• When a page of the monitoring service is needed for run-
ning, it will firstly be copied into the local memory and de-
crypted. The hash value of this page is calculated again by

Fig. 5 Integrity checking.

the secure pager, and compared to the value stored in the
hash table. If they are different, it shows that the monitor-
ing service is compromised, and the whole system needs to
reboot to ensure that the system is running in a trustworthy
state. Otherwise, the secure pager will set the TLB mapping
for executing the monitoring service.

• When all the space in the local memory is used and there
needs to load in a page for the monitoring service, the secure
pager will choose a page in the local memory and swap it
out. Because this page’s content may change during the run-
ning of the monitoring service after it is loaded into the local
memory and in this case, it is different from the original page
stored in shared memory. The secure pager will recalculate
the hash value, update the value stored in the hash table, en-
crypt this page, copy it back into shared memory and free
this page. Then, the needed page can be loaded into the lo-
cal memory as the previous step.

3.3 Execution of Monitoring Service
The monitoring service can be executed as a binary file with the

secure pager at kernel space. However, it needs to add many extra
features to the secure pager if we want to manage the monitoring
service, such as sleeping, exiting, or running multiple monitoring
instances.

To solve this problem, we use a simple OS called xv6 [17] to
execute the monitoring service as a user process. Xv6 is a sim-
ple Unix-like OS that provides some standard APIs and virtual
memory functionality. With xv6, we can develop or optimize a
monitoring service conveniently, and it is also easy to manage or
execute multiple instances. Xv6, which is originally developed
for the x86 architecture, is ported to running on SH-4A architec-
ture for our implementation. After porting, xv6 can be divided
into two parts: a kernel part (very small) and a RAM file system
part (fs.img, needs to be much bigger) that contains the monitor-
ing service and other files.

3.4 Automatic Update of Monitoring Service
We can extend our system freely by the automatic update func-

tion implemented in the secure pager, such as making optimiza-
tions or adding new features.

However, we intend to use Linux for loading the update file to
shared memory, from where the secure pager can acquire it, thus

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.4

Fig. 6 Automatic update.

the update file may reveal information to Linux. To avoid this
problem, we use the encryption method, and the decryption key
is only stored in the secure pager. The update file is encrypted
in the remote machine before Linux touches it, therefore Linux
cannot get the decrypted content of the update file.

However, the encryption method only ensures that Linux that
does not have the decryption key cannot get the decrypted con-
tent, but the encrypted content may be modified. The modified
part can still be decrypted, but into meaningless data. In order
to execute the correct update file, the integrity of the update file
needs to be verified. Hash values of the update file, which are
calculated before encryption, are used for validating the integrity
during the update process. The hash values are prefixed to the
update file to compose a new update file. With these steps, we
can update the monitoring service in a secure manner.

A safe update procedure shown in Fig. 6 is explained as fol-
lowing:
• Host machine: Hash values of every page of the update file

are calculated in the host machine. The hash values are
added as a prefix to the update file. Then the new update
file is encrypted and copied into the Linux file system.

• Linux: The encrypted file is loaded into shared memory, and
flags are set to show loading states.

• Secure pager: The prefixed part is firstly decrypted into the
local memory to get the hash values. Then, the remaining
part of the encrypted file is decrypted into the local memory
in 1 or 2 pages at one time. The secure pager calculates hash
values of these pages and compares them with the prefixed
ones. If the hash values are equal, this part can be written to a
new file in the xv6 RAM file system. Otherwise, the secure
pager will ignore this update, delete the new file and con-
tinue to run the original monitoring service. This procedure
is repeated with the integrity verification until the whole new
update file is written into the file system. Then the update file
will be executed to replace the original one or parallel with
it. Since the update file can be divided into small parts for
decryption, this method can also be applied to big monitor-
ing services, even bigger than the local memory.

During the automatic update process, how the decryption key
is stored is the key problem to keep security. The decryption key
is stored in the remote host machine, and is inserted into the se-
cure pager image when the host machine compiles the system
boot image, which contains the secure pager image. We assume

that the host machine, which can be well managed, and the RP1
firmware is trustworthy, hence Linux is unable to attack the host
machine to get the key. As we mentioned in Section 3.1.1, RP1
can load the system boot image from the remote host machine
via network. The decryption key is also stored in the system boot
image when it is loaded into shared memory. This region will be
swiped by the secure pager before Linux boots. During running,
the key is only stored in the secure pager in the local memory,
and Linux cannot access it. With these steps, Linux cannot get
any information about the decryption key.

We can adopt two ways to update the monitoring service: sin-
gle monitoring service pattern (S-pattern) and multiple monitor-
ing services pattern (M-pattern). The S-pattern only runs one
monitoring service in the system. Therefore, the space in the
local memory used by the monitoring service is small, which is
valuable due to the size of the local memory. However, the update
introduces an interruption between ending the old monitoring ser-
vice and starting the new one. The halt of the monitoring service
may be a security hole in our system. On the other hand, the M-
pattern executes multiple monitoring services at the same time,
which occupy more space in the local memory or need more exe-
cution time for page swaps. The M-pattern is suitable for adding
new functions to the old monitoring service without disturbing
the monitoring functions. However, we have to replace the old
monitoring service if there are some bugs that make it not viable
for monitoring Linux. The ideal style could be the mixture of the
S-pattern and the M-pattern. If the old monitoring service needs
to be replaced, the S-pattern is used, and if only new functions
need to be added into the system, it is preferred to choose the
M-pattern.

However, because of the small local memory space in the de-
velopment board, the S-pattern is chosen to update the monitoring
service in our system. We will introduce system schemes in the
following section.

3.5 System Architecture
Firstly, we implement the system architecture with an original

scheme. We notice that some changes on the original scheme may
improve performance. We call the modified one the optimized
scheme. The details of these two schemes will be introduced in
the following part.
3.5.1 Original Scheme

The original scheme is shown in Fig. 7. When the system
starts, the secure pager is relocated into the local memory, and
xv6 and Linux are relocated into shared memory. The secure
pager firstly calculates hash values of all the pages of xv6, stores
them into the hash table and runs xv6 to execute the monitoring
service. After the monitoring service starts, Linux will start to
provide applications for users. The monitoring service monitors
the state of Linux, and its integrity is checked by the secure pager.
At the same time, the secure pager checks the flags whether there
needs to update the monitoring service. If the monitoring ser-
vice is compromised, the secure pager can detect it and reboot to
restore the whole system. With the integrity checking and the au-
tomatic update of the monitoring service, it can provide a reliable
system with extensibility.

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.4

3.5.2 Optimized Scheme
Based on the original scheme, we propose an optimized

scheme with changes of the xv6 relocation shown in Fig. 8. As
mentioned above, we know that xv6 is divided into a kernel part
(small) and a RAM file system part (fs.img, comparable big).
Therefore, we place the kernel part permanently in the local mem-
ory and only place the fs.img in shared memory. When the system
boots, the secure pager and the xv6 kernel are loaded into the lo-
cal memory, and the fs.img is relocated into shared memory. Then

Fig. 7 Original scheme.

Fig. 8 Optimized scheme.

Fig. 9 System configuration.

it jumps to run the secure pager. The secure pager only calculates
hash values of the fs.img, and starts to run xv6. Page swaps occur
only when some content stored in the fs.img needs to be used. Be-
cause the xv6 kernel would occupy part of the local memory, the
space used for executing the monitoring service decreases. We
consider that this method may reduce the overhead by lowering
the number of page swaps between shared memory and the local
memory. We will discuss more details in the next section.

4. Evaluation

In this section, we will introduce system configurations for
evaluation firstly. Then, functions of our system are verified.
After this, decryption performance in the automatic update and
overhead that may occur in the secure pager are analyzed. We
also evaluate whether the secure pager causes influence to the
performance of Linux. Finally, a conclusion is presented for this
section.

4.1 System Configurations
In order to evaluate our system, we use 3 kinds of configura-

tions shown in Fig. 9. In (A), Linux runs on 3 cores and xv6 runs
on the other one core’s local memory with the original scheme;
In (B), Linux runs on 3 cores and xv6 runs in the other one core’s
local memory with the optimized scheme; In (C), Linux runs on 3
cores and xv6 runs on the other one core without the secure pager.

We choose a monitoring service, which can check the kernel
system call table of Linux and the hide task rootkit, and calculate
execution time of the monitoring service to evaluate the overhead.
The size of the monitoring service is less than 8 Kbytes, the size
of the xv6 kernel is smaller than 64 Kbytes and the hash algorithm
is SHA1.

We evaluated functions and performance of our system with
these configurations.

4.2 Integrity Check Function
We ran the monitoring service in the configuration (A) and

loaded a kernel module in Linux that could crack the content of
xv6 stored in shared memory. When the modified content needed
to be loaded into the local memory, the secure pager could detect
these changes, print out error messages and reboot the system.

The secure pager can ensure the reliability of the monitoring
service by checking the integrity when Linux runs. The reliabil-
ity of the whole system is also improved.

4.3 Automatic Update Function
In order to validate the automatic update function, firstly we

ran a monitoring service that could only check the kernel system

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.4

call table, and then we tried to update it to another one that added
the function of checking the hide task rootkit. We used a kernel
module in Linux that could crack the content of the encrypted
update file, and used another kernel module for hiding a task as
malware.

When the first module was not loaded in our experiment, the
monitoring service could be updated normally, and it could detect
the hide task rootkit that existed in Linux to show the successful
update. When we did load this module in our experiment, the se-
cure pager could detect the modification on the encrypted update
file, print out error messages, reject the update and continue to
execute the original monitoring service.

Since the decryption key is only stored in the secure pager and
the prefixed hash values can be utilized to verify the integrity of
the update file, the secure pager only allows the correct file to be
updated. This function provides an easy and secure manner to
update the monitoring service.

4.4 Decryption Performance of Update File
Since the encryption is able to be done in the host machine

that has much better performance than embedded processors and
users care nothing about the encryption time, we focused on the
decryption performance in our system. We used 3 encryption
mechanisms separately in the configuration (A): RSA, DES and a
simple encryption mechanism, which only divides every page of
the monitoring service into 2 parts and exchanges them. Although
the simple mechanism may reveal messages about the update file,
it is used as a sample to analyze the influence of the encryption
method by comparing to other mechanisms. DES mechanism is
less complex than RSA. However, both of them is popular in to-
day’s security applications. We encrypted the same monitoring
service with these 3 mechanisms in the host machine and did the
update in RP1. The time listed in Table 1 shows the decryption
performance.

According to Table 1, it shows that RSA takes much more time
than DES and the simple encryption mechanism. This complex
encryption mechanism may be unusable on embedded platforms
for the limited performance of embedded processors. The perfor-
mance of the simple encryption mechanism is very good but with
the vulnerability of revealing information. The DES mechanism
is a viable method in our platform. We should remind that this
overhead only occurs when the monitoring service needs to be
updated and does not influence the performance of the monitor-
ing service during runtime. In real applications, a proper encryp-
tion mechanism is required to be chosen to fit the configuration
of embedded platforms to obtain a good balance between security
and performance.

4.5 Read Attacks Protection Overhead
We can use encryption methods on the part of xv6 stored in

Table 1 Decryption time of update file.

Encryption Mechanism Decryption Time
Simple 3.3 ms
DES 748.6 ms
RSA More Than 25 Mins

shared memory to avoid “read attacks.” However, the encryption
and the decryption of this part should cause overhead to the per-
formance of the monitoring service and this overhead influences
the monitoring service continually. According to Table 1, com-
plex encryption methods are unsuitable for embedded systems.
We chose an encryption mechanism, stream cipher RC4 [18], to
evaluate the overhead in the configuration (A), and computed the
execution time of the monitoring service with or without RC4
encryption.

The results shown in Table 2 illustrate that this encryption
mechanism introduces a reasonable overhead during the running
of the monitoring service. The encryption mechanism should be
applied depending on the hardware configuration to get a reason-
able tradeoff between security and performance.

4.6 Comparison between Original and Optimized Schemes
In order to compare the original scheme and the optimized

scheme, we ran the same monitoring service in the configura-
tion (A) and the configuration (B), and the execution time of the
monitoring service was calculated shown in Table 3.

From Table 3, it indicates that the execution time in the con-
figuration (B) is much shorter than in the configuration (A) and
there are 22 page swaps in the configuration (A). We consider
that the number of page swaps incurs this large difference. In the
original scheme, both the fs.img (containing the monitoring ser-
vice) and the xv6 kernel are stored in shared memory. When the
monitoring service uses system calls, pages of the xv6 kernel are
swapped in and out to run the monitoring service. Due to page
copy and hash calculation during the page swap, the speed of the
monitoring service in the original scheme is slow. However, in
the optimized scheme, the xv6 kernel is located in the local mem-
ory permanently. Even if system calls occur, no pages need to be
swapped, and the speed is not slowed as the original scheme.

Then, the overhead of the page copy and the hash calculation
in our system were evaluated.

Firstly, we used a hardware method to copy pages between
shared memory and the local memory with the data transfer unit
(DTU). Compared to memory copy using software instructions,
copying pages with DTU should be faster. After we applied both
methods in the configuration (A), we obtained the execution time
of the monitoring service in Table 4 and the copy time of each
page (22 pages) is 498 µs (software method) or 5 µs (DTU). It
shows that the DTU method is much faster than the software

Table 2 Read attacks protection overhead (ms).

Encryption Mechanism Execution Time
None 94.3
RC4 172.9

Table 3 Monitoring service evaluation.

Configuration Execution Time (µs) Page Swaps (times)
A 94,325.8 22
B 4,202.5 0

Table 4 Page copy overhead evaluation (µs).

Copy Type Execution Time Per Page (22 pages)
Software 94,325.8 498

DTU 83,743.8 5

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.4

method, and the memory copy takes much time during the ex-
ecution of the monitoring service.

Secondly, we used another hash algorithm MD5 in the secure
pager with simpler complexity and less computing calculation
than SHA1. We applied these two methods to the secure pager
in the configuration (A) to get the execution time of the moni-
toring service shown in Table 5 and the computing time of each
page (22 pages) is 3,406.5 µs (SHA1) or 1,134.9 µs (MD5). We
can find that the computing time with MD5 is much less than
RSA, and the hash calculation occupies most execution time of
the monitoring service. Although MD5 is not so robust in to-
day’s applications, the result shows that a proper hash mechanism
needs to be selected to provide a good tradeoff between security
and performance.

4.7 Performance of Linux
Finally, we verified whether the performance of Linux was

influenced by the secure pager. We ran several test tools from
Unixbench [10] in the configuration (A) and the configuration
(C) to evaluate the performance of Linux. Three tools were
chosen from Unixbench: Dhrystone 2 using registers variables
(Dhry2reg), Double-Precision Whetstone (Whetstone) and Sys-
tem Call Overhead (Syscall). These three tools ran 10 times with
a single task and 5 times with 4 parallel tasks. The average scores
are shown in Fig. 10, Fig. 11, Fig. 12.

Table 5 Hash calculation overhead evaluation (µs).

Hash Algorithm Execution Time Per Page (22 pages)
SHA1 83,743.8 3,406.5
MD5 33,782.4 1,134.9

Fig. 10 Dhry2reg results (106 loops).

Fig. 11 Whetstone results (MWIPS).

Fig. 12 Syscall results (105 loops).

From these figures, we can argue that the performance of Linux
is minimally influenced by the secure pager. We consider that the
influence is from the passive monitoring service, which would
occupy memory bus during runtime. The secure pager may in-
crease the execution time of the monitoring service, which may
lead to more bus time occupation. However, because the moni-
toring service does not use a core shared with Linux, it does not
block the running of Linux. As the results show, the secure pager
have minimal influence on the performance of Linux.

We have evaluated and analyzed some factors that may influ-
ence the performance. To conclusion, the secure pager brings
very little overhead to Linux in our architecture, and it provides
functions of the integrity checking and the automatic update of
the monitoring service. The encryption mechanism, the page
copy method and the hash algorithm are required to be chosen
carefully to meet the performance of embedded platforms.

We should notice that using one core of the processor for se-
cure purpose in this architecture may lead to resource waste in
embedded systems. However, we can foresee that using a special
core for enhancing the reliability would be reasonable consump-
tion when the number of cores in one processor increases to 16 or
more. On the other hand, there is a type of processors called
heterogeneous multi-core architecture processors [15], [30], in
which each core can have its own configuration specially for dif-
ferent workloads to provide a good balance between performance
and resource consumption. We can use a single core with a con-
siderable configuration to run the secure pager and the monitoring
service, and obtain a reasonable tradeoff between resource con-
sumption and security. Depending on processors with a proper
architecture, our architecture can provide a robust secure system
without occupying overmuch resource.

5. Conclusion

In this paper, we proposed an extensible OS architecture that
can provide enhanced reliability to the whole system without
causing heavy overhead. In this architecture, isolation between
the monitoring service and the guest OS is provided based on
the local memory, a hardware feature, without the dependency
of a hypervisor. The monitoring service can avoid attacks from
the compromised guest OS due to the isolation. A secure pager
is adopted to generalize this architecture by extending the size
of the local memory virtually, and extend monitoring functions
by the automatic update of the monitoring service. The evalu-
ations demonstrate that we could use this architecture to build
an extensible secure system with reasonable resource consump-
tion on processors with many cores or heterogeneous architecture
equipped with local memory.

6. Future Work

We will focus on the followings for future research:
• Secure pager and xv6 need more optimizations to reduce the

memory occupation and improve the performance.
• More experiments need to be conducted to find how to de-

termine a suitable swap mechanism depending on the size of
the local memory.

• Apply this method on other types of processors.

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.4

References

[1] ARM: TrustZone, ARM Cooperation (online), available from
〈http://www.arm.com/products/processors/technologies/trustzone.php〉
(accessed 2013-06-25).

[2] Armand, F. and Gien, M.: A Practical Look at Micro-Kernels and
Virtual Machine Monitors, Proc. 6th IEEE Conference on Consumer
Communications and Networking Conference, Las Vegas, Nevada,
pp.1–7 (2009).

[3] Azab, A.M., Ning, P., Wang, Z., Jiang, X.X., Zhang, X.L. and Skalsky,
N.C.: HyperSentry: Enabling stealthy in-context measurement of hy-
pervisor integrity, Proc. 17th ACM Conference on Computer and Com-
munications Security, Chicago, IL, pp.38–49 (2009).

[4] Baron, M.: Single-Chip Cloud Computer, Intel (online), available
from 〈http://www.intel.com/content/www/us/en/research/
intel-labs-single-chip-cloud-article.html?wapkw=single-
chip+cloud+computer〉 (accessed 2013-06-25).

[5] CERT: CERT/CC Security Improvement Modules: Detecting Signs of
Intrusion, Technical Report sei-sim-001, CERT Coordination Center
(1997).

[6] CVE: CVE list, CVE (online), available from 〈http://cve.mitre.org/
cgi-bin/cvekey.cgi?keyword=Xen〉 (accessed 2013-06-25).

[7] Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A. and Chen, P.M.: Re-
Virt: Enabling Intrusion Analysis through Virtual-Machine Logging
and Replay, Proc. 5th Symposium on Operating Systems Design and
Implementation, Boston, MA, pp.211–224 (2002).

[8] Garfinkel, T. and Rosenblum, M.: A virtual machine introspection
based architecture for intrusion detections, Proc. 10th Network and
Distributed Systems Security Symposium, Diego, California, pp.191–
206 (2003).

[9] Garfinkel, T. and Rosenblum, M.: When virtual is harder than real: Se-
curity challenges in virtual machine based computing environments,
Proc. 10th Conference on Hot Topics in Operating Systems, Santa Fe,
New Mexico, pp.74–82 (2005).

[10] Google: Byte-unixbench: A Unix benchmark suite, Google Project
(online), available from 〈http://code.google.com/p/byte-unixbench/〉
(accessed 2013-06-25).

[11] Hay, B. and Nance, K.: Forensics Examination of Volatile System
Data Using Virtual Introspection, ACM SIGOPS Operating Systems
Review, Vol.42, No.3, pp.20–25 (2008).

[12] Jones, S.T., Arpaci-Dusseau, A.C. and Arpaci-Dusseau, R.H.: VMM-
based hidden process detection and identification using Lycosid, Proc.
4th ACM SIGPLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments, Seattle, WA, pp.91–100 (2008).

[13] Kinebuchi, Y.: Software and Hardware Supports for Multi-OS Envi-
ronment, PhD Thesis, Waseda University, Tokyo (2012).

[14] Kinebuchi, Y., Butt, S., Ganapathy, V., Iftode, L. and Nakajima, T.:
Monitoring Integrity using Limited Local Memory, IEEE Trans. In-
formation Forensics and Security, Vol.8, No.7, pp.1230–1242 (2013).

[15] Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P. and Tullsen,
D.M.: Single-ISA Heterogeneous Multi-Core Architectures: The Po-
tential for Processor Power Reduction, Proc. 36th International Sym-
posium on Microarchitecture, San Diego, CA, pp.81–92 (2003).

[16] Li, C.X., Raghunathan, A. and Jha, N.K.: Secure Virtual Machine Ex-
ecution under an Untrusted Management OS, Proc. 3rd IEEE Interna-
tional Conference on Cloud Computing, Miami, Florida, pp.172–179
(2010).

[17] MIT: Xv6, a simple Unix-like teaching operating system, Mas-
sachusetts Institute of Technology (online), available from
〈http://pdos.csail.mit.edu/6.828/2012/xv6.html〉 (accessed 2013-06-
25).

[18] Mousa, A. and Hamad, A.: Evaluation of the RC4 Algorithm for Data
Encryption, International Journal of Computer Science & Applica-
tions, Vol.3, No.2, pp.44–56 (2006).

[19] Payne, B.D., Carbone, M. and Lee, W.: Secure and Flexible Monitor-
ing of Virtual Machines, Proc. 12th Computer Security Applications
Conference, Seoul, Korea, pp.385–397 (2007).

[20] Payne, B.D., Carbone, M., Sharif, M. and Lee, W.: Lares: An Ar-
chitecture for Secure Active Monitoring Using Virtualization, Proc.
IEEE Symposium on Security and Privacy, Oakland, CA, pp.233–247
(2008).

[21] Shimada, H., Courbot, A., Kinebuchi, Y. and Nakajima, T.: A
Lightweight Monitoring Service for Multi-core Embedded Sys-
tems, Proc. 13th IEEE International Symposium on Object Compo-
nent Service-Oriented Real-Time Distributed Computing, Carmona,
Seville, Spain, pp.202–209 (2010).

[22] Shimizu, K., Nusser, S., Plouffe, W., Zbarsky, V., Sakamoto, M. and
Murase, M.: Cell Broadband EngineTM processor security architecture
and digital content protection, Proc. 4th ACM International Workshop
on Contents Protection and Security, Santa Barbara, CA, pp.13–17
(2006).

[23] Srivastava, A., Singh, K. and Giffin, J.: Secure Observation of Kernel

Behavior, Technical Report gt-cs-08-01, Georgia Institute of Technol-
ogy (2008).

[24] Szefer, J. and Lee, R.B.: Architectural Support for Hypervisor-Secure
Virtualization, Proc. 7th International Conference on Architectural
Support for Programming Languages and Operating Systems, New-
port Beach, CA, pp.437–449 (2012).

[25] VMware: Performance Evaluation of AMD RVI Hardware Assist,
VMware, Inc. (online), available from 〈http://www.vmware.com/
pdf/RVI performance.pdf〉 (accessed 2013-06-25).

[26] VMware: Performance Evaluation of Intel EPT Hardware Assist,
VMware, Inc. (online), available from 〈http://www.vmware.com/
pdf/Perf ESX Intel-EPT-eval.pdf〉 (accessed 2013-06-25).

[27] Wagner, D. and Schneier, B.: Analysis of the SSL 3.0 Protocol, Proc.
2nd USENIX Workshop on Electronic Commerce, Oakland, Califor-
nia, pp.29–40 (1996).

[28] Wang, X.Y., Feng, D.G., Lai, X.J. and Yu, H.B.: Collisions for hash
functions MD4, MD5, HAVAL-128 and RIPEMD, Technical Report
2004/199, Cryptology ePrint Archive (2004).

[29] Wang, Z. and Jiang, X.X.: HyperSafe: A Lightweight Approach
to Provide Lifetime Hypervisor Control-Flow Integrity, Proc. 31th
IEEE Symposium on Security and Privacy, Berkeley, CA, pp.380–395
(2010).

[30] Wei, T.Y., Qiu, Z.L., Young, C.P. and Chang, D.W.: Development of
Heterogeneous Multi-core Embedded Platform for Automotive Appli-
cations, Proc. International Conference on Circuits, System and Sim-
ulation, Bangkok, Thailand, pp.193–197 (2011).

[31] Yoshida, Y., Kamei, T., Hayase, K., Shibahara, S., Nishii, O., Hattori,
T., Hasegawa, A., Takada, M., Irie, N., Uchiyama, K., Odaka, T.,
Takada, K., Kimura, K. and Kasahara, H.: A 4320MIPS Four-
Processor Core SMP/AMP with Individually Managed Clock Fre-
quency for Low Power Consumption, Proc. Solid-State Circuits Con-
ference, San Francisco, CA, pp.100–101 (2007).

Ning Li was born in 1984. He received
his M.S. degree from Shandong Univer-
sity, China, and is a Ph.D. candidate in
the Department of Computer Science and
Engineering in Waseda University, Tokyo,
Japan. Now he receives the scholarship
from China Scholarship Council (CSC).
His research interests are operating sys-

tems, security, system architecture and embedded systems.

Yuki Kinebuchi obtained his Ph.D. in
Computer Science and Engineering at
Waseda University. His research interests
are operating systems, system virtualiza-
tion, security, system architectures, and
embedded systems.

Hiromasa Shimada is a Ph.D. candidate
in the Department of Computer Science
and Engineering in Waseda University,
Tokyo, Japan. His research interests are
operating systems, security and system ar-
chitecture.

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.4

Tatsuo Nakajima is a professor in
the Department of Computer Science,
Waseda University. He was a researcher
in School of Computer Science, Carnegie
Mellon University during 1990–1993, a
research engineer in AT&T Laboratories,
Cambridge during 1998–1999 and a
visit research fellow in Nokia Research

Center, Helsinki in 2005. He was also an associate professor
in School of Information Science, Japan Advanced Institute of
Science and Technology during 1993–1999. He was program
co-chair of RTCSA 2002 and ISORC 2003, and general chair of
RTCSA 2003 and ISORC 2005. His research interests include
distributed systems, operating systems, ubiquitous computing
and information appliances.

c© 2013 Information Processing Society of Japan


