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Adaptive Particle Splitting Based on Turbulence Energy
for Fluid Simulations on GPUs

Arno inWolde Lübke1,a) Makoto Fujisawa2,b) Taketomi Takafumi1,c) Goshiro Yamamoto1,d)

JunMiyazaki3,e) Hirokazu Kato1,f)

Abstract: We present a simulation method for particle-based fluids to capture small-scale features such as splashes in
higher resolution than the underlying base simulation. For this purpose, we split particles in visually important regions
of the fluid into smaller, high-resolution particles. To reduce the computational overhead introduced by the additional
simulation scale, we propose splitting only those particles found within turbulent surface regions that are visible to the
camera. We extract these particles in screen space and decide to split them based on their turbulent energy. Further, to
compensate for irregularities in the quantity field that are introduced by transitioning particles, we use a simple blend-
ing approach to maintain stability. We fully implemented our method for graphics processing units to further accelerate
the computational speed. In early experiments we could achieve speed increases of up to two over a high-resolution
simulation while preserving similar visual qualities.

1. Introduction

Fluids such as liquids and gases are important visual elements
in movies, video games and advertisements. However, to achieve
visually pleasing results, simulations are often carried out at high
resolution. Additionally, the underlying model of fluids and its
numerical solutions requires high computational costs, which
make physics-based fluid simulations impractical for real-time
applications and lead to long design cycles in offline applica-
tions. To alleviate these computational requirements, this study
proposes a two-scale approach for particle-based fluids and dis-
cusses its implementation on graphics processing units for further
performance gains.

Recently particle-based fluids have evolved as an interesting
alternative to their grid-based counterparts since their governing
equations’ concept is more simple and computations are only car-
ried out for each fluid element instead of an embedding data struc-
ture. In addition, particle-based methods trivially conserve mass.

For the purpose of solving the particle-based model, Smoothed
Particle Hydrodynamics (SPH) has become a commonly used
method that allows the reconstruction of continuous quantity
fields by taking a weighted average of the neighboring particles’
values. Using SPH, real-time results have been accomplished
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[15]. However, the number of particles is limited to a couple of
thousands for real-time applications. In addition, small-scale de-
tails such as splashes cannot be captured accurately, and the final
visual result of the fluid appears to be blobby.

To simulate more particles in shorter time, graphics processing
units (GPUs), which posses multiple processing units for paral-
lel computations, have been used to speed-up the computation
of SPH Fluids. Speed-ups on order of ten have been reported
in early results [10]. Furthermore, multi-resolution methods that
simulate fluid areas at different scales depending on certain crite-
ria have been proposed and succeeded in preserving visual detail
while significantly reducing the computational cost [21].

To our knowledge, only a few efforts have been made to com-
bine GPUs and multi-resolution SPH fluids. Furthermore, ex-
isting implementations produced no considerable performance
gains if the fluid was very turbulent [17]. This study proposes
an easy-to-implement multi-scale simulation method for graphics
processing units that splits particles in visually important regions
of the fluid into smaller, high resolution particles. To reduce the
computational overhead introduced by the additional simulation
scale, particles are only split in turbulent surface regions that are
visible to the camera. For this purpose, surface particles are ex-
tracted in screen space and divided based on their turbulent en-
ergy.

The contributions of this study may be summarized as follows:
• In order to further reduce the computational overhead, this

paper proposes an additional splitting criterion based on the
turbulent energy of a particle, which ensures that surface par-
ticles are only split in turbulent, and visually important areas
of the fluid.

• Recently, the concept of blending was introduced to multi-
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resolution fluids in order to maintain stability in areas where
particles are transitioning between high and low resolutions.
In this study, this model is simplified to reduce the overhead
that comes with the original method. In essence, in order to
avoid numerical issues that come with this simplifications,
this study restricts the movement of a particle based on the
Courant Friedrichs Lewy condition.

• Since merging of particles is one of the most difficult op-
erations to implement on GPUs and is not comprehensively
described in current literature, an easy to implement merging
method for GPUs is proposed.

2. Related Work

Algorithms for fluid animation in computer graphics rely heav-
ily on findings from the research field of fluid mechanics. In
particular, the motion of a fluid can be formulated by a set of
partial differential equations, the so called Navier-Stokes Equa-
tions. These equations were formulated independently by Claude
Navier and George Stokes in 1822 and 1845, respectively.

Particle systems, as introduced to computer graphics by Reeves
[19], are a popular model to describe natural phenomena that are
difficult to capture using classical surface representations such as
liquids, smoke or clouds.

A numerical method that is commonly used in combination
with a particle system to model fluid behaviour is Smoothed Par-
ticle Hydrodynamics (SPH) [14].

Müller et. al. [15] demonstrated that SPH can be used in real-
time fluid simulations using specially designed weighting kernels
and the ideal gas equation to relate densities to pressures. This
method has the disadvantage that the fluid is highly compressible.
Becker and Teschner [2] popularized a weakly compressible SPH
model for computer animation. Furthermore, the predictive cor-
rective incompressible SPH (PCISPH) method [20] is a modern
SPH fluid solver that allows for incompressibility at high simu-
lation time steps. Recently, Maklin and Müller [13] presented a
solver based on the Position Based Dynamics framework [16],
that increases the integration time-step by ten over the PCISPH
method.

Bridson et. al. [3] suggested a way to create divergence free,
turbulent velocity fields for procedural animation by taking the
curl of a noise function. Kim et. al. [11] used this result in
combination with wavelet noise [4] to add small scale detail as
a post-processing step. Fujisawa et. al. [6] applied these re-
sults to the SPH fluid model by formulating a wavelet decom-
position for particle-based fluids and adding details using vortex
sub-particles.

The goal of this study is to present methods that can accelerate
these approaches to fluid simulation. Related research can gener-
ally be divided into three different approaches:
Multi-Resolution Fluids Multi-resolution approaches aim to

allocate more computational resources to specially-defined
fluid regions to increase the visual quality and/or physical
accuracy of the simulation.
Adams et. al [1] sample the fluid using the geometric local
feature size as criterion so that complex geometric regions
are represented by more particles than less complex areas.

In addition to geometric criteria, this study investigates the
use of a physics-related property, the turbulence energy of a
particle as a criterium to avoid costs that arise due to split-
ting and merging particles. Further, this study suggests a
new way to extract surface particles by exploiting the popu-
lar screen space fluid rendering algorithm of van der Laan et.
al. [22]. Zhang et. al. [23] explain how adaptive sampling
can be mapped to the GPU exploiting the rendering pipeline.
Orthmann and Kolb [17] present a method that allows a
smooth transition between particles of different resolutions
avoiding numerical problems that might occur due to poor
resampling of the fluid. This study makes use of this method
but simplifies it in order reduce computational overhead and
ease its implementation.

Graphics Processing Units The advent of programmable ren-
dering pipelines in computer graphics gave researchers the
opportunity to port various algorithms to the graphics pro-
cessing unit (GPU) in order to benefit from its parallel ar-
chitecture. Harada et. al. [10] implemented the SPH fluid
model on the GPU using OpenGL and C for Graphics. They
reported that their method enabled them to use ten times as
many particles as previous real-time simulations.
NVIDIA’s white paper on particles [9] showed an efficient
way to compute a particle’s neighborhood on GPU’s and is
commonly used in GPU implementations of SPH fluids. Re-
cently, Goswami et. al. [8] made use of z-ordering to ar-
range particles for neighborhood queries and access particle
data through fast shared memory.
This study follows the approach of [9] and shows a way
to implement the splitting and merging operations of multi-
resolution fluids.

Approximation In order to save computational time, approxi-
mation strategies try to avoid computations for particles from
which contributions to the whole system are neglectable.
Goswami and Pajarola [7] classify fluid particles as either ac-
tive or inactive. Particles are considered inactive if they do
not contribute to the visual quality and their speed is below a
certain threshold. Inactive particles are then not considered
in the SPH computations.
Pelfrey and House [18] optimize the standard SPH approach
by computing the neighborhood of a particle only when nec-
essary.

3. Particle-Based Fluid Simulation

This section presents the model for particle-based fluids em-
ployed in this paper that is used for comparison in the results
section and extended in the subsequent section.

Particle-based fluid simulations employ a particle system to
discretize the fluid. In this work, the motion of a fluid particle
i of the system is governed by

ai =
1
ρi

(f p
i + f µi + ρig) =

1
ρi

(

− (∇p)i + µ(∆v)i + ρig
)

. (1)

in accordance to the incompressible Lagrangian Navier-Stokes
equations. Equation 1 relates the acceleration of the particle to
the pressure, viscosity and external forces it undergoes, whereµ
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denotes the dynamic viscosity of the fluid,ρi is the density of the
fluid at the particle position,p is the pressure field, andv is the
velocity field of the fluid.

In order to evaluate the forces acting on a particlei in the model
equation, a Smoothed Particle Hydrodynamics approach is used
that approximates the pressure and viscosity force as follows:

f p
i = −ρi

∑

j















pi

ρ2
i

+
p j

ρ2
j















m j∇W(xi − x j, h) (2)

f µi = µ
∑

j

(v j − vi)
m j

ρ j
∆W(xi − x j, h). (3)

where the indexj references all particles that lie within an effec-
tive radiush around particlei andW is a function (kernel) that
weighs the contribution of particlej to the net force acting on
particlei. In this paper the kernels of Müller et. al. [15] are used.

The density of a particlei is computed by the standard SPH
estimator,

ρi =
∑

j

m jW(xi − x j, h) (4)

and its pressure is given by Tait’s equation

pi = B

((

ρi

ρ0

)γ

− 1

)

(5)

whereγ is chosen to be one,B is Tait’s coefficient andρ0 is the
rest density of the fluid.

Boundary handling is implemented a suggested by Becker and
Teschner [2] using boundary particles for solid obstacles and co-
hesion forces to model surface tension effects.

Eventually, the particle positions at the next time step are
optained by integrating Equation 1 in time applying Euler’s
method.

4. Adaptive Particle Splitting

The previous section presented a simulation method for one
simulation scale. This section proposes a method that supports
two simulation scales, a high-resolution scale to better capture
small-scale details and a low-resolution scale to save computa-
tional time in uninteresting regions of the fluid. For this pur-
pose, in the following, the two-scale extension of the previous
method is reviewed, before a way to dynamically change resolu-
tions within the fluids is discussed. Finally, the criteria for resam-
pling the fluid in this work are given.

4.1 Two-Scale Particle Model
Similar to Solenthaler et. al. [21], this work restricts itself to

using only two different resolutions. The benefits of this approach
are fewer errors due to numerical approximations, less imple-
mentation costs and the observation that it is visually-sufficient
to describe fluid regions either with high-resolution particles or
low-resolution particles. Further, this paper covers only the case
wherein the resolution is double for small-scale details. However,
the following discussion might easily be extended for different in-
creases in resolution.

As a result of the additional simulation scale, a distinction must

be made between the mass and effective radius of a low- and high-
resolution particle. Both attributes relate to each other as follows:
mL = 8mH , hL = 2hH . Different effective radii require changes to
the definition of a particles neighborhood to maintain mutual vis-
ibility for all particle pairs. This paper follows work of Desbrun
and Canny [5], and includes a particlej in the SPH computations
for particle i, if ‖xi − x j‖ ≤ max(hi, h j) holds, wherehi and h j

denote the particle radius of particlei and j.
Due to the adjusted neighbor definition and to obey Newton’s

third law, one has to ensure that the forces for a particle pair of
different resolutions cancel each other. In practice [1], a common
method to achieve this for two particlesi and j, is to take the
arithmetic mean of their smoothing kernels evaluated with their
distance and respective effective radius to weight specific quan-
tities. For instance, the SPH term to compute the pressure force
acting on a particlei is rewritten as

f p
i = −ρi

∑

j,i

m j















pi

ρ2
i

+
p j

ρ2
j















∇Whi

i j + ∇W
h j

i j

2
. (6)

Forces due to viscosity, boundaries and surfaces tension as well
as the SPH density estimator are adjusted similarly.

4.2 Particle Resampling
Replacing particles of different resolutions can lead to poor po-

sitioning of the newly inserted particles which results in high den-
sity fluctuations within the fluid. In these situations, the arising
high pressure forces require small simulation time-steps to en-
sure stability. To maintain large time-steps, recently Orthmann
and Kolb [17] introduced the concept of blending to the field of
particle-based fluids. The following subsection describes an alter-
native to this method, by limiting a particle’s motion based on the
Courant Friedrichs Lewy (CFL) condition, in order to omit parts
of the computational overhead introduced by the original method.
Subsequently, particle splitting and merging are described.
4.2.1 Particle Blending

Particle blending lets particles of different resolutions that are
about to be exchanged to coexist for a certain time period. Dur-
ing this time period the contribution to the system of newly in-
serted particles is steadily increased whereas the contribution of
the particles that were supposed to be replaced is decreased. Fi-
nally, if the contribution of a particle is zero, it is removed from
the system. This way, the potential high pressure forces intro-
duced by the new particles are attenuated over a certain period of
time allowing the system to reach to a stable configuration before
particles are finally replaced. The process of particle blending is
illustrated inFig. 1.

For implementing particle blending, each particle is assigned a
states. A particle is ininsert state if it is about to be inserted
to the system, indelete state if it is about to be replaced or in
default state if it is neither being inserted nor being replaced.
Further, each particle has a blending coefficientΛ that determines
its contribution to the system. Each time step, the blending co-
efficient of a particlei is updated depending on its state in the
following way:
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Fig. 1: Particle Blending: (a) shows the situation when four
new high-resolution particles (orange) where just inserted. All
particles have a blending coefficient of zero and, therefore, do
not contribute to the system. The low resolution particle (blue),
that is about to be deleted, has still a blending coefficient of one
and therefore fully contributes to the system (blue arrow). (b)
shows the situation after a short period of time has elapsed: The
low-resolution particle’s force is attenuated, whereas the high-
resolution particles’ contribution (blue arrows) has increased. (c)
shows the situation shortly before the low-resolution particle is
being removed. Its exerted force is strongly attenuated, whereas
the high-resolution particles’ contribution to the system is almost
one hundred percent.

Λn+1
i = Λn

i +























∆Λ if si = insert

−∆Λ if si = delete

0 if si = default

(7)

where∆Λ is a constant blending increment. For a newly inserted
particle the blending coefficient is set to zero (meaning it has no
contribution to the system) and increased to one (meaning it con-
tributes fully to the system) using the equation above. Likewise
the blend coefficient for a particle that is supposed to be replaced
starts at one and is decreased to zero, before it is finally removed
from the system.

Eventually, the blending coefficient is used to weigh the force
that a particle exerts on another particle. For instance, the pres-
sure force acting on particlei may now be computed by

f p
i = −ρi

∑

j,i

Λ jm j















pi

ρ2
i

+
p j

ρ2
j















∇Whi
i j + ∇W

h j

i j

2
. (8)

taking into account the contributions of the neighboring particles
j to the system.

Unfortunately, even with the use of particle blending in some
cases the system may experience instabilities due to inaccurate
sampling. In order to make the simulation more robust, this work
restricts the motion of a particle according to the CFL condition
which is a necessary condition for stability. The CFL condition
basically states that per time step∆t information should not be
propagated further than the spatial increment∆x of the underlying
grid, that is, in one dimension, for a uniform gridu∆t

∆x ≤ 1, whereu

denotes the maximum velocity throughout the domain, must hold.
Translating this condition to a particle-based discretization of the
simulation domain, this work sets the spatial increment∆x pro-
portional to the effective radius of the simulationh, which results
in the following constraint for the velocity of a particle

‖v‖ ≤ αh
∆t

(9)

with some constantα. Consequently, in the integration step of

Fig. 2: Splitting and merging: (a) shows the initial distanceof a
high-resolution particle to its parent low-resolution particle (here
d ≈ 1

2ri). (b) shows how high-resolution particles are aligned
when being inserted. It also shows a valid configuration for high-
resolution particles to merge into a single low-resolution particle.
(c) shows an undesired configuration for high-resolution particles
to merge.

the proposed method, the computed velocityvi for a particlei is
adjusted as follows

v∗i = min

(

‖vi‖, α
h
∆t

)

vi

‖vi‖
(10)

in order to ensure this constraint given by Equation 9.
4.2.2 Particle Splitting

When a low-resolution particlei is determined to be split, eight
new high resolution particles are inserted to the system. These
particles are positioned on an axis-aligned cube around the low
resolution particle, as illustrated by FigureFig. 2 (b). The dis-
tance of each high resolution particle to the low resolution particle
should be proportional to the volume the low resolution particle
occupies (see Fig. 2 (a)), and is computed as follows:

d ∝
1
2

ri =
1
2

(

3Vi

4π

) 1
3

=
1
2

(

3mL

4πρi

) 1
3

(11)

The velocity of all newly inserted particles equals the velocity of
the low resolution particle. Finally, the low resolution particle’s
state is set todelete and the states of the high-resolution parti-
cles are set toinsert.
4.2.3 Particle Merging

Merging saves computational time in regions of the fluid that
do not require high spatial resolutions. If eight high-resolution
particles, which lie close to each other are part of these regions
they should be combined to one low resolution particle. Position
and velocity of this particle are computed as the average over the
high resolution particles that are being merged.

It should be noted that in addition to being close to each other,
the particles to be merged should be aligned in a way that they
fill out the volume of the to-be-inserted low-resolution particle as
shown in Fig. 2 (b)+ (c). This constraint is important to improve
the sampling quality. A way of identifying high-resolution parti-
cles that can be merged for GPU implementations is described in
Section 5.2.

4.3 Resampling Criteria
Here the criteria for dynamically changing the simulation scale

in a fluid are given. This work aims to keep the visible surface
particles at high resolutions, while the rest of the fluid is ani-
mated by low-resolution particles. To further reduce splitting and
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merging operations and keep the particle count low, splitting op-
erations are restricted by the turbulent energy of a particle, while
merging is enforced for particles with low turbulent energy.
4.3.1 Surface Areas

As only surface areas of the fluid are directly visible to the
camera, they comprise a desirable region of the fluid to be sam-
pled at higher resolutions. To extract this area in previous re-
search normally the distance of a particle to the center of mass of
its neighbors is computed [21]. If this distance is higher than a
user-defined threshold, the particle is recognized to be a surface
particle. However, this method does not always select surface
particles correctly, especially if the fluid is compressible, which
may be desirable in order to achieve higher integration time-steps.
Moreover, this method also detects, surface particles that might
not directly be visible to the camera, e.g. particles at the back of
a fluid or particles outside the view frustum of the camera. For
this reason, this study extracts surface particles in screen space,
while rendering using a screen space rendering algorithm.
4.3.2 Turbulence Energy

To identify turbulent regions within the fluid, this paper uses
a wavelet-based approach similar to [11]. Wavelets are a mathe-
matical tool to hierarchically decompose a function into a lower
resolution part of the function itself and the details that are lost
due to the decrease in resolution. The latter part is known as de-
tail coefficients. Applied to the velocity field of a fluid, the detail
coefficients may be seen as a measure of the local differences of a
certain velocity component and are therefore a suitable criterion
for turbulence. Unfortunately, the discrete wavelet decomposi-
tion can only be applied to grids. For this reason particle data
needs to be projected onto grid cells. However, this would cause
additional numerical diffusion and impose more strict memory
and computational requirements. To avoid these issues this paper
follows the approach of Fujisawa et. al. [6] who define a discrete
wavelet transform for particles as follows,

ûi =
1

√
sψsum

∑

j

u jψ((xi − x j)/s) (12)

whereûi is the wavelet transform of the first velocity component
of particlei, ψ is the Mexican hat mother wavelet,s is the wavelet
scale andψsum =

∑

j ψsum((xi − x j)/s) is a norm to address unde-
sirable effects at the boundary of the fluid. Given the wavelet
transform of the velocitŷvi = (ûi, v̂i, ŵi) of a particlei, its turbu-
lent energy is then defined as

Ei =
1
2
‖v̂i‖2. (13)

Given the energy distribution of the fluid, a low-resolution par-
ticle is then determined to be split if its energy exceeds a cer-
tain threshholdEθ. In the same way, a high-resolution particle is
marked for merging if its energy is belowEθ.

5. Implementation

The two-scale method presented in this paper was implemented
fully on a NVIDIA GeForce GTX 670 GPU using CUDA 5.0. To
increase memory coherence and avoid cache misses particle data
is stored as a structure of arrays and reordered according to its
position at the beginning of each time-step. For fast neighbor

1 while animating do
2 compute particle neighborhoods(cf. Sec. 5)

3 foreach particle i ∈ An
L ∪ An

H pardo
4 compute densityρi (cf. Eq. 8)

5 end

6 foreach particle i ∈ An
L ∪ An

H pardo
7 compute acceleration(cf. Eq. 8)

8 compute energy(Eq. 13)
9 end

10 foreach particle i ∈ An
L ∪ An

H pardo
11 update position and velocity(cf. Eq.10)

12 update blending coefficient(Eq. 7)

13 if Λi = 1 then
14 si ← default;
15 end

16 if Λi > 0 then
17 add(An+1

i , i);

18 end
19 end

20 foreach particle i ∈ An
L pardo

21 if si = default ∧ split(i) (cf. Sec. 4.3) then
22 insert(An+1

H , i); (cf. Sec. 4.2.2)

23 si ← delete;
24 end
25 end

26 foreach particle i ∈ An
H pardo

27 merge(i); (cf. Sec. 5.2)

28 end
29 end

Algorithm 1: Summary of the proposed method,An
L is a list of

all active low- resolution particle ids at the current time step and
An

H is its high-resolution counterpart.An+1
i refers to the list of

resolution of particlei at the next time step.

lookup the method proposed by Green [9] is adopted, which par-
titions the simulation space using a uniform grid with an spatial
increment ofh and sorts all particles according to their grid in-
dices. However, due to the additional simulation scale two grids
are used to minimize the number of considered particles when
searching for neighbors.

The method presented and its implementation are depicted in
Algorithm 1. The following is a short discussion of the GPU im-
plementation of splitting and merging in this work. To keep track
of all active particles of the two different scales, extra arrays are
employed, which are denoted byAL for the low resolution and
AH for the high resolution. If a particlei should be deleted from
the system, its id is simply not added to its active list at the next
time stepAn+1

i at the end of the simulation step.

5.1 Splitting
The GPU implementation of splitting in this work is straight-

forward and essentially follows the procedure described in 4.2.2.
Each thread checks if its particle can be split. If so, eight high-
resolution particles are inserted toAn+1

H and initialized. During
initialization these particles are positioned around a cube that is
centered around the low-resolution particle. The velocity is sim-
ply inherited from the parent and their blending coefficient is set
to zero. Lastly, the states of the high-resolution particles are set
to insert and the state of the low-resolution particle is set to
delete.
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Fig. 3: Detecting particles for merging in two dimensions: The
domain is subdivided by a grid. For each grid cell the amount of
particles that can be merged is counted. Then one high-resolution
particle to be responsible for the cell is chosen and, if a cell con-
tains four mergable particles, the id of the to be inserted low-
resolution particle is assigned to the cell.

5.2 Merging
The implementation proposed in this work uses a uniform grid

to separate the simulation domain in order to find high-resolution
particles that can be merged (seeFig. 3). Examining the simula-
tion domain per grid cell has the advantage that particles within
the cell are likely to be arranged properly for merging. Further-
more, it is easier to search for high-resolution particles in a grid
cell as compared to checking the neighbors of each. Since exactly
eight particles have to be merged, the spatial increment of the grid
∆x is chosen depending on the volume that eight high-resolution
particles usually occupy, that is∆x ∝ (8VH)

1
3 whereVH = mh/ρ0

is the volume a high-resolution particle occupies when it is at rest.
In case eight particles that are eligible to merge are found for

a grid cell, one particle (thread) is delegated to add the index of
the to-be-inserted particle to the array that stores all active low-
resolution particlesAn+1

L . For this purpose, three arrays of the
size of the number of grid cells are needed: one to store the num-
ber of particles that can be merged per cell, one to save the id of
the particle that is delegated to the cell and one to store the id of
the to-be-inserted low-resolution particle per cell. These arrays
are referred as tonumParticles, cellOwner andnewLowID in
Fig. 3.

For every grid cell that contains high-resolution particles, the
actual merging process is carried out in three steps, which can be
briefly described as follows
( 1 ) Count all particles that should be merged, and determine the
cellOwner.

( 2 ) If merging is possible, create a new low-resolution particle
and determine its index inAn+1

L using thecellOwner.
( 3 ) If a new particle is created, initialize its position and velocity

by taking the average over all eight high-resolution particles.
In all steps atomic operators had to be used to avoid race condi-
tions.

6. Results

To evaluate the ideas of the previous sections, the proposed al-
gorithm is compared to the standard SPH algorithm of Section 3
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Fig. 4: Simulation timings

Table 1: Physical constants chosen for all test scenarios.
Constant Symbol Value
Gravitational Acceleration g 9.81 m/s2

Rest Density ρ0 1000kg/m3

Viscosity µ 5.0 · 10−3 kg/s(·m)
Tait Coefficient B 30 Pa
Average particle neighbors n 35
Blend Increment ∆Λ 0.02
Energy Threshhold Eθ 300J

in a dam break scenario. To increase the turbulent regions during
the simulation an additional pillar has been added to the scene.
Four different scenarios have been evaluated: In the first scenario
the fluid is animated with the standard SPH approach and 35k
fluid particles (low-resolution simulation), whereas in the second
scenario the fluid is animated with 280k particles (high-resolution
simulation). In the third scenario the simuliation starts with 35k
particles, but the fluid is allowed to split the particles. The forth
scenario also allows for the merging of particles as well. The
physical constants for scenarios were chosen according toTa-
ble 1. The visual results for each scenario are given inFig. 5.

The computational time it took to simulate the fluid for a cer-
tain period of real time is given inFig. 4. The y-axis denotes the
computational time needed for a certain point in real time. As
can be seen from the graph, the amount of computational time
needed for the low-resolution simulation is about nine seconds,
whereas the high-resolution simulations needs about 95 seconds.
Both multi-resolution simulations take about the same time: 41
seconds. In total, 2s in real-time were animated. For all sim-
ulations a time-step∆t = 1 ms was chosen except for the low-
resolution simulation where a time-step∆t = 2 ms was chosen.
In scenario three, the number of low-resolution particles at end
of the simulation decreased to 28k, whereas the number of high-
resolution particles is increased to 65k. As for scenerio four, due
to successful merging operations, the number of low-resolution
particles at the end of the simulation is 31k, whereas the number
of high-resolution particles is 38.5k.

7. Conclusion and Future Work

In summary, this work proposed a two-scale particle-based
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fluid simulation method. The goal was to achieve similar visual
qualities of a high resolution simulation by allocating more com-
putional resources to visually important parts of a low-resolution
fluid while saving computational time for the rest of the fluid. To
achieve this, visually important areas were identified as surface
areas with high turbulent energy using the wavelet decomposition
of the velocities of the fluid. In order to split and merge particles
while still preserving large time-steps a simple blending-based
method that trivially maps to graphics processing units was pro-
posed. The experiment conducted in this work suggested that two
times faster simulation times are possible while still preserving
similar visual qualities, which can lessen the duration of design
cycles as well bring more visual fidelity to real-time applications.

As a major downside, the considerable increase of memory due
to auxiliary structures for the extra resolution and the blending
process should be mentioned. This is especially severe if a high
amount of the simulation domain is not needed due to evironmen-
tal restrictions. In order to address this problem the usage of more
memory efficient data structures such as octrees and their imple-
mentation on GPUs as described in [12] can be investigated in fu-
ture research. Furthermore, the proposed method has been tested
for one particular scenario. Different experiments with varying
scene complexities should be carried out to find out where the
proposed ideas are applicable to get performance gains. It would
also be interesting to see if the ideas presented here can be applied
to the recently published and very popular method of Macklin and
Müller [13].
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t = 500 ms t = 750 ms t = 1000 ms

Low-resolution simulation

t = 500 ms t = 750 ms t = 1000 ms

High-resolution simulation

t = 500 ms t = 750 ms t = 1000 ms

Multi-resolution simulation (no merging)

t = 500 ms t = 750 ms t = 1000 ms

Multi-resolution simulation

Fig. 5: Visual result for all scenarios

c© 2013 Information Processing Society of Japan 8

Vol.2013-CG-152 No.4
2013/9/9


