
IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

Regular Paper

Effective Demand-driven
Partial Redundancy Elimination

Yasunobu Sumikawa1,a) Munehiro Takimoto1,b)

Received: November 12, 2012, Accepted: April 25, 2013

Abstract: Partial Redundancy Elimination (PRE) is a technique that not only removes redundant expressions but also
moves loop-invariant expressions out of a loop based on the lexical equality among expressions. Traditional PRE
analyzes the entire program exhaustively to remove any redundancy, whereas demand-driven PRE, which propagates
a query about whether the expression is redundant, can be applied to each expression with lower costs so that it,
can remove the redundancy efficiently, including that which is not exposed initially by using copy propagation in the
topological sort order. Furthermore, demand-driven PRE allows loop-invariant expressions to be moved out of a loop
speculatively by tracing the query propagations, which allows more redundant expressions to be eliminated through al-
gebraic transformations. However, the demand-driven approach with copy propagation is sometimes more costly than
the exhaustive approach because it may entail unnecessary analyses. Thus, we propose a technique that suppresses
unnecessary query propagations, which does not require any copy propagation. This is achieved by applying global
value numbering and recording the value numbers reached at each program point before the query propagation. We
implemented our technique using a real compiler and evaluated it with SPEC benchmarks. The experimental results
showed that our technique can improve the analysis efficiency by about 56.8% in the best case.

Keywords: compiler, code optimization, partial redundancy elimination, global value numbering

1. Introduction

Partial redundancy elimination (PRE) is a code optimization
technique that removes redundant expressions but it also moves
loop-invariant expressions out of a loop based on the lexical
equality among expressions [14], [21]. Traditional PRE analyzes
the entire program exhaustively based on data flow equations, be-
fore transforming the program to remove all of the redundant ex-
pressions found during the analysis. The removal of the expres-
sions leads to some copy assignments, but the application of copy
propagation has the effect of exposing new redundancies, which
are known as second-order effects. To remove more redundant ex-
pressions that capture these effects, it is necessary to apply PRE
and copy propagation repeatedly.

By contrast, demand-driven PRE (DDPRE) [19] checks the
redundancy of each expression by propagating a query about
whether the expression is lexically redundant, so it can be elim-
inated if the expression is found to be redundant. The query is
propagated to the program points that are reached by the expres-
sion so even if the DDPRE is applied to all expressions, the total
cost is close to that incurred with the application of traditional
PRE in some cases. The properties of DDPRE allow expressions
to be handled sequentially, so its application to all expressions
with copy propagation in a topological sort order helps to capture
many second-order effects. Furthermore, DDPRE allows loop-
invariant expressions to be moved out of a loop speculatively by

1 Tokyo University of Science, Noda, Chiba 278–8510, Japan
a) yas@cs.is.noda.tus.ac.jp
b) mune@cs.is.noda.tus.ac.jp

tracing the query propagations, which allows more redundant ex-
pressions to be eliminated via algebraic transformations. How-
ever, the requirements for copy propagation other than PRE for all
expressions sometimes incur greater costs than exhaustive PRE.
In addition, the query may sometimes be propagated unnecessar-
ily in order to check the redundancy of an expression, even if the
expression is not redundant on some execution paths.

In this paper, we propose an effective DDPRE (EDDPRE) tech-
nique that suppresses unnecessary query propagations and that
does not require copy propagation. This technique uses global
value numbering (GVN) before query propagation, which records
the reachable value numbers at each program point. GVN facil-
itates the detection of expressions that generate the same values
based on their value numbers, rather than their lexical forms. The
reachable value number recorded at each node indicates the ear-
lier occurrence of the corresponding expression, so it is sufficient
for the query to determine whether the expression has the same
value number and it is only propagated until the program points
where the value number of the expression is recorded.

The application of EDDPRE to the program is shown in
Fig. 1 (a). EDDPRE generates the value number for each expres-
sion that traverse the control flow graph (CFG) in topological sort
order. The variables b1 and c1 have the same value number be-
cause the right-hand sides of these definitions are the same. Fur-
thermore, the value numbers of i1 and j1 are the same because
expressions b1+1 and c1+1 calculate the same value, which are on
the left-hand side. These variables are loop induction variables,
which are increased by the same value at each iteration, so i3

and j3 are assigned the same value numbers. These redundancies

c© 2013 Information Processing Society of Japan 33

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

(a) Original code. (b) Code after applying our
technique.

Fig. 1 Example program which is used in this paper.

are identified using the value numbers of the operands and argu-
ments of the φ function. We assume that the value numbers 1, 2,
and 3 are assigned to variable a1, natural number 1, and variables
b1 and c1, respectively. When EDDPRE assigns a value number
to b1+1, all of the operands of the expression are translated into
their value number, which produces result in a tuple (3,+,2). Af-
ter b1+1 has been translated into the tuple, the tuple and i1 are
assigned to a new value number 4. EDDPRE also translates c1+1

into a tuple (3,+,2), so its value number is the same as that of
b1+1. EDDPRE deals with the redundancy of expressions that
depend on the induction variables, such as j2+1, using a special
manner. We explain the details of this manner in Section 4.

As a result of the GVN, each CFG node records the value num-
bers that are reachable at the exit of the node. For example, Node
1 records reachable value numbers 1–4. These value numbers
are checked during query propagation. If we consider expression
a1+2 at Node 4, the query about the expression can be stopped
immediately because there is no reachable value number for the
expression at the exit of Node 3.

By contrast, traditional DDPRE needs to apply copy propaga-
tion after eliminating a1+1 at Node 1 to expose the redundancy of
c1+1. In Fig. 1 (a), copy propagation needs to analyze the entire
program. Thus, c1+1 is transformed into b1+1, which is elimi-
nated as a redundant expression. This elimination incurs a new
copy assignment, so copy propagation is applied further to iden-
tify more redundancies. DDPRE cannot eliminate the redundancy
of j2+1 with induction variable j2 because the analysis based on
query propagation provides a pessimistic solution to the equiva-
lences among expressions. Furthermore, the DDPRE has to prop-
agate a query from Node 4 to Node 1 to determine whether a1+2

is not redundant.
We implemented EDDPRE using a real compiler and evaluated

it with SPEC benchmarks. The experimental results showed that
EDDPRE can improve the analysis efficiency by about 56.8% in
the best case.

The advantages of our technique can be summarized as fol-
lows:
(1) EDDPRE can be applied to any programs.
(2) EDDPRE can capture many second-order effects without

copy propagation.

(3) EDDPRE suppresses unnecessary query propagations by
recording the reachable value numbers at each node.

(4) EDDPRE eliminates redundancies that traditional DDPRE
cannot eliminate lexically.

(5) EDDPRE can deal with some redundant expressions using
induction variables by the partial introduction of an opti-
mistic analyzing manner.

The rest of this paper is organized as follows. Section 2 pro-
vides the preliminary definitions needed to explain our technique.
Section 3 outlines the previous demand-driven PRE technique.
Section 4 gives the details of the algorithm for our technique.
Section 5 presents the experimental results, which demonstrate
the effectiveness of our technique. Section 6 summarizes related
work and Section 7 contains our concluding remarks.

2. Preliminaries

We assume that EDDPRE is applied to a program that has
been converted into an intermediate representation, which is a se-
quence of statements that contains at most an operator or a func-
tion. EDDPRE also assumes that a CFG has been built for each
program. The CFG is a graph structure, which is represented as a
quadruple (N,E,s,e), where N is a set of basic blocks, E denotes
a set of edges N × N, s is a start node with an empty statement,
and e is an end node with an empty statement. A given edge is
expressed as (m, n) ∈ E, where m is referred to as a predecessor
of n and n is known as a successor of m. In general, a node has
several predecessors and successors because of the nondetermin-
istic branching structure of a CFG. Thus, the sets of predecessors
and successors of node n are denoted as pred(n) and succ(n), re-
spectively.

When all paths from the start node to node n include node m, it
is said that m dominates n [3], which is represented as m ≥dom n.
If m dominates n and m is not n, it is said that m strictly dominates

n. An edge a→ b where the head b dominates the tail a is called
a back edge [1].

We assume that the programs have been converted into the
static single assignment (SSA) form [3], [8]. In the SSA form,
each variable is defined exactly once by assigning a unique ver-
sion. This definition dominates all uses so, it is necessary to in-
sert a special function φ that merge several definitions into one
in a node set defined by a dominance frontier. The dominance
frontier of node n is a set of nodes that n cannot dominate ini-
tially. The nodes where φ functions for an original variable are
inserted need to be defined recursively as a dominance frontier
for the definitions of the variable, which is referred to as an it-

erated dominance frontier. Our technique assumes that each of
the φ functions is distinguished by a suffix that identifies its node,
such as φn for node n.

In the CFG, it is assumed that the critical edges, which are
edges leading from a node with more than one successor to a node
with more than one predecessors, have been removed by inserting
synthesized nodes, because the critical edges can block effective
code motion [12]. Indeed, this assumption has been adopted for
the same reason in many traditional techniques based on code
motion.

c© 2013 Information Processing Society of Japan 34

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

3. Partial Redundancy Elimination

In this section, we describe traditional DDPRE first and pro-
vide the definitions of the availability and anticipatability, which
are basic properties of PRE, before a brief description of tradi-
tional DDPRE.

3.1 Availability and Anticipatability
Expression e is available on node n if all of the execution paths

from the start node to n include node m which has an e without
any definition of all operands of e between m and n. If e is avail-
able at some nodes of pred(n), e is partially available at node n.
When e is available at n, e is totally redundant and is replaced
by the variable with the preceding execution result. When e is
partially available at n, e is partially redundant. The partially re-
dundant expression is eliminated by inserting new expressions so
it is totally redundant.

Expression e is anticipatable at node n if all of the execution
paths from m to the end node include node n which has an e with-
out any definition of all operands of e between m and n. When
e is anticipatable for n, n is down-safe with respect to e. Down-
safe is represented by the predicate DownSafe. PRE inserts new
expressions at the down-safe nodes without extending the lengths
of any paths. If new expressions are inserted at non down-safe
nodes, this type of insertion is speculative. Speculative insertion
allows loop-invariant expressions inside a 0-trip loop, such as a
while loop, to be moved out of the loop.

3.2 Demand Driven Partial Redundancy Elimination
Partial redundancy elimination based on query propagation

(PREQP) is a form of demand-driven PRE [19]. PREQP visits
each CFG node in topological sort order, and performs query
propagation [17] to check whether each expression e can be elim-
inated at the node. The query propagation propagates a query
backwardly to determine whether the same expressions as e are
present at the current node. If all of the propagated queries have
true as their answers, e is considered to be redundant. Otherwise,
PREQP checks whether new expressions can be inserted safely to
make all of the queries true. If this is possible, e becomes redun-
dant after the insertion, but otherwise e is not redundant. In addi-
tion, after the query returns true at a node, the sub-query isSelf is
checked, which determines whether the detected expression is the
same occurrence as the source expression of the query. If isSelf

is true, the propagation paths include some circles, which can en-
force the speculate movement of loop-invariant expressions from
loops.

If the query is propagated to node n, the answer at n is deter-
mined as follows.
(1) If n is the start node s, the answer is false.
(2) If n is a node where the same query has been already prop-

agated, the answer is true.
(3) If n is a node where the different query has been already

propagated, the answer is false.
(4) If n is the original node of the query and the original query

is also same as the query, the answers to the query and isSelf

are both true.

(a) Original code. (b) Query propagation.

Fig. 2 An example of unnecessary code motion.

(5) If n has the same expression as the query, the answer is true.
(6) If n has the definitions of the operands for the expression of

the query other than φ function, the answer is false.
(7) If all of the above rules are not applied, the query is prop-

agated to all of the predecessors of n. Thus, if the query
query(e(x)) is propagated from node n, which includes the
φ function x = φn(a0, a1, . . . , ai), the operands are changed
to the corresponding arguments of the φ function such
as query(e(a0)), query(e(a1)), . . . , query(e(ai)), and these
queries are then propagated to their corresponding predeces-
sors.

The query obtains the local answer if rules (1) to (6) are ap-
plied. If the query cannot obtain the local answer, it is propagated
to the predecessors according to rule (7). In rule (2), the answer
to the query is true because result of the query propagation corre-
sponds to is the maximum fixed point of the data-flow equations.
However, the rule may lead to unnecessary code motion, as shown
Fig. 2.

Consider the query propagation for expression a1+1 at Node
5 in Fig. 2 (a). This query is first propagated to Nodes 4 and 3.
Because the query propagated to Node 3 cannot obtain a local
answer at the node, it is propagated to Node 2 and Node 3 via the
back edge. The former query obtains the answer false because
rule (1) is applied after propagating to Node 1. The latter query
will obtain the answer true because rule (2) is applied. The two
answers, true and false, are obtained from predecessors, so a new
expression is inserted into Node 2 that satisfies down-safety. This
insertion can move a1+1 outside the loop, but a more appropriate
insertion node is Node 4 because the motion from Node 4 to Node
2 is not effective. Thus, an ineffective motion increases the tem-
porary liverange introduced for the motion, which can increase
the register pressure.

Unnecessary code motion occurs when the answers are true

without reaching a real expression. To avoid unnecessary code
motion, PREQP defines a predicate isReal, which represents the
existence of the real expression, and inserts new expressions only
if the query propagation that occurs with the answer true satisfies
isReal. In Fig. 2, the propagation to Node 3 does not satisfy this
requirement, whereas that to Node 5 satisfies isReal. As a result,
PREQP inserts a new expression into Node 4.

Rule (2) may also produce an incorrect true answer rather than
false during propagation where isReal is false, so an inaccurate

c© 2013 Information Processing Society of Japan 35

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

Fig. 3 Inconsistency answers.

code motion may be performed. Consider the application of
PREQP to expression a1+1 at Node 8 in Fig. 3. We use a tu-
ple (isAvail, isReal) to focus on explaining the predicate isAvail

and the predicate isReal, where isAvail represents the answer to
the query.

The answers obtained by propagating to Nodes 2 and 4 are
(true, true) and (false, false), respectively. Consider the propaga-
tion to Node 4 in detail. The query propagated to Node 4 may
be propagated further to Nodes 3, 6, 5, and 3. The answers are
(true, false) at Nodes 3 and 5 because rule (2) is applied. The
query propagated to Nodes 7 and 5 obtains the answer (true, false)
at these nodes because rule (2) is applied at Node 5.

As a result of these query propagations, a new expression is in-
serted only at Node 4. However, the code motion is not accurate
because the expression is not inserted on the paths through Node
7. The inconsistency in the answers to the queries is caused by
the propagation manner where the answer (false, false) at Node
3 cannot be reflected in the answer at Node 7. PREQP checks
the consistency of the answers by checking whether isAvail is not
false at nodes where no new expression is inserted. PREQP can-
cels all insertions and removals as soon as the inconsistency of
answers is detected.

To determine that an expression can be inserted at a node, the
down-safety at the node has to be checked in addition to the inser-
tion condition given by the answers of queries. The down-safety
check can also be performed during the query propagation to de-
termine anticipatability. The query propagation to determine the
anticipatability ant(e(x)) can be achieved by changing the direc-
tion of the query propagation, deleting rule (4), reordering rules
(5) and (6), and changing rule (7) as follows.
(7) If ant(e(x)) is propagated to node ns, which is a successor

of n, and there is a φ function y = φns (. . . , x, . . .) where x

corresponds to n, the query is changed to ant(e(y)).
Consider the application of PREQP to Fig. 1 (a). First, the ex-

pression a1+1, which is assigned to c1, is replaced by b1. Next,
after copy propagation has been applied, the copy propagation
procedure analyzes all of the nodes dominated by Node 1 and it
iterates the dominance frontier of the node to replace all of the
uses of c1 with b1. All of the nodes in this program are analyzed.
As a result, c1+1 is transformed into b1+1. Second, PREQP re-
places b1+1 with i1 and the copy propagation procedure is ap-
plied again.

Consider expression j2+1 at Node 3, which is redundant be-
cause the expression computes the same value as i2+1. How-
ever, PREQP cannot eliminate the expression because the query

of PREQP analyzes each expression pessimistically. After the
query related to j2+1 is propagated to Nodes 1 and 2 via Node
2, j2+1 is transformed into j1+1 and j3+1, respectively, based
on rule (7). These expressions cannot be satisfied by the further
propagation, so i2+1 is no found to be redundant.

The expression a1+2 is not redundant at Node 4. However,
PREQP propagates the query to all of the nodes because the query
cannot obtain answers until it is propagated to Node 1.

Compared with the general PRE technique based on data-flow
analysis, PREQP can improve the analysis efficiency with many
programs because it reflects many second-order effects by repeat-
ing the redundancy elimination and copy propagation procedure
efficiently without analyzing the entire program. In some pro-
grams, however, the analysis efficiency of PREQP will be worse
than the general PRE because the program points analyzed dur-
ing the query propagation and copy propagation with PREQP still
include unnecessary points before obtaining the final result.

4. Effective Demand-driven Partial Redun-
dancy Elimination

In this section, we provide the details of our novel algorithm,
which we refer to as EDDPRE. EDDPRE involves GVN and
query propagation. GVN generates the value numbers for all of
the expressions. The query is back propagated from each expres-
sion e to check whether there are expressions with the same value
number as e at each node.

In the following sections, we provide the details of GVN and
the extension points of the query propagation procedure.

4.1 Global Value Numbering
GVN visits CFG nodes in topological sort order and assigns a

value number to each expression. EDDPRE represents the value
number as a natural number. The value number 0 is used for op-

timistic value numbering, which we will explain in Section 4.1.2.
Whenever GVN assigns a new value number, the maximum value
number is incremented by 1. GVN uses a hash table, valueTable,
to record the value number of each variable or expression.

In the following subsections, we explain how the value num-
bers are assigned to scalar expressions, φ functions, and function
calls, and how we record the reachable value numbers on each
node.
4.1.1 Value Numbering of Scalar Expressions

First, for each expression, all of the operands are replaced with
their corresponding value number in the valueTable. If there is a
value number for an operand in the valueTable, it can be obtained
by searching using operand as the key. Otherwise, a new value
number is assigned to the operand and the new entry for the value
number with the operand as the key is added to the valueTable.
Second, a tuple that comprises of an operator and the value num-
bers of all operands is checked to determine whether there is an
entry in the valueTable. As well as the first step, a value num-
ber is obtained if there is an entry for the tuple in the valueTable.
Otherwise, a new value number is assigned to the tuple and a new
entry of the value number with the tuple as the key is added to the
valueTable.

The memory operations given by the load/store instruction can

c© 2013 Information Processing Society of Japan 36

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

be treated as scalar expressions by making a tuple that contains
the load/store operator and the value number of the address spec-
ified.
4.1.2 Value Numbering of φ Functions

The value number of the φ function is determined according to
the following rules.
(1) If the same number has been assigned to all of the arguments

of the φ function, the value number of the arguments is as-
signed to the φ function.

(2) If there is another φ function p with arguments where the
value numbers are the same as those of the φ function at the
same node, the value number of p is assigned to the φ func-
tion.

(3) If none of the above rules are applicable, a new value number
is assigned to the φ function.

At the header node of the loop, there may be some φ functions
with arguments where no value number has been assigned. For
assigning value numbers to such φ functions, all the arguments
of it must have value numbers. We assume that the virtual value
number 0 is assigned to the variables that reach n through the
back edges. After the value numbers have been assigned to all of
the expressions in all of the loop nodes that are dominated by n,
define value numbers are assigned to the φ functions. We refer
to this value numbering manner as optimistic value numbering.
Optimistic value numbering may assign the same virtual value
number to φ functions that return different values, so their value
numbers have to be reassigned. If the reassigned value numbers
are different, the value numbers of all the expressions in the loop
nodes dominated by n also have to be reassigned. Thus, the old
value number is updated to a new value number in the hash table.
These updating processes are repeated until the value numbers are
unchanged. It is sufficient for the reassigned value number to be
applied to expressions that depend on φ functions where incorrect
value numbers are assigned. EDDPRE reassigns value numbers
using dependency relations in an efficient manner. However, we
omit the details of this process to simplify the explanation.

The reassignment step is guaranteed to terminate because of
the following two reasons: 1) after different value numbers have
been assigned to expressions, they will never have the same value
number; and 2) the number of φ functions with optimistic value
numbers decreases monotonously.
4.1.3 Value Numbering of Function Calls

We assume that EDDPRE is an intra-procedural technique, so
EDDPRE considers that function calls always returns different
values. Therefore, the variable defined by the function call is al-
ways assigned a new value.
4.1.4 Recording Reachable Value Numbers

To avoid unnecessary query propagation, EDDPRE records the
value numbers that reach each node in the node. The value num-
bers recorded in node n comprise the value numbers defined in n

and the value numbers that are reachable from all of the prede-
cessors of n.

The GVN algorithm is shown in Algorithm 1. GVN ini-
tializes the value number to 0 and then calls the function
traverseDomTree to traverse each node in topological sort order.
traverseDomTree calls the function numbering to assign a value

Algorithm 1 Global value numbering
Function: globalValueNumbering()

1: let value := 0

2: traverseDomTree(root, false)

Function: traverseDomTree(n, optimistic)

3: numbering(n, optimistic)

4: for all kid ∈ domTree(n) do

5: if (checkPhiArg(kid)) then

6: // optimistic value numbering

7: traverseDomTree(kid, true)

8: checkPhiVal(kid)

9: end if

10: traverseDomTree(kid, optimistic)

11: end for

Function: numbering(n, optimistic)

12: for all st ∈ instrList(n) do

13: if (isPhi(st) ∨ isFunc(st) ∨ isExp(rhs(st))) then

14: let val := value(st)

15: if (optimistic ∧ isPhi(st)) then

16: let variables := nodeVariableMap.get(n)

17: if (variables.containsKey(val)) then

18: let var := variables.get(val)

19: if (samePhiMap.containsKey(var)) then

20: var := samePhiMap.get(var)

21: end if

22: samePhiMap.put(lhs(st), var)

23: end if

24: end if

25: setValue(val, lhs(st), n)

26: end if

27: end for

28: recordReachableValues(n)

Function: recordReachableValues(n)

29: let reachValue := getReachValues(n)

30: for all p ∈ pred(n) do

31: if (reachValueMap.containsKey(p)) then

32: let predRV Map := reachValueMap.get(p)

33: reachValue.add(predRV Map)

34: end if

35: end for

number to each expression that visits node n. To visit each node in
topological sort order in the CFG, EDDPRE traverses the dom-
inance tree using a depth-first search with left-first. EDDPRE
assumes that the child nodes of each node in the dominator tree
are sorted in the topological sort order. The visiting order in the
dominance tree can be proven to correspond to the topological
sort order in the CFG using lemmas 1 and 2, where we assume
that ni and n j are two arbitrary children of node n in the domi-
nance tree, and that Ni and Nj are the sub-tree node sets that have
them as roots, respectively.
Lemma 1. nid is ni if an arbitrary node n js in Nj has an edge with
nid in Ni in the CFG.
Proof . If we assume that nid is not ni, nid is included in the sub-
tree that has a child of ni as its root. n js is not dominated by ni,
so some paths do not include ni from the start node to nid through
edge (n js, nid) in the CFG. This contradicts the fact that nid is

c© 2013 Information Processing Society of Japan 37

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

dominated by ni.
Lemma 2. The preference relation between node sets Ni and Nj

in the topological sort order of CFG corresponds to the preference
relation between ni and n j in the topological sort order of CFG.
Proof . Assuming that Nj precedes Ni in the topological sort or-
der of CFG, there is an edge from node n js ∈ Nj to nid ∈ Ni in
CFG. According to lemma 1, nid corresponds to ni. In addition,
because ni is the earliest order node in Ni based on the definition
of the dominance relation, n j precedes all nodes in Ni. There-
fore, the preference relation between Ni and Nj corresponds to
the preference relation between ni and n j.

Given that node n precedes node n′ when n dominates n′,
lemma 2 suggests that the pre-order of the left-first and depth-
first search in the dominator tree corresponds to the topological
sort order of CFG, where we assume that the children of each
node in the dominator tree has been sorted in the topological sort
order of CFG.

The function traverseDomTree calls the function numbering

first in order to perform value numbering. After the value num-
bering, traverseDomTree checks to determine whether optimistic
value numbering is performed. If the function checkPhiArg

returns true, optimistic value numbering is performed by
numbering, which has true for the parameter optimistic. Opti-
mistic value numbering assigns value numbers to all of the ex-
pressions in the sub-tree that has n as its root. After completing
this optimistic value numbering, each of the value numbers in the
sub-tree is checked to determine whether they are correct by call-
ing the function checkPhiVal.

The function numbering assigns value numbers to the scalar
expressions, φ functions, and function calls. If φ function p2 is
assigned the same value number as just previously detected p1,
the information of p1 cannot be simply overwritten because the
value number of variables may be partially changed in optimistic
value numbering. Therefore, previously detected φ functions
are recorded through their assigned variables in the hash table
samePhiMap. In the case as mentioned above, the samePhiMap

holds the assigned variable of just previously detected p1 with
the assigned variable of p2 as a key. That is, starting with the
assigned variable of the current φ function, all assigned variables
of φ functions with the same value number can be retrieved by
repeating the search for the samePhiMap.

Every time numbering is called, the assigned variable with
corresponding value number as a key is added to a hash table
variables, and the value number is inserted to a list reachValue as
a reachable value number by calling the function setValue. The
function lhs returns the left-hand side of given statement. After
finishing the value numbering, all of the reachable value numbers
of the predecessors are added to the reachValue of n by calling the
function recordReachableValues. The function getReachValues

returns a list of reachable value numbers at given node.
The value numbering algorithm is shown in Algorithm 2. First,

the function value is called, which calls the function getValue if
given statement is trivial assignment; otherwise, translating each
operand of expression or argument of φ function of the statement
into its value number using function makeVExp. getValue returns
a value number for given expression searching valueTable if it in-

Algorithm 2 Value numbering for each expression
Function: value(st)

1: if (trivialAssignment(st)) then

2: return getValue(rhs(st))

3: end if

4: let ve := makeVExp(st)

5: if (ve =⊥) then

6: return newValue(lhs(st))

7: else if (isPhi(st) ∧ all o f the argument value number are same) then

8: return the argument value number

9: else

10: return getValue(ve)

11: end if

Function: makeVExp(st)

12: let valExp := rhs(st)

13: if (isPhi(st)) then

14: for all argi ∈ st.argument do

15: valExp.setKid(i, getValue(argi))

16: end for

17: else if (isExp(rhs(st))) then

18: for all opi ∈ valExp.operand do

19: valExp.setKid(i, getValue(opi))

20: end for

21: else

22: valExp :=⊥
23: end if

24: return valExp

Function: newValue(exp)

25: value := value + 1

26: valueTable.put(exp, value)

27: return value

Function: setValue(val, exp, n)

28: if (valueTable.containsKey(exp)) then

29: valueTable.remove(exp)

30: end if

31: valueTable.put(exp, val)

32: let variables := nodeVariableMap.get(n)

33: variables.put(val, exp)

34: let reachValue = getReachValues(n)

35: reachValue.add(val)

Function: getValue(ve)

36: if (¬valueTable.containsKey(ve)) then

37: return newValue(ve)

38: else

39: return valueTable.get(ve)

40: end if

Function: getVariable(val, n)

41: let variables := nodeVariableMap.get(n)

42: return variables.get(val)

cludes an entry for the expression; otherwise, calling newValue,
newValue generates a new value number, adds the value number
with the expression as a key to valueTable, and then, return the
value number.

When scalar expressions are assigned a value number,
makeVExp uses a function rhs that returns the right-hand side

c© 2013 Information Processing Society of Japan 38

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

Algorithm 3 Optimistic value numbering
Function: checkPhiArg(n)

1: let ans := false

2: for all st ∈ instrList(n) do

3: if (isPhi(st)) then

4: for all argi ∈ st.argument do

5: if (¬ valueTable.containsKey(argi) then

6: if (n ≥dom pred(n, i)) then

7: valueTable.put(argi, 0)

8: ans := true

9: else

10: for all argi ∈ st.argument do

11: if (valueTable.get(argi) = 0) then

12: valueTable.remove(argi)

13: end if

14: end for

15: return false

16: end if

17: end if

18: end for

19: end if

20: end for

21: return ans

of given statement. makeVExp is also used to assign value num-
bers to the φ functions and function calls. If φ function is given
to makeVExp, the arguments of φ function are changed to corre-
sponding value numbers. The operands or arguments are changed
to the value numbers by valExp.setKid(i, val), which assigns a
value number val to the i th operand or argument of valExp. If
a function call is given, it returns ⊥. Once makeVExp returns ⊥,
getValue returns a new value number calling newValue.

The function getVariable returns the variable that corresponds
to the value number val if the variable is defined at the node n.
This function is used during the redundancy elimination phase.

Algorithm 3 shows the optimistic value numbering algorithm.
The function checkPhiArg checks whether each argument of the
φ function has already been assigned a value number. If some
arguments have no corresponding value number and n dominates
the predecessors that corresponding to the arguments, the argu-
ments are assigned a value number 0. If n does not dominate the
predecessor, checkPhiArg returns false and assigns a new value
number to the φ function in a conservative manner.

Algorithm 4 shows the algorithm used to check whether the
optimistic value numbers are correct or not and to reassign a
new value numbers instead of the incorrect value number. The
function checkPhiVal calls a function checkAssum, which check
whether the optimistic value numbering has been performed cor-
rectly. If a φ function has been assigned an incorrect optimistic
value number, the function checkAssum returns false to enhance
the reassignments of value numbers for all expressions in the
nodes that are visited during optimistic value numbering until the
value numbers of the expressions are fixed.

checkAssum returns true if given variable is not included
in the samePhiMap, or the value number for the variable in
samePhiMap is same as given value number. Otherwise, it re-
turns false after deleting the entry of var in samePhiMap because
the φ function needs to be assigned to a different value number.

Algorithm 4 Checking accuracy of φ function’s value number
Function: checkPhiVal(n)

1: let change := true

2: while change do

3: change := false

4: for all st ∈ instrList(n) do

5: let val := value(st)

6: setValue(val, lhs(st), n)

7: if (¬ checkAssum(val, lhs(st))) then

8: traverseDomTree(n, true)

9: change := true

10: end if

11: end for

12: end while

Function: checkAssum(val, var)

13: if (¬ samePhiMap.containsKey(var)) then

14: return true

15: else if (val = getValue(samePhiMap.get(var))) then

16: return true

17: else

18: samePhiMap.remove(var)

19: return false

20: end if

Consider i2 = φ2(i3, i1) at Node 2 in Fig. 1 (a). The value
number 0 is assigned to i3 because no value number has been
assigned to i3 and Node 2 dominates the corresponding prede-
cessor Node 3. As a result, the φ function is translated into
φ2(0, 4) and the tuple and i2 are assigned to a new value num-
ber 5. j2 = φ2(j3, j1) is also translated into φ2(0, 4), so that its
value number is same as that of φ2(i3, i1). After optimistic value
numbering, all of the expressions in Nodes 3 and 4 are assigned
to optimistic value numbers. Because i2 and j2 were assigned
to a value number 5, the tuples of i2+1 and j2+1 are changed to
(5,+,2) at Node 3. As a result, a new value number 6 is assigned
to the tuple, i3, and j3.

After assigning a value number 7 to constant 2 at Node 4 and
a value number 8 to the expression a1+2, a new value number 9
is assigned to φ2(i3, i1) because the φ function is translated into
a tuple φ2(6, 4). φ2(j3, j1) is also translated into a tuple φ2(6, 4).
As a result, i2+1 and j2+1 are assigned to the same value number.

Table 1 and Table 2 represent the valueTable and reachValue,
respectively. In Table 1 and Table 2, the value numbers are en-
closed in parentheses to distinguish them from constants.

4.2 Query Propagation
In this section, we explain how PREQP query propagation

is extended to EDDPRE. In EDDPRE, a query checks whether
some expressions have the same value number as e at each node.
As well as PREQP, EDDPRE defines the availability and antici-
patability as follows.
Availability : e is available at node n if all the availability

queries obtain true from all of the predecessors of n.
Anticipatability : e is anticipatable at node n if all the antic-

ipatablity queries obtain true from all of the successors of
n.

The query propagation rules are extended as follows.

c© 2013 Information Processing Society of Japan 39

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

Table 1 Hash table valueTable of Fig. 1.

Key Value number

0 [1]
a1 [1]
1 [2]
[1] + [2] [3]
b1 [3]
c1 [3]
[3] + [2] [4]
i1 [4]
j1 [4]
2 [7]
[1] + [7] [8]
d1 [8]
φ2([6], [4]) [9]
i2 [9]
j2 [9]
[9]+[2] [10]
i3 [10]
j3 [10]

Table 2 List reachValue of Fig. 1.

Node Value number

1 [1],[2],[3],[4]
2 [1],[2],[3],[4],[5],[6],[9],[10]
3 [1],[2],[3],[4],[5],[6],[9],[10]
4 [1],[2],[3],[4],[5],[6],[7],[8],[9],[10]

(2) If n is a node where the query has been already propagated,
the answer is true.

(3) If n is a node where no value number of the query is reach-
able and the value number is not dependent on the φ function,
the answer is false.

(5) If n is a node that includes the same value number as the
query, the answer is true.

(6) This rule is deleted.
(7) If all of the above rules are not applied, the queries are prop-

agated to all of the predecessors of n. In this case, if the
query query(ve(val)) is propagated from node n that includes
a φ function x = φn(a0, a1, . . . , a2), where x is assigned value
number val, each operand is changed to the value number of
the corresponding argument of the φ function.

Because PREQP is based on the lexical equality among ex-
pressions, it is necessary to lexically check whether a propagated
query is same as some expressions at the current node or not [19].
By contrast, EDDPRE does not depend on the lexical equality,
so that it is unnecessary to lexically check of the propagated
query. In addition, it is not necessary to consider the definitions of
operands as well as other techniques that utilize GVN [16]. The
property is derived from the single assignment property of SSA
form for expressions with not induction variable. For expressions
that depend on loop induction variables, queries will not satisfy
the query propagation by rule (7). Therefore, rule (6) of PREQP
is deleted in EDDPRE.

When expression e is partially redundant for preceding expres-
sion e′ in normal form, in the SSA form, e and e′ may be assigned
to different value numbers respectively if e depends on the φ func-
tion. Once rule (7) is applied, the value number is changed to the
argument of φ function corresponding to the predecessor where
the query is propagated, and therefore the equality among these
expressions can be detected. Therefore, queries that depend on
φ functions are propagated to the predecessors even if there is no

Algorithm 5 Eliminating redundancy
Function: eliminate()

1: for all n ∈ toporogicalS ortOrder do

2: let localMap := getNewHashMap()

3: for all st ∈ instrList(n) do

4: if (isExp(rhs(st))) then

5: let val := value(st)

6: if (trivialAssignment(st)) then

7: localMap.put(val, lhs(st))

8: else if (localMap.containsKey(val)) then

9: let predVar := localMap.get(val)

10: replace(st, predVar)

11: else

12: initialize()

13: let originalN := n

14: let ve := makeVExp(st)

15: if (propagate(val, ve, n)) then

16: for all np ∈ link[n] do

17: if (insert(np) �⊥) then

18: replace(st, link[n])

19: setValue(getValue(rhs(st)), lhs(st), n)

20: else

21: for all np ∈ link[n] do

22: cancel(np)

23: end for

24: break

25: end if

26: end for

27: end if

28: end if

29: end if

30: end for

31: recordReachableValues(n)

32: end for

Function: isSameVal(val, n)

33: let variables := nodeVariableMap.get(n)

34: let isAvail := false

35: if (variables.containsKey(val)) then

36: isAvail := true

37: end if

38: let isSelf := false

39: if (n = originalN) then

40: isSelf := true

41: end if

42: return (isAvail, isReal)

reachable value number at the current node, according to rule (3).
The EDDPRE redundancy checking algorithm is shown in Al-

gorithm 5. The function eliminate analyzes redundancies by call-
ing the function propagate after initializing the global lists and
arrays, such as answer, by calling the function initialize. If the
expression is redundant, it is replaced by the new variable by call-
ing the function replace and the value number is updated by one
on the right-hand side.

The query propagation algorithm that calls the functions
propagate and local is shown in Algorithm 6. The parameters
of function propagate are value number val, value expression ve

of which operands are changed to its value number, and the vis-
iting node n. To determine the answer at each node, propagate

c© 2013 Information Processing Society of Japan 40

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

Algorithm 6 Query propagation
Function: propagate(val, ve, n)

1: let n′ := n and isDownS a f e := antqp(val, n)

2: for all p ∈ pred(n) do

3: valp := val

4: vep := transPhi(ve, n, p)

5: if (vep =⊥) then

6: return (false, false, false,⊥)

7: else if (ve � vep) then

8: valp := getValue(vep, p)

9: end if

10: let (isAvailp, isRealp, isSelf p, np) := local(valp, vep, p)

11: if (isAvailp) then

12: add np to link[n]

13: else

14: insertCand[p] := translate(vep)

15: add p to link[n]

16: end if

17: let isReal :=
∑

p∈pred(n) isRealp

18: and isSelf :=
∑

p∈pred(n) isSelf p

19: if (Πp∈pred(n)isAvailp ∨ isReal ∧ (isDownS a f e ∨ isSelf)) then

20: if (∃np ∈ link[n].np ≥dom n ∧ vep = ve) then

21: link[n] := {np}
22: n′ := np

23: end if

24: return (true, isReal, isSelf , n)

25: else

26: return (false, false, false,⊥)

27: end if

28: end for

Function: local(val, ve, n)

29: if (n = s) then

30: return (false, false, false,⊥)

31: else if (visited[n]) then

32: if (answer[n] �⊥) then

33: return answer[n]

34: else

35: return (true, false, false, n)

36: end if

37: end if

38: visited[n] := true

39: let rlt :=⊥ and(isAvail, isSel f) := isSameVal(val, n)

40: if (isAvail) then

41: var[n] := getVariable(val, n)

42: rlt := (true, true, isSelf , n)

43: else if (¬ reacheValue(val, n) ∧ ¬ dependPhi(ve)) then

44: rlt := (false, false, false,⊥)

45: else

46: rlt := propagate(val, ve, n)

47: end if

48: answer[n] := rlt

49: return rlt

calls the function local, which determines the answer using the
query propagation rule as mentioned above. The value returned
by these functions is a tuple of the predicate isAvail that repre-
sents the availability, the predicate isReal that represents the ac-
tual appearance of the expression, the predicate isSelf that rep-
resents whether the node is the initial node of the query propa-
gation, which includes available expressions or not. The node is

used to introduce new variables when the new expressions are in-
serted. Lines 29, 31, and 35 correspond to rules (1), (2), and (3),
respectively.

The array visited [n] records whether a query is propagated to
n. The function reacheValue(val, n) checks whether the value
number val is reachable at node n. The function dependPhi(ve)
checks whether each operand of ve depends on φ functions. Lines
31–36 correspond to rule (2). If the answer has been already de-
termined, local returns the answer. Otherwise, it returns the vis-
iting node as the temporal available node. This temporal node
will be linked to the actual available expression during the trans-
lation program phase. Line 39 corresponds to rules (4) and (5).
The function isSameVal(val, n) checks whether node n includes
the value number val and it also checks whether the query is gen-
erated from n. The value returned by isSameVal is a tuple of the
predicate isAvail and the predicate isSelf . The function transPhi

corresponds to rule (7). If a φ function is assigned the same value
number as the operand of ve at n, transPhi(ve, n, p) translates the
value numbers of the operand to the argument of the φ function,
which corresponds to the predecessor p. If the operand variable
cannot reach the exit of its predecessor, transPhi returns ⊥.

After the query is propagated to predecessors by calling the
function local, if the answers is false at a node, the node is
recorded in the list insertCand as an insertion node. Otherwise,
the node with some expressions is recorded in the list link as an
available node. This list is used in order to insert φ functions,
where to suppress the insertion of unnecessary φ functions, node
np is recorded in the link rather than n if np dominates n.

Each inserted expression is generated based on the value ex-
pression of the query. Since operands or arguments of the value
expression are value numbers, the value numbers have to be sub-
stituted with appropriate variables. The function translate per-
forms the substitution. In the substitution, the variables that are
used as operands or arguments of the inserted expressions are
checked whether they are dominated by their definitions to hold
the static single property of SSA form. In addition, as shown in
line 41, the φ functions with arguments that are substituted with
appropriate variables are also inserted to hold the SSA property.
Once the variable is selected for the value number at node n, the
variable is recorded in var[n] to avoid redundant selections of ap-
propriate variables.

4.3 Translation of the Program
The insertion algorithm is shown in Algorithm 7. EDDPRE

inserts new expressions at nodes n, which are the expressions
recorded in insertCand[n]. The function createNewVar generates
new variables for the new expressions. Line 9 checks the consis-
tency of answers, as explained in Section 3.2. EDDPRE does not
insert new φ functions if the size of list link is 1.

Consider the query propagation related to expression a1+2,
which is assigned a value number 10 at Node 4 in Fig. 1 (a). After
the assignment, the query is propagated to the predecessor Node
3. As shown in Table 2, a value number 10 is not included in
reachValue at Node 3, so the query obtains a false answer imme-
diately. Because the predecessor of Node 4 is only Node 3, it is
possible to determine that a1+2 is not redundant.

c© 2013 Information Processing Society of Japan 41

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

Table 3 Execution time of objective code.

programs A.PRE*2 B.PREQP C.EDDPRE (A-C)/A (B-C)/B
equake 69.1 sec 65.2 sec 65.5 sec 5.2% −0.5%
art 35.7 sec 36.1 sec 33.6 sec 5.9% 6.9%
mcf 34.3 sec 33.7 sec 33.7 sec 1.7% 0.0%
bzip2 73.3 sec 77.3 sec 75.4 sec −2.9% 2.5%
gzip 103 sec 100 sec 99 sec 3.9% 1.0%
ammp 119 sec 118 sec 120 sec −0.8% −1.7%
vpr 68.4 sec 72.2 sec 65.9 sec 3.7% 8.7%
parser 102 sec 105 sec 104 sec −2.0% 1.0%
twolf 110 sec 110 sec 108 sec 1.8% 1.8%

Algorithm 7 Translating program
Function: insert(n)

1: if (var[n] �⊥) then

2: return var[n]

3: else if (insertCand[n] �⊥) then

4: var[n] := createNewVar()

5: let newNode := [var[n]” = ”insertCand[n]]

6: let val := value(newNode)

7: setValue(val, lhs(newNode), n)

8: add newNode to the exit of n

9: else if (#1(answer[n]) = false) then

10: return ⊥
11: else if (| link[n] |= 1) then

12: var[n] := insert(link[n])

13: else

14: var[n] := createNewVar()

15: let args := ∅
16: for all n′i ∈ link[n] do

17: let vari := insert(n′i)
18: if (vari =⊥) then

19: return ⊥
20: end if

21: add vari to args

22: end for

23: let newPhi := [var[n]” = ””φ””(”args”)”]

24: let val := value(newPhi)

25: setValue(val, lhs(newPhi), n)

26: add newPhi to the entry of n

27: end if

28: return var[n]

Function: cancel(n)

29: if (#1(answer[n]) = true) then

30: if (insertCand[n] �⊥) then

31: removeNewNode(n)

32: else if (| link[n] |= 1) then

33: cancel(link[n])

34: else

35: for all n′i ∈ link[n] do

36: cancel(n′i)
37: end for

38: removeNewNode(n)

39: end if

40: end if

5. Experimental Results

We implemented our technique as a low-level intermediate
representation converter using a COINS compiler [6]. To eval-
uate the benefits of our technique as accurately as possible, we

compared EDDPRE with PREQP and PRE*2, which applies
PRE twice and that also applies copy propagation between them.
The machine used in the evaluations had an Intel Core i5-2320
3.00 GHz CPU and Ubuntu 12.04 LTS was the OS.

We evaluated the effects of our technique using three programs
(equake, art, and ammp) from CFP2000 and six programs (mcf,
bzip2, gzip, vpr, parser, and twolf) from CINT2000 in the SPEC
benchmarks.

Table 3 shows the execution time results with PRE*2, PREQP,
and EDDPRE. For PREQP and EDDPRE, most of the programs
were improved or matched when using EDDPRE. In particular,
the efficiency of art and vpr were improved by about 6.9% and
8.7%, respectively. EDDPRE can eliminate more redundancies
than PREQP because EDDPRE uses optimistic value numbering.
However, compared with PRE*2, moving loop-invariant expres-
sion speculatively may decrease the execution efficiency as well
as PREQP.

Table 4 shows the analysis time results for PRE*2, PREQP,
and EDDPRE, where all of the programs were improved by ap-
plying EDDPRE. In particular, the efficiency of twolf was im-
proved by about 70.7% compared with PRE*2. The efficiency of
mcf was also improved by about 56.8% compared with PREQP.

Furthermore, Table 5 shows the query propagation time re-
sults of PREQP and EDDPRE, where all of the programs were
improved by applying EDDPRE. In particular, the efficiency of
mcf was improved by about 88.2%. The number of nodes prop-
agated by the queries using the two techniques is shown in Ta-
ble 6, where EDDPRE visited fewer nodes than PREQP other
than equake. PREQP does not generate queries for the expres-
sions with operands that are defined in the node, whereas ED-
DPRE generates queries for the expressions because EDDPRE
does not consider the definition. Thus, it is possible to that ED-
DPRE generates more queries than PREQP. However, the ana-
lytical efficiency of EDDPRE was better than PREQP, as shown
in Table 5, because the answers to queries are obtained immedi-
ately for non-redundant expressions and EDDPRE does not need
to apply copy propagation.

6. Related Work

In this section, we describe some techniques that use PRE and
GVN.

The original PRE technique was proposed by Morel and Ren-
voise [14], which uses bi-directional data-flow analysis. This
technique can eliminate some redundancies and move loop-
invariant expressions out of loops, but some redundancies are not
removed because the technique does not insert new expressions

c© 2013 Information Processing Society of Japan 42

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

Table 4 Analysis time.

programs A.PRE*2 B.PREQP C.EDDPRE (A-C)/A (B-C)/B
equake 1,949 msec 879 msec 677 msec 65.3% 23.0%
art 384 msec 423 msec 271 msec 29.4% 35.9%
mcf 998 msec 866 msec 374 msec 62.5% 56.8%
bzip2 1,018 msec 1,104 msec 745 msec 26.8% 32.5%
gzip 2,669 msec 1,952 msec 1,087 msec 59.3% 44.3%
ammp 10,959 msec 6,035 msec 3,532 msec 67.8% 41.5%
vpr 5,047 msec 4,574 msec 2,498 msec 50.5% 45.4%
parser 3,744 msec 3,945 msec 2,265 msec 39.5% 42.6%
twolf 36,012 msec 14,484 msec 10,546 msec 70.7% 27.2%

Table 5 The time of query propagation.

programs A.PREQP B.EDDPRE (A-B)/A
equake 661 msec 265 msec 59.9%
art 311 msec 74 msec 76.2%
mcf 667 msec 79 msec 88.2%
bzip2 837 msec 279 msec 66.7%
gzip 1,447 msec 260 msec 82.0%
ammp 4,516 msec 1,102 msec 75.6%
vpr 3,369 msec 773 msec 77.1%
parser 2,964 msec 753 msec 74.6%
twolf 10,662 msec 2,635 msec 75.3%

Table 6 The number of nodes which query propagated.

programs A.PREQP B.EDDPRE A-B
equake 31,884 37,328 −5,444
art 10,149 5,949 4,200
mcf 10,271 3,503 6,768
bzip2 37,719 21,626 16,093
gzip 43,167 18,844 24,323
ammp 169,749 90,815 78,934
vpr 108,917 64,483 44,434
parser 96,056 53,484 42,572
twolf 497,177 343,105 154,072

at non down-safe nodes.
Dhamdhere et al. extended this technique to insert expressions

on edges [9] and they also proposed another technique that re-
moves redundancies based on uni-directional data-flow analy-
sis [10].

In general, most PRE techniques increase the register pressure
because the live-range is extended by inserting new expressions.

Lazy code motion (LCM) aims to suppress the register pres-
sure [12], [13]. Moving expressions by LCM involves perform-
ing the first code motion as early as possible and the second code
motion as late as possible. The first code motion helps to elimi-
nate all of the removable expressions, while the second one helps
to minimize the live ranges of the variables.

Bodik, Gupta, and Soffa proposed the removal of all redundan-
cies by copying certain parts of the program [4]. However, the
copying process can change the reducible loops into irreducible
loops. It is not possible to use this technique with other opti-
mization techniques, which can only apply programs without ir-
reducible loops. Techniques have been proposed for changing
irreducible loops into reducible loops by copying certain parts of
the program but the code size was increased.

These techniques need to apply copy propagation repeatedly to
reflect second-order effects.

Kennedy et al. proposed SSAPRE, which exploits the proper-
ties of the SSA form [11]. SSAPRE produces a factored redun-
dancy graph (FRG) for each expression, before determining the

insertion points based on a sparse analysis of the FRG. However,
some redundancies are not eliminated because SSAPRE is based
on the lexical features of the program.

GVN was extended from the local approach by Rosen et
al. [17]. Their approach utilizes a hash table to record the value
numbers of each node. Expressions are moved up nodes to check
whether the expression is recorded in the hash table of the node
and redundant expressions were eliminated. This technique uses
query propagation and the loop information to analyze totally re-
dundancy, so it depends on the control flow structure. Further-
more, the technique needs to apply copy propagation repeatedly,
like PREQP.

Our technique does not depend on the structure and it performs
the analysis effectively because it does not need to use the loop
information and copy propagation.

Alpern, Wegman, and Zadeck proposed a GVN technique that
uses partitioning to eliminate the totally redundant expressions,
which depends on the induction variable [2]. However, their
technique does not eliminate all of the redundancies. Ruthing,
Knoop, and Steffen proposed a technique that eliminates these
redundancies [18], but its analysis was not effective. Nie and
Cheng proposed a technique based on the SSA form for sparse
analysis, which eliminates as many redundancies as much as
Ruthing’s technique [15]. Click proposed a technique that ex-
tended Alpern’s technique by moving loop-invariant expressions
out of the loops [5]. This technique requires the loop information
because it moves expressions downward without moving into the
loop, after moving upward speculatively.

Cooper and Xu proposed a technique that eliminated all of the
totally redundant load instructions, which combined GVN with
common sub-expression elimination [7]. This technique analyzed
the redundancies by assigning value numbers to a tuple that con-
tained the operator of the store/load instruction and the value
number of the address.

VanDrunen and Hosking proposed a technique that eliminates
partially redundancies, which was similar to our technique [20].
Their technique defines the availability and anticipatability based
on value number, but their technique needs to be applied repeat-
edly to eliminate all of the redundant expressions because it is not
based on the data-flow equation of pure PRE.

Odaira and Hiraki proposed the PVNRE technique, which
combines GVN and PRE [16]. PVNRE maps the value numbers
of the φ function and its arguments to another value number to
eliminate lexically different partial redundancy. PVNRE also de-
fines the transparency of the back edge to prevent the movement
of expressions, which depend on induction variables, outside of

c© 2013 Information Processing Society of Japan 43

IPSJ Transactions on Programming Vol.6 No.2 33–44 (Aug. 2013)

the loop. The transparency of back edge means PVNRE is only
applicable to programs without irreducible loops.

By contrast, our technique does not depend on the control flow
structure and the movement of loop-invariant expressions outside
of the loop speculatively.

7. Conclusions

In this paper, we proposed a new effective DDPRE technique
(EDDPRE) that analyzes redundancies, which eliminates more
redundancies than previous techniques by using optimistic value
numbering and recording the reachable value numbers at each
CFG node. To demonstrate its effectiveness, we applied our tech-
nique to several benchmark programs, which showed that it im-
proved the analytical efficiency in all cases and the execution ef-
ficiency of programs in most cases. In future work, we will con-
sider: 1) suppressing the register pressure by only applying our
technique to costly expressions; and 2) comparing our technique
with other techniques that combine GVN and PRE.

Acknowledgments We would like to thank the reviewers for
their valuable comments and suggestions, which helped improve
the paper. This work is supported in part by Grants-in-Aid for
Scientific Research No.25330089.

References

[1] Aho, A.V., Sethi, R. and Ullman, J.D.: Compilers: Principles, tech-
niques, and tools, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1986).

[2] Alpern, B., Wegman, M.N. and Zadeck, F.K.: Detecting equality of
variables in programs, Proc. 15th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’88, New York,
NY, USA, pp.1–11, ACM (1988).

[3] Appel, A.W.: Modern Compiler Implementation in ML: Basic Tech-
niques, Cambridge University Press, New York, NY, USA (1997).

[4] Bodik, R., Gupta, R. and Soffa, M.L.: Complete removal of redun-
dant expressions, Proc. ACM SIGPLAN 1998 Conference on Program-
ming Language Design and Implementation, PLDI ’98, New York,
NY, USA, pp.1–14, ACM (1998).

[5] Click, C.: Global code motion/global value numbering, Proc. ACM
SIGPLAN 1995 Conference on Programming Language Design and
Implementation, PLDI ’95, New York, NY, USA, pp.246–257, ACM
(1995).

[6] COINS, available from 〈http://coins-compiler.sourceforge.jp/〉.
[7] Cooper, K.D. and Xu, L.: An efficient static analysis algorithm to

detect redundant memory operations, Proc. 2002 Workshop on Mem-
ory System Performance, MSP ’02, New York, NY, USA, pp.97–107,
ACM (2002).

[8] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N. and Zadeck,
F.K.: Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph, Technical report, Providence, RI, USA
(1991).

[9] Dhamdhere, D.M.: A fast algorithm for code movement optimisation,
SIGPLAN Not., Vol.23, No.10, pp.172–180 (1988).

[10] Dhamdhere, D.M. and Patil, H.: An elimination algorithm for bidi-
rectional data flow problems using edge placement, ACM Trans. Pro-
gram. Lang. Syst., Vol.15, No.2, pp.312–336 (1993).

[11] Kennedy, R., Chan, S., Liu, S.-M., Lo, R., Tu, P. and Chow, F.: Par-
tial redundancy elimination in SSA form, ACM Trans. Program. Lang.
Syst., Vol.21, No.3, pp.627–676 (1999).

[12] Knoop, J., Ruthing, O. and Steffen, B.: Lazy code motion, Proc. ACM
SIGPLAN 1992 Conference on Programming Language Design and
Implementation, PLDI ’92, New York, NY, USA, pp.224–234, ACM
(1992).

[13] Knoop, J., Ruthing, O. and Steffen, B.: Optimal code motion: The-
ory and practice, ACM Trans. Program. Lang. Syst., Vol.16, No.4,
pp.1117–1155 (1994).

[14] Morel, E. and Renvoise, C.: Global optimization by suppression
of partial redundancies, Commun. ACM, Vol.22, No.2, pp.96–103
(1979).

[15] Nie, J.T. and Cheng, X.: An efficient SSA-based algorithm for com-
plete global value numbering, Proc. 5th Asian Conference on Pro-

gramming Languages and Systems, APLAS’07, Berlin, Heidelberg,
pp.319–334, Springer-Verlag (2007).

[16] Odaira, R. and Hiraki, K.: Partial Value Number Redundancy Elimi-
nation, IPSJ Trans. Programming, Vol.45, No.SIG09 (PRO22), pp.59–
79 (2004) (in Japanese).

[17] Rosen, B.K., Wegman, M.N. and Zadeck, F.K.: Global value num-
bers and redundant computations, Proc. 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’88,
New York, NY, USA, pp.12–27, ACM (1988).

[18] Ruthing, O., Knoop, J. and Steffen, B.: Detecting Equalities of Vari-
ables: Combining Efficiency with Precision, Proc. 6th International
Symposium on Static Analysis, SAS ’99, London, UK, UK, pp.232–
247, Springer-Verlag (1999).

[19] Takimoto, M.: Speculative Partial Redundancy Elimination Based on
Question Propagation, IPSJ Trans. Programming, Vol.2, No.5, pp.15–
27 (2009) (in Japanese).

[20] VanDrunen, T. and Hosking, A.L.: Value-based partial redundancy
elimination, CC, pp.167–184 (2004).

[21] Zhou, H., Chen, W. and Chow, F.: An SSA-based algorithm for op-
timal speculative code motion under an execution profile, Proc. 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, New York, NY, USA, pp.98–108, ACM
(2011).

Yasunobu Sumikawa received his B.S.
in mathematics, M.S. in information sci-
ence from Tokyo University of Science in
2010 and 2012, respectively. His research
interests include the compilers. He is a
member of ACM and the Japan Society
for Software Science and Technology.

Munehiro Takimoto is a professor in the
Department of Information Sciences at
Tokyo University of Science. His research
interests include the design and imple-
mentation of programming languages. He
received his undergraduate, postgraduate,
and doctoral degrees in engineering from
Keio University.

c© 2013 Information Processing Society of Japan 44

