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Investigating individual differences in
learning-based visual saliency models
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Abstract: Learning-based approaches for modeling visual saliency using a data set of human fixations are
becoming increasingly popular in recent years. However, most of the prior studies do not consider individ-
ual differences in visual attention, which might potentially improve the fixation prediction performance of
learned models. By taking the visual saliency model which incorporates visual field characteristics as an
example, we investigate individual differences by statistically comparing different saliency models learned
using person-dependent training data sets.
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1. Introduction

Human’s visual attention is attracted to salient stimuli,

which means information captured by photoreceptor is not

uniformly processed in the brain. Such mechanism is re-

quired for humans to rapidly discover important informa-

tion. Some researches have shown that it is a challenging

task even for human brains to simultaneously identify any

and all interesting targets in one’s visual field [16].

Modeling visual saliency has been a very active research

field over the recent decade and many models of visual at-

tention are available now [1]. Other than understanding and

reasoning the mechanism behind visual attention, creating

computational model that predicts interesting parts of im-

ages and videos has many meaningful real-life applications

in the field of computer vision, such as image segmentation,

thumbnailing, rendering, image compression, object detec-

tion and object recognition. Besides, it can also be found

useful in robot control, advertisement design, and surveil-

lance systems.

Itti et al . proposed the first complete implementation of

computational model [9] by extracting low level visual fea-

tures such as luminance contrast, color contrast, orientation

and motion to predict interesting regions. Another repre-

sentative method of visual attention model is Graph-based

visual saliency, proposed by Harel et al . [7]. In this model,

bottom-up features are extracted to form activation maps,

then such activation maps will be treated as Markov chain

to seek out nodes that have high dissimilarity with their

surrounding nodes.

However, such conventional models often require a clear

understanding of the biological visual systems in order to de-

sign the parameters, e.g ., the type of visual features, shape
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Fig. 1 Comparison of computational saliency map and actual
fixation [10]

and size of filters and normalization schemes. Since the

mechanism of human visual system is not yet fully under-

stood, designing such models in a biologically convincing

way is not a trivial task.

In Fig. 1, the first column shows input images, the sec-

ond column shows saliency maps generated by Itti-Koch’s

model, and the last column shows comparisons between the

saliency map and actual fixation locations. As can be seen,

accurate prediction of fixation locations is not always easy

for conventional bottom-up models.

Contrary to such rule-based approaches that try to for-

mulate theories and assumptions behind visual attention, a

data-driven approach of modeling visual attention is becom-

ing increasingly popular in recent years. A data set of images

and actual locations of human fixations is used as a training

data to learn a computational model that accurately repli-

cates the distribution of fixations. Judd et al . [10] proposed

a method to use a linear support vector machine to train

a model of saliency with predefine low, mid and high-level

image features. Zhao et al . [18] proposed a method training
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a model of saliency by least square method with features

defined in the Itti and Koch model [9]. Recently, Kubota et

al . [12] improved learning-based model by introducing char-

acteristics of human visual field. In this model, a visual field

is divided into several regions according to the distance from

the fixation center. Weight of features is trained separately

in each field by least square method with graph-based visual

saliency model [7] saliency map.

In these works, training data sets are usually collected

from multiple test subjects and most prior researches do

not take the consideration of individual difference when us-

ing these datasets. However, it is natural and instinctive to

believe the existence of individual difference because people

have different personal experience, gender and age, which

might reflect in the habit of viewing a picture. Thus, consid-

ering individual difference in learning-based visual saliency

model has a potential to improve its performance by, e.g .,

clustering people into a few major types and develop adop-

tive models for each type of people. The analysis on indi-

vidual difference on visual attention is also helpful in the

research of human biology systems. By studying the differ-

ence of viewing habit among infant, adult and the aged, for

example, it will become possible to learn the growth and

aging process of human brain and visual system.

In this work, as a prior study for future research, we in-

vestigate the existence of individual difference in Kubota et

al .’s visual saliency model and their data set. We statisti-

cally compare models learned using individual data sets of

each person, and the purpose of the experiment is two-fold:

( 1 ) To assess if the personal models perform better on the

fixation prediction task than a generic model

( 2 ) To see how and where the difference between personal

models arises

For 1), we compare NSS (normalized scanpath saliency)

scores of personal and generic models via Wilcoxon signed

rank test. For 2), we show a result of multivariate analy-

sis of variance (MANOVA) of the feature weight vectors of

the personal models. Throughout these tests, we provide

a quantitative view on the individual difference of saliency

models learned using personal training data.

2. Learning-based models of visual

saliency

Learning-based visual saliency models generally consist of

following steps [19]:

Extraction of features

Commonly used low-level features include color contrast,

intensity, orientation and symmetry, as well as higher-level

feature like face.

Computation of individual feature maps

Existing techniques are often used to generate feature

maps with the extracted features, such as differentiation

on image pyramids, Bayesian statistics, discriminant center-

surround difference, entropy minimization and Markov

chains.

Fig. 2 Flow chart of generating learning-based visual saliency
models

Fig. 3 Divide the visual field into 6 regions according to fixation
point

Training of the feature integration model

Given the feature maps and prerecorded fixation map, the

task of learning-based model is to optimize the parameters

of how to integrate them into the final saliency map. By

overlaying fixation map over feature maps, positive train-

ing samples selected around the fixation locations on fea-

ture maps. Similarly, negative training samples are selected

from the locations away from the fixations. Then postive

samples and negative samples will be sent to a supervised

learning technique to optimize the parameters of the model.

Such techniques, typically, includes least square, artificial

neural network, and support vector machines.Fig. 2 shows

the flowchart of developing a learning-based model.

Kubota et al . [12] propounded that the visual field charac-

teristics is an important effect that should be involved in op-

timizing model performance. Their baseline model is graph-

based visual saliency (GBVS) model which is the bottom-up

feature provider, as well as facial feature which is computed

as a Gaussian distribution with respect to the center of the

detected face, using a face detector from face.com [5]. In

the learning phase, Kubota et al . divide the field of vision

into 6 regions with the respect to the center of current fix-

ation point in the saccade (Fig.3), guaranteeing each region

has the same number of sacaade so that positive samples

are equally distributed. Each region has 10 independent

weights. They are color, intensity, orientation in 3 scale lev-

els of 1/4, 1/8, 1/16 and face. Then a i × 60 dimension

matrix F of learning sample is made

F =

(
Positive samples

Negative samples

)
,

with positive samples and negative samples. Each row

is a traning sample and each column corresponds to a fea-

ture. On the other handd, elements in i × 1 label matrix l

is defined by
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Fig. 4 Comparison between divided model and undivided model.
Feature name C=color, I=intensity, O=orientation,
F=face. The following number n is the scale level, which
means the scale factor is 1

2n+1 . e.g. C1 means Color con-
trast feature at the scale level of 1/4

Fig. 5 Some samples of pictures in Kubota et al .’s dataset.

lj =

1 lj is positive sample

0 lj is negative sample
.

Finally, the model will be trained with non-negative least

square technique,

min
w
‖FW − l‖2, where ∀w ∈W , w > 0,

gaining the feature weight vector W to minimize the error

between FW and l. Training result is shown in Fig. 4. It

shows the weights and ratios of features in each region of vi-

sual field is significantly different from each other and they

are also different from the weights in undivided model.

Another contribution of Kubota et al . is that they cre-

ated a new data set with 57 ◦ of horizontal viewing angle,

which is much wider than the data set applied in the prior

works [2, 3, 10,14,14]

Fig. 5 shows examples of images contained in Kubota et

al .’s data set. The 400 images in the dataset are randomly

picked from Flickr Creative Commons. Gaze data of 15 test

subjects is recorded by Tobii TX300 eye tracker at the rate

of 60 HZ. Each image is shown to the subjects for 4 seconds.

Eye movement faster than 22◦/sec is considered a saccade

and there are 5 saccade on each image on average.

3. Experiments

In this paper, we take Kubota et al .’s model as an

example, investigate individual differences by statistically

comparing different saliency models learned using person-

dependent training data sets.

Fig. 6 shows training results using individual data of the

15 test subjects included in Kubota et al .’s data set. We

can, subjectively, see that the shape of feature weight distri-

bution of each person and ratio among the features in a each

region is different. Our goal is to examine whether such an

individual difference exists or not in a quantitative manner.

3.1 Effect of top-down feature in learning-based

saliency

Before examining individual differences, we show addi-

tional experimental results on the effect of top-down feature

used in Kubota et al .’s model. While human visual field

characteristics can be correlated with bottom-up features

such as color, intensity and orientation, its relationship with

top-down features such as face is not obvious. Hence, incor-

porating face factor can even affect the learning results and

it is not clear if their model can correctly reflect visual field

characteristics.

In this section, we statistically examine if there exists an

effect of using top-down feature in learning. More specifi-

cally, we compare models trained under following two con-

ditions concerning face factor:

( 1 ) All training samples are used, and all features are in-

cluded.

( 2 ) All training samples are used, but face factor is not con-

sidered.

( 3 ) Samples in the images that include detectable faces are

not used, and face factor is not considered

While the first condition corresponds to the original setting

of Kubota et al ., face feature is simply excluded from their

model in the second condition. In the third condition, im-

ages that include human faces are further excluded from the

data set.

Examples of the learned feature weights under the three

conditions are shown in Fig. 7. There are three figures for

each subject. They are models trained under condition (1),

(2) and (3) respectively and lined up in the order from left to

right. The last grid shows a mean weight of the all subjects.

It can be seen that model cond .1 and model cond .2 are

almost the same with each other and it suggests adding top-

down feature does not affect the training results. In con-

sideration of the fact that the amount of training samples

is different that 146 out of 400 images are not used, it does

not change a lot in the weights although some weights show

dissimilarity in model cond .3.

To be more precise, we compare the Normalized Scanpath

Saliency (NSS) [13] score over models in condition (1) and

(2) to examine whether the perfromance are the same with

each other.

The idea of NSS measure is to evaluate the pixel value

on the saliency map along a subject’s scanpath. To calcu-

late NSS score, the first thing to do is normalize the model-

predicted saliency map into a saliency map with a zero mean

and unit standard deviation. Then the scanpath is over-

laid on the normalized saliency map and the pixel values

of saliency map on these fixation location are summed and

averaged to get the NSS score.

We denote the model trained under condition (i) for sub-
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(a) Subject 1 (b) Subject 2 (c) Subject 3 (d) Subject 4 (e) Subject 5

(f) Subject 6 (g) Subject 7 (h) Subject 8 (i) Subject 9 (j) Subject 10

(k) Subject 11 (l) Subject 12 (m) Subject 13 (n) Subject 14 (o) Subject 15

Fig. 6 Feature weights in each region for each subject

ject n by cond.iMn , where n = 1, · · · , 15, We perform

a two tailed Wilcoxon Signed-rank test [8] over the paired-

data of cond.1NSSn and cond.1NSSn , where n = 1, · · · , 15.

The null hypothesis is that cond.1NSSn − cond.2NSSn comes

from a distribution with zero median.

The p-value of hypothesis test is p = 0.720� 0.01 which

means we cannot reject the null hypothesis. Hence training

with or without the face factor do not affect the weights of

the rest 3 kinds of bottom-up feature and it is safe to com-

pare the contribution in individual difference of the bottom-

up features and face.

3.2 Performance comparison between personal

and generic model

The first experiment about individual difference is com-

paring the score across personal and generic model. In this

way, we first try to examine if personal models perform bet-

ter than a generic model.

In this experiment, we divide the dataset into 100-image

test set and 300-image training set. Training set is used for

developing saliency models and the test set is for calculating

NSS scores.

We denote the personal model for subject n by
PMn , where n = 1, · · · , 15, and this is a model trained

with the fixation data of subject n. Respectively, we denote

the generic model without using training data from subject

n by GMn and this model is trained with the data from

rest of the test subjects. There are 10 ∗ 6 = 60 (10 features

channels in 6 regions, 3 color channels, intensity channels,

orientation channels and 1 face channel in each region) fea-

ture weights in one model.

The NSS score of PMn and GMn , P NSSn and GNSSn ,

which are tested with subject n’s fixation data should be

different if the individual difference exists. In our experi-

ment, PMn is trained with all positive and negative sam-

ples in the training set, while GMn is trained with 20%

randomly selected samples from the training set. We per-

form a Wilcoxon Signed-rank test [8] over the paired-data

of P NSSn and GNSSn , where n = 1, · · · , 15 (Fig. 8).

In our test, the null hypothesis is that P NSSn − GNSSn

comes from a distribution with zero median at the 1% signif-

icance level. As we assume that personal model has better

performance than generic model, the alternate hypothesis

states that P NSSn − GNSSn come from a distribution with

median greater than 0. The p-value of right-tailed hypothe-

sis test is p = 0.00018311� 0.01 so that it is reasonable to

reject the null hypothesis at 1% significance level.
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(a) Subject 1 (b) Subject 8

(c) Subject 15 (d) Mean of the feature of 15 subjects

Fig. 7 Bottom-up feature weights learned with and without face factor in saliency model

Fig. 8 Data construction of experiment 1

3.3 Difference between personal models

While it is verified that personal models can perform bet-

ter than generic models, more direct comparison of learned

feature weights should be made to see individual difference.

In this section, we carry out a one-way multivariate analysis

of variance over the feature vectors (MANOVA) [11] to test

the null hypothesis that the means of each personal model

are the same n-dimensional multivariate vector at 5% sig-

nificance level.

In this experiment, all images in the dataset are taken

as training samples, in other words, there is no division of

training set and test set. To obtain the feature vectors, we

divide the dataset into 10 subsets as training sets, which

makes every subset have 40 images. Then, for every test

subject, 10 personal models will be trained with the data of

10 training sets as 10 observations. We denote the personal

model for subject n trained with subset m by

PMn,m where n = 1, · · · , 15 and m = 1, · · · , 10

The test results are listed in Table. 1. The first column

stands for the type of feature vector that is put into the

test. Second and third columns show how many different

Table 1 Result of multivariate analysis of variance

Type of feature Observations Groups Dimension d

All 10 15 60 2

Color 10 15 18 0
Intensity 10 15 18 0
Orientation 10 15 18 1
Face 10 15 6 0

groups and how many observations per group are involved

in the MANOVA test. The fourth column is the deminsion

of feature vector. The last column is an estimate of the di-

mension of the space containing the group means. There is

no evidence to reject the null hypothesis if d = 0. If d =

1, the null hypothesis can be rejected at the 5% significance

level though the hypothesis that the mean lies on the same

line.

When the test object is full feature vector of the models,

we can reject the null hypothesis at 5% significance level al-

though we cannot reject the hypothesis that the multivariate

means may lie on the same plane in 60-dimensional space.

This is another evidence indicating the existence of individ-

ual difference that the actual weight distribution has some

sort of variation.

However, the difference seems to disappear when a sin-

gle type of feature vectors is put into test. In the second

row of Table 1, e.g ., d = 0 suggests that there are no dif-

ference in the distribution of color vector from test subject

to test subject, so are distribution of intensity and face fea-

ture. Only the orientation feature shows the difference at

5% significance level.

We further apply a hierarchical clustering based on the

result of MANOVA and visualize the clustering results as

dendrogram in Fig. 9. We can see that color (Fig. 9(a)),

intensity (Fig. 9(b)) and orientation (Fig. 9(c)) share a sim-

ilar topology and subjects cannot be well grouped by any of

them, although the d value of orientation is 1 and others are

0. On the other hand, subjects seem to be well grouped by
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Fig. 9 Hierarchical clustering using UPGMA (Unweighted Pair
Group Method with Arithmetic Mean) based on different
features

face (Fig. 9(d)) while the d value of face is 0.

When all features are considered, the topology of grouping

becomes different from any of the above (Fig. 9(e)). There-

fore, the individual difference is considered to be the result

of the accumulation of the minor differences rather than

caused by a single specific feature.

4. Conclusion

In this paper, we investigated the individual difference

by two statistical experiments. We have shown that the

NSS score of personal model is statistically higher than the

NSS score of generic model. Under the premise, personal

adaptive saliency model is possible to train to improve the

accuracy of prediction.

We also attempted to explore where and how the differ-

ence between personal models arises in experiment 2, how-

ever we found there is no clear distinction between the test

subjects until all features are used. There are two possible

reasons for this phenomenon:

( 1 ) Different features are not perfectly independent from

each other. Suppose there is an image contains a verti-

cal white line over black background, orientation in the

picture is represented by the intensity contrast.

( 2 ) Every single feature can be taken as a weak classifiers

and the individual difference (strong classifier) is a lin-

ear combination of multiple weak classifiers, which is

similar to the idea of AdaBoost.

It is an important task to examine these hypotheses with

larger amount of data.

Even if personal adaptive saliency models can perform

better than generic models, it is not practical to learn tai-

lored models for each user. Hence, in future work, it is

required to explore how such individual difference can be

modeled efficiently without personal training. We are also

planning to study differences that can arise from different

categories, e.g ., ages of people.
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